6

Orthogonality and Least Squares

6.1

INNER PRODUCT, LENGTH, AND ORTHOGONALITY

Linear Algebra

David C. Lay

INNER PRODUCT

- If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, then we regard \mathbf{u} and \mathbf{v} as $n \times 1$ matrices.
- The transpose \mathbf{u}^{T} is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^{T} \mathbf{v}$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $\mathbf{u}^{T} \mathbf{v}$ is called the inner product of \mathbf{u} and \mathbf{v}, and it is written as $\mathrm{u} \cdot \mathrm{v}$.
- The inner product is also referred to as a dot product.

INNER PRODUCT

- $\mathrm{Ifu}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$ and $\mathrm{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$,
then the inner product of \mathbf{u} and \mathbf{v} is

INNER PRODUCT

- Theorem 1: Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in \mathbb{R}^{n}, and let c be a scalar. Then
a. $\mathrm{u} \bullet \mathrm{V}=\mathrm{V} \bullet \mathrm{u}$
b. $(u+v) \cdot W=u \cdot W+V \cdot W$
c. $(c \mathrm{u}) \cdot \mathrm{V}=c(\mathrm{u} \cdot \mathrm{V})=\mathrm{u} \cdot(c \mathrm{v})$
d. $u \cdot u \geq 0$, and $u \bullet u=0$ if and only if $u=0$
- Properties (b) and (c) can be combined several times to produce the following useful rule: $\left(c_{1} \mathrm{u}_{1}+\cdots+c_{p} \mathrm{u}_{p}\right) \cdot \mathrm{W}=c_{1}\left(\mathrm{u}_{1} \cdot \mathrm{~W}\right)+\cdots+c_{p}\left(\mathrm{u}_{p} \cdot \mathrm{~W}\right)$

THE LENGTH OF A VECTOR

- If \mathbf{v} is in \mathbb{R}^{n}, with entries v_{1}, \ldots, v_{n}, then the square root of $\mathrm{V} \cdot \mathrm{V}$ is defined because $\mathrm{V} \cdot \mathrm{V}$ is nonnegative.
- Definition: The length (or norm) of \mathbf{v} is the nonnegative scalar $\|\mathrm{v}\|$ defined by

$$
\|\mathrm{v}\|=\sqrt{\mathrm{v} \cdot \mathrm{~V}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \text { and }\|\mathrm{v}\|^{2}=\mathrm{V} \cdot \mathrm{~V}
$$

- Suppose \mathbf{v} is in \mathbb{R}^{2}, say, $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$.

THE LENGTH OF A VECTOR

- If we identify \mathbf{v} with a geometric point in the plane, as usual, then $\|\mathrm{V}\|$ coincides with the standard notion of the length of the line segment from the origin to \mathbf{v}.
- This follows from the Pythagorean Theorem applied to a triangle such as the one shown in the following figure.

Interpretation of $\|\mathbf{v}\|$ as length.

- For any scalar c, the length $c \mathbf{v}$ is $|c|$ times the length of v. That is,

$$
\|c \mathrm{v}\|=|c|\|\mathrm{v}\|
$$

THE LENGTH OF A VECTOR

- A vector whose length is 1 is called a unit vector.
- If we divide a nonzero vector \mathbf{v} by its length-that is, multiply by $1 /\|\mathrm{v}\|-$ we obtain a unit vector \mathbf{u} because the length of \mathbf{u} is $(1 /\|v\|)\|v\|$.
- The process of creating \mathbf{u} from \mathbf{v} is sometimes called normalizing \mathbf{v}, and we say that \mathbf{u} is in the same direction as \mathbf{v}.

THE LENGTH OF A VECTOR

- Example 1: Let $\mathrm{v}=(1,-2,2,0)$. Find a unit vector u in the same direction as \mathbf{v}.
- Solution: First, compute the length of \mathbf{v} :

$$
\begin{aligned}
\|v\|^{2} & =v g v=(1)^{2}+(-2)^{2}+(2)^{2}+(0)^{2}=9 \\
\|v\| & =\sqrt{9}=3
\end{aligned}
$$

- Then, multiply \mathbf{v} by $1 /\|\mathrm{v}\|$ to obtain

$$
\mathrm{u}=\frac{1}{\|\mathrm{v}\|} \mathrm{v}=\frac{1}{3} \mathrm{v}=\frac{1}{3}\left[\begin{array}{r}
1 \\
-2 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 / 3 \\
-2 / 3 \\
2 / 3 \\
0
\end{array}\right]
$$

DISTANCE IN \mathbb{R}^{n}

- To check that $\|\mathrm{u}\|=1$, it suffices to show that $\|\mathrm{u}\|^{2}=1$.

$$
\begin{aligned}
\|\mathrm{u}\|^{2} & =\mathrm{ugu}=\left(\frac{1}{3}\right)^{2}+\left(-\frac{2}{3}\right)+\left(\frac{2}{3}\right)^{2}+(0)^{2} \\
& =\frac{1}{9}+\frac{4}{9}+\frac{4}{9}+0=1
\end{aligned}
$$

- Definition: For \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v}, written as $\operatorname{dist}(\mathbf{u}, \mathbf{v})$, is the length of the vector $u-v$. That is,

$$
\operatorname{dist}(u, v)=\|u-v\|
$$

DISTANCE IN \mathbb{R}^{n}

- Example 2: Compute the distance between the vectors $u=(7,1)$ and $v=(3,2)$.
- Solution: Calculate

$$
\begin{aligned}
u-v & =\left[\begin{array}{l}
7 \\
1
\end{array}\right]-\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{r}
4 \\
-1
\end{array}\right] \\
\|u-v\| & =\sqrt{4^{2}+(-1)^{2}}=\sqrt{17}
\end{aligned}
$$

- The vectors \mathbf{u}, \mathbf{v}, and $\mathbf{u}-\mathrm{v}$ are shown in the figure on the next slide.
- When the vector $\mathbf{u}-\mathrm{v}$ is added to \mathbf{v}, the result is \mathbf{u}.

DISTANCE IN \mathbb{R}^{n}

The distance between \mathbf{u} and \mathbf{v} is the length of $\mathbf{u}-\mathbf{v}$.

- Notice that the parallelogram in the above figure shows that the distance from \mathbf{u} to \mathbf{v} is the same as the distance from $\mathrm{u}-\mathrm{V}$ to $\mathbf{0}$.

ORTHOGONAL VECTORS

- Consider \mathbb{R}^{2} or \mathbb{R}^{3} and two lines through the origin determined by vectors \mathbf{u} and \mathbf{v}.
- See the figure below. The two lines shown in the figure are geometrically perpendicular if and only if the distance from \mathbf{u} to \mathbf{v} is the same as the distance from \mathbf{u} to -V .

- This is the same as requiring the squares of the distances to be the same.

ORTHOGONAL VECTORS

- Now
$[\operatorname{dist}(\mathrm{u},-\mathrm{v})]^{2}=\|\mathrm{u}-(-\mathrm{v})\|^{2}=\|\mathrm{u}+\mathrm{v}\|^{2}$

$$
\begin{aligned}
& =(\mathrm{u}+\mathrm{v}) \cdot(\mathrm{u}+\mathrm{v}) \\
& =\mathrm{u} \cdot(\mathrm{u}+\mathrm{v})+\mathrm{v} \cdot(\mathrm{u}+\mathrm{v})
\end{aligned}
$$

Theorem 1(b)

$$
\begin{equation*}
=\mathrm{u} \bullet \mathrm{u}+\mathrm{u} \bullet \mathrm{v}+\mathrm{v} \bullet \mathrm{u}+\mathrm{v} \bullet \mathrm{v} \tag{b}
\end{equation*}
$$

$$
=\|u\|^{2}+\|v\|^{2}+2 u \cdot v
$$

Theorem 1(a)

- The same calculations with \mathbf{v} and -V interchanged show that $[\operatorname{dist}(\mathrm{u}, \mathrm{v})]^{2}=\|\mathrm{u}\|^{2}+\|-\mathrm{v}\|^{2}+2 \mathrm{u} \cdot(-\mathrm{v})$

$$
=\|\mathrm{u}\|^{2}+\|\mathrm{v}\|^{2}-2 \mathrm{u} \cdot \mathrm{v}
$$

ORTHOGONAL VECTORS

- The two squared distances are equal if and only if $2 u \cdot v=-2 u \cdot v$, which happens if and only if $u \cdot v=0$.
- This calculation shows that when vectors \mathbf{u} and \mathbf{v} are identified with geometric points, the corresponding lines through the points and the origin are perpendicular if and only if $u \cdot v=0$.
- Definition: Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} are orthogonal (to each other) if $u \cdot v=0$.
- The zero vector is orthogonal to every vector in \mathbb{R}^{n} because $0^{T} \mathrm{~V}=0$ for all \mathbf{v}.

THE PYTHOGOREAN THEOREM

- Theorem 2: Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.
- Orthogonal Complements
- If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^{n}, then \mathbf{z} is said to be orthogonal to W.
- The set of all vectors \mathbf{z} that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp} (and read as " W perpendicular" or simply " W perp").

ORTHOGONAL COMPLEMENTS

1. A vector \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.
2. W^{\perp} is a subspace of \mathbb{R}^{n}.

- Theorem 3: Let A be an $m \times n$ matrix. The orthogonal complement of the column space of A is the null space of A^{T}

$$
(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}
$$

6

Orthogonality and Least Squares

6.2

ORTHOGONAL SETS

Linear Algebra

David C. Lay
© 2012 Pearson Education, Inc.

ORTHOGONAL SETS

- A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if $\mathrm{u}_{i} \bullet \mathrm{u}_{j}=0$ whenever $i \neq j$.
- Theorem 4: If $S=\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{p}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{n}, then S is linearly independent and hence is a basis for the subspace spanned by S.

ORTHOGONAL SETS

- Proof: If $0=c_{1} \mathrm{u}_{1}+\cdots+c_{p} \mathrm{u}_{p}$ for some scalars c_{1},
\cdots, c_{p}, then
$0=0 \cdot \mathrm{u}_{1}=\left(c_{1} \mathrm{u}_{1}+c_{2} \mathrm{u}_{2}+\cdots+c_{p} \mathrm{u}_{p}\right) \cdot \mathrm{u}_{1}$

$$
\begin{aligned}
& =\left(c_{1} \mathrm{u}_{1}\right) \cdot \mathrm{u}_{1}+\left(c_{2} \mathrm{u}_{2}\right) \cdot \mathrm{u}_{1}+\cdots+\left(c_{p} \mathrm{u}_{p}\right) \cdot \mathrm{u}_{1} \\
& =c_{1}\left(\mathrm{u}_{1} \cdot \mathrm{u}_{1}\right)+c_{2}\left(\mathrm{u}_{2} \cdot \mathrm{u}_{1}\right)+\cdots+c_{p}\left(\mathrm{u}_{p} \cdot \mathrm{u}_{1}\right) \\
& =c_{1}\left(\mathrm{u}_{1} \cdot \mathrm{u}_{1}\right)
\end{aligned}
$$

because \mathbf{u}_{1} is orthogonal to $\mathbf{u}_{2}, \ldots, \mathbf{u}_{p}$.

- Since \mathbf{u}_{1} is nonzero, $\mathbf{u}_{1} \bullet \mathbf{u}_{1}$ is not zero and so $c_{1}=0$.
- Similarly, c_{2}, \ldots, c_{p} must be zero.

ORTHOGONAL SETS

- Thus S is linearly independent.
- Definition: An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an orthogonal set.
- Theorem 5: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. For each \mathbf{y} in W, the weights in the linear combination
are given by

$$
\mathrm{y}=c_{1} \mathrm{u}_{1}+\cdots+c_{p} \mathrm{u}_{p}
$$

$$
c_{j}=\frac{\mathrm{y} \cdot \mathrm{u}_{j}}{\mathrm{u}_{j} \cdot \mathrm{u}_{j}} \quad(j=1, \mathrm{~K}, p)
$$

ORTHOGONAL SETS

- Proof: The orthogonality of $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{p}}\right\}$ shows that

$$
\mathrm{y} \cdot \mathrm{u}_{1}=\left(c_{1} \mathrm{u}_{1}+c_{2} \mathrm{u}_{2}+\cdots+c_{p} \mathrm{u}_{p}\right) \cdot \mathrm{u}_{1}=c_{1}\left(\mathrm{u}_{1} \bullet \mathrm{u}_{1}\right)
$$

- Since $u_{1} \bullet u_{1}$ is not zero, the equation above can be solved for c_{1}.
- To find c_{j} for $j=2, \ldots, p$, compute $\mathrm{y} \cdot \mathrm{u}_{j}$ and solve for c_{j}.

AN ORTHOGONAL PROJECTION

- Given a nonzero vector \mathbf{u} in \mathbb{R}^{n}, consider the problem of decomposing a vector \mathbf{y} in \mathbb{R}^{n} into the sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u}.
- We wish to write

$$
\begin{equation*}
y=\hat{y}+z \tag{1}
\end{equation*}
$$

where $\hat{\mathbf{y}}=\alpha \mathrm{u}$ for some scalar α and \mathbf{z} is some vector orthogonal to \mathbf{u}. See the following figure.

Finding α to make $\mathbf{y}-\hat{\mathbf{y}}$ orthogonal to \mathbf{u}.

AN ORTHOGONAL PROJECTION

- Given any scalar α, let $\mathrm{Z}=\mathrm{y}-\alpha \mathrm{u}$, so that (1) is satisfied.
- Then $\mathrm{y}-\hat{\mathrm{y}}$ is orthogonal to \mathbf{u} if an only if

$$
0=(\mathrm{y}-\alpha \mathrm{u}) \cdot \mathrm{u}=\mathrm{y} \cdot \mathrm{u}-(\alpha \mathrm{u}) \cdot \mathrm{u}=\mathrm{y} \cdot \mathrm{u}-\alpha(\mathrm{u} \cdot \mathrm{u})
$$

- That is, (1) is satisfied with \mathbf{z} orthogonal to \mathbf{u} if and

$$
\text { only if } \alpha=\frac{\mathrm{y} \bullet \mathrm{u}}{\mathrm{u} \cdot \mathrm{u}} \text { and } \hat{\mathrm{y}}=\frac{\mathrm{y} \cdot \mathrm{u}}{\mathrm{u} \cdot \mathrm{u}} \mathrm{u} .
$$

- The vector \hat{y} is called the orthogonal projection of \mathbf{y} onto \mathbf{u}, and the vector \mathbf{z} is called the component of y orthogonal to u.

AN ORTHOGONAL PROJECTION

- If c is any nonzero scalar and if \mathbf{u} is replaced by $c \mathbf{u}$ in the definition of \hat{y}, then the orthogonal projection of \mathbf{y} onto $c \mathbf{u}$ is exactly the same as the orthogonal projection of \mathbf{y} onto \mathbf{u}.
- Hence this projection is determined by the subspace L spanned by \mathbf{u} (the line through \mathbf{u} and $\mathbf{0}$).
- Sometimes \hat{y} is denoted by $\operatorname{proj}_{L} \mathbf{y}$ and is called the orthogonal projection of y onto L.
- That is,

$$
\begin{equation*}
\hat{\mathrm{y}}=\operatorname{proj}_{L} \mathrm{y}=\frac{\mathrm{y} \cdot \mathrm{u}}{\mathrm{u} \cdot \mathrm{u}} \mathrm{u} \tag{2}
\end{equation*}
$$

AN ORTHOGONAL PROJECTION

- Example 1: Lety $=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $u=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Find the orthogonal projection of \mathbf{y} onto \mathbf{u}. Then write \mathbf{y} as the sum of two orthogonal vectors, one in Span $\{\mathbf{u}\}$ and one orthogonal to \mathbf{u}.
- Solution: Compute

$$
\begin{aligned}
& \text { pute } \\
& \mathrm{y} \cdot \mathrm{u}=\left[\begin{array}{l}
7 \\
6
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
2
\end{array}\right]=40 \\
& \mathrm{u} \cdot \mathrm{u}=\left[\begin{array}{l}
4 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
2
\end{array}\right]=20
\end{aligned}
$$

AN ORTHOGONAL PROJECTION

- The orthogonal projection of \mathbf{y} onto \mathbf{u} is

$$
\hat{\mathrm{y}}=\frac{\mathrm{y} \cdot \mathrm{u}}{\mathrm{u} \cdot \mathrm{u}} \mathrm{u}=\frac{40}{20} \mathrm{u}=2\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right]
$$

and the component of \mathbf{y} orthogonal to \mathbf{u} is

$$
y-\hat{y}=\left[\begin{array}{l}
7 \\
6
\end{array}\right]-\left[\begin{array}{l}
8 \\
4
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

- The sum of these two vectors is \mathbf{y}.

AN ORTHOGONAL PROJECTION

- That is,

$$
\begin{aligned}
& {\left[\begin{array}{l}
7 \\
6
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right]+\left[\begin{array}{r}
-1 \\
2
\end{array}\right]} \\
& \begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
y & \hat{y} & (y-\hat{y})
\end{array}
\end{aligned}
$$

- The decomposition of \mathbf{y} is illustrated in the following figure.

The orthogonal projection of \mathbf{y} onto a
line L through the origin.

AN ORTHOGONAL PROJECTION

- Note: If the calculations above are correct, then $\{\hat{\mathrm{y}}, \mathrm{y}-\hat{\mathrm{y}}\}$ will be an orthogonal set.
- As a check, compute

$$
\hat{y} \cdot(y-\hat{y})=\left[\begin{array}{l}
8 \\
4
\end{array}\right] \cdot\left[\begin{array}{r}
-1 \\
2
\end{array}\right]=-8+8=0
$$

- Since the line segment in the figure on the previous slide between \mathbf{y} and \hat{y} is perpendicular to L, by construction of \hat{y}, the point identified with \hat{y} is the closest point of L to \mathbf{y}.

ORTHONORMAL SETS

- A set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{p}}\right\}$ is an orthonormal set if it is an orthogonal set of unit vectors.
- If W is the subspace spanned by such a set, then $\left\{\mathbf{u}_{1}\right.$, $\left.\ldots, \mathbf{u}_{\mathrm{p}}\right\}$ is an orthonormal basis for W, since the set is automatically linearly independent, by Theorem 4.
- The simplest example of an orthonormal set is the standard basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ for \mathbb{R}^{n}.
- Any nonempty subset of $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is orthonormal, too.

ORTHONORMAL SETS

- Example 2: Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthonormal basis of \mathbb{R}^{3}, where

$$
\mathrm{v}_{1}=\left[\begin{array}{l}
3 / \sqrt{11} \\
1 / \sqrt{11} \\
1 / \sqrt{11}
\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{r}
-1 / \sqrt{6} \\
2 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right], \mathrm{v}_{3}=\left[\begin{array}{r}
-1 / \sqrt{66} \\
-4 / \sqrt{66} \\
7 / \sqrt{66}
\end{array}\right]
$$

- Solution: Compute

$$
\begin{aligned}
& \mathrm{v}_{1} \cdot \mathrm{v}_{2}=-3 / \sqrt{66}+2 / \sqrt{66}+1 / \sqrt{66}=0 \\
& \mathrm{v}_{1} \cdot \mathrm{v}_{3}=-3 / \sqrt{726}-4 / \sqrt{726}+7 / \sqrt{726}=0
\end{aligned}
$$

ORTHONORMAL SETS

$$
v_{2} g v_{3}=1 / \sqrt{396}-8 / \sqrt{396}+7 / \sqrt{396}=0
$$

- Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal set.
- Also, $\quad \mathrm{v}_{1} \cdot \mathrm{v}_{1}=9 / 11+1 / 11+1 / 11=0$

$$
\begin{aligned}
& v_{2} \cdot v_{2}=1 / 6+4 / 6+1 / 6=1 \\
& v_{3} \cdot v_{3}=1 / 66+16 / 66+49 / 66=1
\end{aligned}
$$

which shows that $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are unit vectors.

- Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthonormal set.
- Since the set is linearly independent, its three vectors form a basis for \mathbb{R}^{3}. See the figure on the next slide.

ORTHONORMAL SETS

- When the vectors in an orthogonal set of nonzero vectors are normalized to have unit length, the new vectors will still be orthogonal, and hence the new set will be an orthonormal set.

6

Orthogonality and Least Squares

6.3

ORTHOGONAL PROJECTIONS

Linear Algebra

David C. Lay
© 2012 Pearson Education, Inc.

ORTHOGONAL PROJECTIONS

- The orthogonal projection of a point in \mathbb{R}^{2} onto a line through the origin has an important analogue in \mathbb{R}^{n}.
- Given a vector \mathbf{y} and a subspace W in \mathbb{R}^{n}, there is a vector $\hat{\mathrm{y}}$ in W such that (1) $\hat{\mathrm{y}}$ is the unique vector in W for which $\mathrm{y}-\hat{\mathrm{y}}$ is orthogonal to W, and (2) $\hat{\mathrm{y}}$ is the unique vector in W closest to \mathbf{y}. See the following figure.

THE ORTHOGONAL DECOMPOSITION THEOREM

- These two properties of \hat{y} provide the key to finding the least-squares solutions of linear systems.
- Theorem 8: Let W be a subspace of \mathbb{R}^{n}. Then each \mathbf{y} in \mathbb{R}^{n} can be written uniquely in the form

$$
\begin{equation*}
y=\hat{y}+z \tag{1}
\end{equation*}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}.

- In fact, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis of W, then

$$
\begin{equation*}
\hat{\mathrm{y}}=\frac{\mathrm{y} \cdot \mathrm{u}_{1}}{\mathrm{u}_{1} \cdot \mathrm{u}_{1}} \mathrm{u}_{1}+\cdots+\frac{\mathrm{y} \cdot \mathrm{u}_{p}}{\mathrm{u}_{p} \cdot \mathrm{u}_{p}} \mathrm{u}_{p} \tag{2}
\end{equation*}
$$

THE ORTHOGONAL DECOMPOSITION THEOREM

- The vector \hat{y} in (1) is called the orthogonal projection of y onto W and often is written as $\operatorname{proj}_{W} \mathbf{y}$. See the following figure.

The orthogonal projection of \mathbf{y} onto W.

- Proof: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ be any orthogonal basis for W, and define \hat{y} by (2).
- Then $\hat{\mathrm{y}}$ is in W because $\hat{\mathrm{y}}$ is a linear combination of the basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$.

THE ORTHOGONAL DECOMPOSITION THEOREM

- Let $\mathrm{z}=\mathrm{y}-\hat{\mathrm{y}}$.
- Since \mathbf{u}_{1} is orthogonal to $\mathbf{u}_{2}, \ldots, \mathbf{u}_{p}$, it follows from (2)

$$
\begin{aligned}
& \text { that } \\
& \begin{aligned}
\mathrm{z} \cdot \mathrm{u}_{1}=(\mathrm{y}-\hat{\mathrm{y}}) \cdot \mathrm{u}_{1} & =\mathrm{y} \cdot \mathrm{u}_{1}-\left(\frac{\mathrm{y} \cdot \mathrm{u}_{1}}{\mathrm{u}_{1} \cdot \mathrm{u}_{1}}\right) \mathrm{u}_{1} \cdot \mathrm{u}_{1}-0-\cdots-0 \\
& =\mathrm{y} \cdot \mathrm{u}_{1}-\mathrm{y} \cdot \mathrm{u}_{1}=0
\end{aligned}
\end{aligned}
$$

- Thus \mathbf{z} is orthogonal to \mathbf{u}_{1}.
- Similarly, \mathbf{z} is orthogonal to each \mathbf{u}_{j} in the basis for W.
- Hence \mathbf{z} is orthogonal to every vector in W.
- That is, \mathbf{z} is in W^{\perp}.

THE ORTHOGONAL DECOMPOSITION THEOREM

- To show that the decomposition in (1) is unique, suppose \mathbf{y} can also be written as $\mathrm{y}=\hat{\mathrm{y}}_{1}+\mathrm{z}_{1}$, with $\hat{\mathrm{y}}_{1}$ in W and \mathbf{z}_{1} in W^{\perp}.
- Then $\hat{y}+\mathrm{z}=\hat{\mathrm{y}}_{1}+\mathrm{z}_{1}$ (since both sides equal \mathbf{y}), and so

$$
\hat{y}-\hat{y}_{1}=z_{1}-z
$$

- This equality shows that the vector $\mathrm{V}=\hat{\mathrm{y}}-\hat{\mathrm{y}}_{1}$ is in W and in W^{\perp} (because \mathbf{z}_{1} and \mathbf{z} are both in W^{\perp}, and W^{\perp} is a subspace).
- Hence $\mathrm{V} \bullet \mathrm{V}=0$, which shows that $\mathrm{v}=0$.
- This proves that $\hat{y}=\hat{y}_{1}$ and also $\mathrm{z}_{1}=\mathrm{z}$.

THE ORTHOGONAL DECOMPOSITION THEOREM

- The uniqueness of the decomposition (1) shows that the orthogonal projection \hat{y} depends only on W and not on the particular basis used in (2).
- Example 1: Let $u_{1}=\left[\begin{array}{r}2 \\ 5 \\ -1\end{array}\right], u_{2}=\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right]$, and $y=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

Observe that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

THE ORTHOGONAL DECOMPOSITION THEOREM

- Solution: The orthogonal projection of \mathbf{y} onto W is

$$
\begin{aligned}
\hat{y} & =\frac{y \cdot u_{1}}{u_{1} \bullet u_{1}} u_{1}+\frac{y \cdot u_{2}}{u_{2} \bullet u_{2}} u_{2} \\
& =\frac{9}{30}\left[\begin{array}{r}
2 \\
5 \\
-1
\end{array}\right]+\frac{3}{6}\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right]=\frac{9}{30}\left[\begin{array}{r}
2 \\
5 \\
-1
\end{array}\right]+\frac{15}{30}\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]
\end{aligned}
$$

- Also

$$
y-\hat{y}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{r}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]=\left[\begin{array}{r}
7 / 5 \\
0 \\
14 / 5
\end{array}\right]
$$

THE ORTHOGONAL DECOMPOSITION THEOREM

- Theorem 8 ensures that $\mathrm{y}-\hat{\mathrm{y}}$ is in W^{\perp}.
- To check the calculations, verify that $y-\hat{y}$ is orthogonal to both \mathbf{u}_{1} and \mathbf{u}_{2} and hence to all of W.
- The desired decomposition of \mathbf{y} is

$$
y=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]+\left[\begin{array}{r}
7 / 5 \\
0 \\
14 / 5
\end{array}\right]
$$

PROPERTIES OF ORTHOGONAL PROJECTIONS

- If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal basis for W and if \mathbf{y} happens to be in W, then the formula for $\operatorname{proj}_{W} \mathbf{y}$ is exactly the same as the representation of \mathbf{y} given in Theorem 5 in Section 6.2.
- In this case, $\operatorname{proj}_{W} \mathrm{y}=\mathrm{y}$.
- If \mathbf{y} is in $W=\operatorname{Span}\left\{\mathrm{u}_{1}, \ldots, \mathrm{u}_{p}\right\}$, then $\operatorname{proj}_{W} \mathrm{y}=\mathrm{y}$.

THE BEST APPROXIMATION THEOREM

- Theorem 9: Let W be a subspace of \mathbb{R}^{n}, let \mathbf{y} be any vector in \mathbb{R}^{n}, and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathrm{y}}$ is the closest point in W to \mathbf{y}, in the sense that

$$
\begin{equation*}
\|y-\hat{y}\|<\|y-v\| \tag{3}
\end{equation*}
$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.

- The vector \hat{y} in Theorem 9 is called the best approximation to y by elements of W.
- The distance from \mathbf{y} to \mathbf{v}, given by $\|y-v\|$, can be regarded as the "error" of using \mathbf{v} in place of \mathbf{y}.
- Theorem 9 says that this error is minimized when $v=\hat{y}$.

THE BEST APPROXIMATION THEOREM

- Inequality (3) leads to a new proof that \hat{y} does not depend on the particular orthogonal basis used to compute it.
- If a different orthogonal basis for W were used to construct an orthogonal projection of \mathbf{y}, then this projection would also be the closest point in W to \mathbf{y}, namely, $\hat{\mathrm{y}}$.

THE BEST APPROXIMATION THEOREM

- Proof: Take \mathbf{v} in W distinct from \hat{y}. See the following figure.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y}.

- Then $\hat{\mathrm{y}}-\mathrm{v}$ is in W.
- By the Orthogonal Decomposition Theorem, $\mathrm{y}-\hat{\mathrm{y}}$ is orthogonal to W.
- In particular, $\mathrm{y}-\hat{\mathrm{y}}$ is orthogonal to $\hat{\mathrm{y}}-\mathrm{v}$ (which is in W).

THE BEST APPROXIMATION THEOREM

- Since

$$
y-v=(y-\hat{y})+(\hat{y}-v)
$$

the Pythagorean Theorem gives

$$
\|y-v\|^{2}=\|y-\hat{y}\|^{2}+\|\hat{y}-v\|^{2}
$$

- (See the colored right triangle in the figure on the previous slide. The length of each side is labeled.)
- Now $\|\hat{y}-v\|^{2}>0$ because $\hat{y}-v \neq 0$, and so inequality (3) follows immediately.

PROPERTIES OF ORTHOGONAL PROJECTIONS

- Example 2: The distance from a point \mathbf{y} in \mathbb{R}^{n} to a subspace W is defined as the distance from \mathbf{y} to the nearest point in W. Find the distance from \mathbf{y} to $W=\operatorname{Span}\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}$, where

$$
\mathrm{y}=\left[\begin{array}{r}
-1 \\
-5 \\
10
\end{array}\right], \mathrm{u}_{1}=\left[\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right], \mathrm{u}_{2}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]
$$

- Solution: By the Best Approximation Theorem, the distance from \mathbf{y} to W is $\|\mathrm{y}-\hat{\mathrm{y}}\|$, where $\hat{\mathrm{y}}=\operatorname{proj}_{W} \mathrm{y}$.

PROPERTIES OF ORTHOGONAL PROJECTIONS

- Since $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for W,

$$
\begin{gathered}
\hat{y}=\frac{15}{30} u_{1}+\frac{-21}{6} u_{2}=\frac{1}{2}\left[\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right]-\frac{7}{2}\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-8 \\
4
\end{array}\right] \\
y-\hat{y}=\left[\begin{array}{r}
-1 \\
-5 \\
10
\end{array}\right]-\left[\begin{array}{r}
-1 \\
-8 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
6
\end{array}\right]
\end{gathered}
$$

$$
\|y-\hat{y}\|^{2}=3^{2}+6^{2}=45
$$

- The distance from \mathbf{y} to W is $\sqrt{45}=3 \sqrt{5}$.

6

Orthogonality and Least Squares

6.5

LEAST-SQUARES PROBLEMS

Linear Algebra

David C. Lay
© 2012 Pearson Education, Inc.

LEAST-SQUARES PROBLEMS

- Definition: If A is $m \times n$ and \mathbf{b} is in \mathbb{R}^{m}, a leastsquares solution of $A \mathrm{x}=\mathrm{b}$ is an $\hat{\mathrm{x}}$ in \mathbb{R}^{n} such that

$$
\|\mathrm{b}-A \hat{\mathrm{x}}\| \leq\|\mathrm{b}-A \mathrm{x}\|
$$

for all \mathbf{x} in \mathbb{R}^{n}.

- The most important aspect of the least-squares problem is that no matter what \mathbf{x} we select, the vector $A \mathbf{x}$ will necessarily be in the column space, $\operatorname{Col} A$.
- So we seek an \mathbf{x} that makes $A \mathbf{x}$ the closest point in $\operatorname{Col} A$ to \mathbf{b}. See the figure on the next slide.

LEAST-SQUARES PROBLEMS

The vector \mathbf{b} is closer to $A \hat{\mathbf{x}}$ than to $A \mathbf{x}$ for other \mathbf{x}.

- Solution of the General Least-Squares Problem
- Given A and \mathbf{b}, apply the Best Approximation Theorem to the subspace $\operatorname{Col} A$.
- Let

$$
\hat{\mathrm{b}}=\operatorname{proj}_{\mathrm{Col} A} \mathrm{~b}
$$

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

- Because $\hat{\mathrm{b}}$ is in the column space A, the equation $A \mathrm{x}=\hat{\mathrm{b}}$ is consistent, and there is an $\hat{\mathrm{x}}$ in \mathbb{R}^{n} such that

$$
\begin{equation*}
A \hat{\mathrm{x}}=\hat{\mathrm{b}} \tag{1}
\end{equation*}
$$

- Since $\hat{\mathrm{b}}$ is the closest point in $\operatorname{Col} A$ to \mathbf{b}, a vector $\hat{\mathrm{x}}$ is a least-squares solution of $A \mathrm{x}=\mathrm{b}$ if and only if $\hat{\mathrm{x}}$ satisfies (1).
- Such an $\hat{\mathrm{X}}$ in \mathbb{R}^{n} is a list of weights that will build $\hat{\mathrm{b}}$ out of the columns of A. See the figure on the next slide.

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

The least-squares solution $\hat{\mathbf{x}}$ is in \mathbb{R}^{n}.

- Suppose $\hat{\mathrm{x}}$ satisfies $A \hat{\mathrm{x}}=\hat{\mathrm{b}}$.
- By the Orthogonal Decomposition Theorem, the projection \hat{b} has the property that $\mathrm{b}-\hat{\mathrm{b}}$ is orthogonal to $\operatorname{Col} A$, so $\mathrm{b}-A \hat{\mathrm{x}}$ is orthogonal to each column of A.
- If \mathbf{a}_{j} is any column of A, then $\mathrm{a}_{j} \cdot(\mathrm{~b}-A \hat{\mathrm{x}})=0$, and $\mathrm{a}_{j}^{T}(\mathrm{~b}-A \hat{\mathrm{x}})$.

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

- Since each a_{j}^{T} is a row of A^{T},

$$
\begin{equation*}
A^{T}(\mathrm{~b}-A \hat{\mathrm{x}})=0 \tag{2}
\end{equation*}
$$

- Thus

$$
\begin{aligned}
A^{T} \mathrm{~b}-A^{T} A \hat{\mathrm{x}} & =0 \\
A^{T} A \hat{\mathrm{x}} & =A^{T} \mathrm{~b}
\end{aligned}
$$

- These calculations show that each least-squares solution of $A \mathrm{x}=\mathrm{b}$ satisfies the equation

$$
\begin{equation*}
A^{T} A \mathrm{x}=A^{T} \mathrm{~b} \tag{3}
\end{equation*}
$$

- The matrix equation (3) represents a system of equations called the normal equations for $A \mathrm{x}=\mathrm{b}$.
- A solution of (3) is often denoted by \hat{X}.

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

- Theorem 13: The set of least-squares solutions of $A \mathrm{x}=\mathrm{b}$ coincides with the nonempty set of solutions of the normal equation $A^{T} A \mathrm{x}=A^{T} \mathrm{~b}$.
- Proof: The set of least-squares solutions is nonempty and each least-squares solution $\hat{\mathrm{X}}$ satisfies the normal equations.
- Conversely, suppose $\hat{\mathrm{x}}$ satisfies $A^{T} A \hat{\mathrm{x}}=A^{T} \mathrm{~b}$.
- Then $\hat{\mathrm{X}}$ satisfies (2), which shows that $\mathrm{b}-A \hat{\mathrm{x}}$ is orthogonal to the rows of A^{T} and hence is orthogonal to the columns of A.
- Since the columns of A span $\operatorname{Col} A$, the vector $\mathrm{b}-A \hat{\mathrm{x}}$ is orthogonal to all of $\mathrm{Col} A$.

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

- Hence the equation

$$
\mathrm{b}=A \hat{\mathrm{x}}+(\mathrm{b}-A \hat{\mathrm{x}})
$$

is a decomposition of \mathbf{b} into the sum of a vector in Col A and a vector orthogonal to $\operatorname{Col} A$.

- By the uniqueness of the orthogonal decomposition, $A \hat{\mathrm{x}}$ must be the orthogonal projection of \mathbf{b} onto $\operatorname{Col} A$.
- That is, $A \hat{\mathrm{x}}=\hat{\mathrm{b}}$ and $\hat{\mathrm{x}}$ is a least-squares solution.

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

- Example 1: Find a least-squares solution of the inconsistent system $A \mathrm{x}=\mathrm{b}$ for

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], \mathrm{b}=\left[\begin{array}{r}
2 \\
0 \\
11
\end{array}\right]
$$

- Solution: To use normal equations (3), compute:

$$
A^{T} A=\left[\begin{array}{lll}
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{rr}
17 & 1 \\
1 & 5
\end{array}\right]
$$

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

$$
A^{T} \mathrm{~b}=\left[\begin{array}{lll}
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
0 \\
11
\end{array}\right]=\left[\begin{array}{l}
19 \\
11
\end{array}\right]
$$

- Then the equation $A^{T} A \mathrm{x}=A^{T} \mathrm{~b}$ becomes

$$
\left[\begin{array}{rr}
17 & 1 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
19 \\
11
\end{array}\right]
$$

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

- Row operations can be used to solve the system on the previous slide, but since $A^{T} A$ is invertible and 2×2, it is probably faster to compute

$$
\left(A^{T} A\right)^{-1}=\frac{1}{84}\left[\begin{array}{rr}
5 & -1 \\
-1 & 17
\end{array}\right]
$$

and then solve $A^{T} A \mathrm{x}=A^{T} \mathrm{~b}$ as

$$
\begin{aligned}
\hat{\mathrm{x}} & =\left(A^{T} A\right)^{-1} A^{T} \mathrm{~b} \\
= & \frac{1}{84}\left[\begin{array}{rr}
5 & -1 \\
-1 & 17
\end{array}\right]\left[\begin{array}{c}
19 \\
11
\end{array}\right]=\frac{1}{84}\left[\begin{array}{r}
84 \\
168
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

SOLUTION OF THE GENREAL LEAST-SQUARES PROBLEM

- Theorem 14: Let A be an $m \times n$ matrix. The following statements are logically equivalent:
a. The equation $A \mathrm{x}=\mathrm{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^{m}.
b. The columns of A are linearly independent.
c. The matrix $A^{T} A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathrm{X}}$ is given by

$$
\begin{equation*}
\hat{\mathrm{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathrm{~b} \tag{4}
\end{equation*}
$$

- When a least-squares solution $\hat{\mathrm{x}}$ is used to produce $A \hat{\mathrm{x}}$ as an approximation to \mathbf{b}, the distance from \mathbf{b} to $A \hat{\mathbf{x}}$ is called the least-squares error of this approximation.

ALTERNATIVE CALCULATIONS OF LEASTSQUARES SOLUTIONS

- Example 2: Find a least-squares solution of $A \mathrm{x}=\mathrm{b}$ for

$$
A=\left[\begin{array}{rr}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right], \mathrm{b}=\left[\begin{array}{r}
-1 \\
2 \\
1 \\
6
\end{array}\right]
$$

- Solution: Because the columns \mathbf{a}_{1} and \mathbf{a}_{2} of A are orthogonal, the orthogonal projection of \mathbf{b} onto $\operatorname{Col} A$ is given by

$$
\begin{equation*}
\hat{\mathrm{b}}=\frac{\mathrm{b} \cdot \mathrm{a}_{1}}{\mathrm{a}_{1} \cdot \mathrm{a}_{1}} \mathrm{a}_{1}+\frac{\mathrm{b} \cdot \mathrm{a}_{2}}{\mathrm{a}_{2} \cdot \mathrm{a}_{2}} \mathrm{a}_{2}=\frac{8}{4} \mathrm{a}_{1}+\frac{45}{90} \mathrm{a}_{2} \tag{5}
\end{equation*}
$$

ALTERNATIVE CALCULATIONS OF LEASTSQUARES SOLUTIONS

$$
=\left[\begin{array}{l}
2 \\
2 \\
2 \\
2
\end{array}\right]+\left[\begin{array}{r}
-3 \\
-1 \\
1 / 2 \\
7 / 2
\end{array}\right]=\left[\begin{array}{r}
-1 \\
1 \\
5 / 2 \\
11 / 2
\end{array}\right]
$$

- Now that $\hat{\mathrm{b}}$ is known, we can solve $A \hat{\mathrm{x}}=\hat{\mathrm{b}}$.
- But this is trivial, since we already know weights to place on the columns of A to produce b .
- It is clear from (5) that

$$
\hat{x}=\left[\begin{array}{c}
8 / 4 \\
45 / 90
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 / 2
\end{array}\right]
$$

