6 Orthogonality and Least Squares

6.1

INNER PRODUCT, LENGTH, AND ORTHOGONALITY

David C. Lay

INNER PRODUCT

- If **u** and **v** are vectors in \mathbb{R}^n , then we regard **u** and **v** as $n \times 1$ matrices.
- The transpose \mathbf{u}^T is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^T \mathbf{v}$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $\mathbf{u}^T \mathbf{v}$ is called the **inner product** of \mathbf{u} and \mathbf{v} , and it is written as $\mathbf{u} \cdot \mathbf{v}$.
- The inner product is also referred to as a **dot product**.

INNER PRODUCT

• **Theorem 1:** Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let *c* be a scalar. Then

a.
$$u \cdot v = v \cdot u$$

b. $(u + v) \cdot w = u \cdot w + v \cdot w$
c. $(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$
d. $u \cdot u \ge 0$, and $u \cdot u = 0$ if and only if $u = 0$

Properties (b) and (c) can be combined several times to produce the following useful rule: $(c_1 u_1 + \dots + c_p u_p) \cdot W = c_1 (u_1 \cdot W) + \dots + c_p (u_p \cdot W)$

- If v is in ℝⁿ, with entries v₁, ..., v_n, then the square root of V•V is defined because V•V is nonnegative.
- Definition: The length (or norm) of v is the nonnegative scalar ||v|| defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
 and $\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$

• Suppose **v** is in
$$\mathbb{R}^2$$
, say, $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$.

THE LENGTH OF A VECTOR

- If we identify v with a geometric point in the plane, as usual, then $\|v\|$ coincides with the standard notion of the length of the line segment from the origin to v.
- This follows from the Pythagorean Theorem applied to a triangle such as the one shown in the following figure. (a, b)

Interpretation of $\|\mathbf{v}\|$ as length.

• For any scalar *c*, the length $c\mathbf{v}$ is |c| times the length of v. That is, $\|c\mathbf{v}\| = |c| \|\mathbf{v}\|$

- A vector whose length is 1 is called a **unit vector**.
- If we *divide* a nonzero vector **v** by its length—that is, multiply by 1/||v||—we obtain a unit vector **u** because the length of **u** is (1/||v||)||v||.
- The process of creating u from v is sometimes called normalizing v, and we say that u is *in the same direction* as v.

THE LENGTH OF A VECTOR

- Example 1: Let v = (1, -2, 2, 0). Find a unit vector u in the same direction as v.
- **Solution:** First, compute the length of **v**:

$$\|\mathbf{v}\|^{2} = \mathbf{v}g\mathbf{v} = (1)^{2} + (-2)^{2} + (2)^{2} + (0)^{2} = 9$$
$$\|\mathbf{v}\| = \sqrt{9} = 3$$

• Then, multiply v by 1/||v|| to obtain

$$u = \frac{1}{\|v\|}v = \frac{1}{3}v = \frac{1}{3} \begin{bmatrix} 1 \\ -2 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \\ 0 \end{bmatrix}$$

© 2012 Pearson Education, Inc.

DISTANCE IN \mathbb{R}^n

• To check that ||u|| = 1, it suffices to show that $||u||^2 = 1$.

$$\|u\|^{2} = ugu = \left(\frac{1}{3}\right)^{2} + \left(-\frac{2}{3}\right) + \left(\frac{2}{3}\right)^{2} + \left(0\right)^{2}$$
$$= \frac{1}{9} + \frac{4}{9} + \frac{4}{9} + 0 = 1$$

Definition: For u and v in ℝⁿ, the distance between u and v, written as dist (u, v), is the length of the vector u - v. That is,
 dist (u,v) = ||u - v||

DISTANCE IN \mathbb{R}^n

- Example 2: Compute the distance between the vectors u = (7,1) and v = (3,2).
- **Solution:** Calculate

$$u - v = \begin{bmatrix} 7 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$
$$\|u - v\| = \sqrt{4^2 + (-1)^2} = \sqrt{17}$$

- The vectors u, v, and u v are shown in the figure on the next slide.
- When the vector $\mathbf{u} \mathbf{v}$ is added to \mathbf{v} , the result is \mathbf{u} .

DISTANCE IN \mathbb{R}^n

The distance between \mathbf{u} and \mathbf{v} is the length of $\mathbf{u} - \mathbf{v}$.

Notice that the parallelogram in the above figure shows that the distance from u to v is the same as the distance from u – v to 0.

ORTHOGONAL VECTORS

- Consider \mathbb{R}^2 or \mathbb{R}^3 and two lines through the origin determined by vectors **u** and **v**.
- See the figure below. The two lines shown in the figure are geometrically perpendicular if and only if the distance from u to v is the same as the distance from u to -V.

 $\|\mathbf{u} - (-\mathbf{v})\|$

• This is the same as requiring the squares of the distances to be the same.

ORTHOGONAL VECTORS

• Now

$$\begin{bmatrix} dist(u, -v) \end{bmatrix}^{2} = \|u - (-v)\|^{2} = \|u + v\|^{2}$$

$$= (u + v) \cdot (u + v)$$

$$= u \cdot (u + v) + v \cdot (u + v) \quad \text{Theorem 1(b)}$$

$$= u \cdot u + u \cdot v + v \cdot u + v \cdot v \quad \text{Theorem 1(a), (b)}$$

$$= \|u\|^{2} + \|v\|^{2} + 2u \cdot v \quad \text{Theorem 1(a)}$$
• The same calculations with v and -v interchanged
show that $[dist(u, v)]^{2} = \|u\|^{2} + \|-v\|^{2} + 2u \cdot (-v)$

$$= \|u\|^{2} + \|v\|^{2} - 2u \cdot v$$
Slide 6.1-13

ORTHOGONAL VECTORS

- The two squared distances are equal if and only if $2u \cdot v = -2u \cdot v$, which happens if and only if $u \cdot v = 0$.
- This calculation shows that when vectors \mathbf{u} and \mathbf{v} are identified with geometric points, the corresponding lines through the points and the origin are perpendicular if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.
- **Definition:** Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.
- The zero vector is orthogonal to every vector in \mathbb{R}^n because $\mathbf{0}^T \mathbf{v} = \mathbf{0}$ for all \mathbf{v} .

THE PYTHOGOREAN THEOREM

• Theorem 2: Two vectors **u** and **v** are orthogonal if and only if $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$.

Orthogonal Complements

- If a vector z is orthogonal to every vector in a subspace W of Rⁿ, then z is said to be orthogonal to W.
- The set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by W[⊥] (and read as "W perpendicular" or simply "W perp").

ORTHOGONAL COMPLEMENTS

- 1. A vector **x** is in W^{\perp} if and only if **x** is orthogonal to every vector in a set that spans W.
- 2. W^{\perp} is a subspace of \mathbb{R}^{n} .

• **Theorem 3:** Let *A* be an $m \times n$ matrix. The orthogonal complement of the column space of *A* is the null space of A^T

$$(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$$

6 Orthogonality and Least Squares

ORTHOGONAL SETS

David C. Lay

- A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an **orthogonal set** if each pair of distinct vectors from the set is orthogonal, that is, if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$.
- Theorem 4: If $S = \{u_1, \dots, u_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

ORTHOGONAL SETS

• **Proof:** If $0 = c_1 u_1 + \dots + c_p u_p$ for some scalars c_1 , ..., c_p , then $0 = 0 \cdot u_1 = (c_1 u_1 + c_2 u_2 + \dots + c_p u_p) \cdot u_1$ $= (c_1 u_1) \cdot u_1 + (c_2 u_2) \cdot u_1 + \dots + (c_p u_p) \cdot u_1$ $= c_1 (u_1 \cdot u_1) + c_2 (u_2 \cdot u_1) + \dots + c_p (u_p \cdot u_1)$ $= c_1 (u_1 \cdot u_1)$

because \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$.

- Since \mathbf{u}_1 is nonzero, $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero and so $c_1 = 0$.
- Similarly, c_2, \ldots, c_p must be zero.

ORTHOGONAL SETS

- Thus *S* is linearly independent.
- Definition: An orthogonal basis for a subspace W of ℝⁿ is a basis for W that is also an orthogonal set.
- Theorem 5: Let {u₁,...,u_p} be an orthogonal basis for a subspace W of Rⁿ. For each y in W, the weights in the linear combination

$$y = c_1 u_1 + \dots + c_p u_p$$

are given by
$$c_j = \frac{y \cdot u_j}{u_j \cdot u_j} \quad (j = 1, K, p)$$

ORTHOGONAL SETS

• **Proof:** The orthogonality of $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ shows that

$$\mathbf{y} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1 = c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1)$$

- Since $u_1 \cdot u_1$ is not zero, the equation above can be solved for c_1 .
- To find c_j for j = 2, ..., p, compute $y \cdot u_j$ and solve for c_j .

- Given a nonzero vector u in Rⁿ, consider the problem of decomposing a vector y in Rⁿ into the sum of two vectors, one a multiple of u and the other orthogonal to u.
- We wish to write

$$y = \hat{y} + z$$
 ----(1)

where $\hat{y} = \alpha u$ for some scalar α and z is some vector orthogonal to u. See the following figure.

Slide 6.2- 6

- Given any scalar α , let $z = y \alpha u$, so that (1) is satisfied.
- Then $y \hat{y}$ is orthogonal to **u** if an only if $0 = (y - \alpha u) \cdot u = y \cdot u - (\alpha u) \cdot u = y \cdot u - \alpha (u \cdot u)$
- That is, (1) is satisfied with **z** orthogonal to **u** if and

only if
$$\alpha = \frac{y \cdot u}{u \cdot u}$$
 and $\hat{y} = \frac{y \cdot u}{u \cdot u}u$.

The vector ŷ is called the orthogonal projection of y onto u, and the vector z is called the component of y orthogonal to u.

- If c is any nonzero scalar and if u is replaced by cu in the definition of ŷ, then the orthogonal projection of y onto cu is exactly the same as the orthogonal projection of y onto u.
- Hence this projection is determined by the *subspace L* spanned by **u** (the line through **u** and **0**).
- Sometimes ŷ is denoted by proj_Ly and is called the orthogonal projection of y onto L.
- That is,

$$\hat{\mathbf{y}} = \operatorname{proj}_{L} \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$
 ----(2)

• Example 1: Let
$$y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
 and $u = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the

orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in Span $\{u\}$ and one orthogonal to u.

• Solution: Compute

$$y \cdot u = \begin{bmatrix} 7 \\ 6 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 40$$

 $u \cdot u = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 20$

• The orthogonal projection of y onto u is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{40}{20} \mathbf{u} = 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

and the component of y orthogonal to u is

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

• The sum of these two vectors is **y**.

• That is,

$$\begin{bmatrix} 7\\6 \end{bmatrix} = \begin{bmatrix} 8\\4 \end{bmatrix} + \begin{bmatrix} -1\\2 \end{bmatrix}$$
$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad (y-\hat{y})$$

• The decomposition of y is illustrated in the following figure. $x_2 = x_2 + y_1 + y_2 + y_2 + y_3 + y_4 +$

The orthogonal projection of \mathbf{y} onto a line L through the origin.

- *Note:* If the calculations above are correct, then $\{\hat{y}, y \hat{y}\}$ will be an orthogonal set.
- As a check, compute $\hat{y} \cdot (y - \hat{y}) = \begin{bmatrix} 8 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -8 + 8 = 0$
- Since the line segment in the figure on the previous slide between y and ŷ is perpendicular to L, by construction of ŷ, the point identified with ŷ is the closest point of L to y.

ORTHONORMAL SETS

- A set {u₁,...,u_p} is an orthonormal set if it is an orthogonal set of unit vectors.
- If W is the subspace spanned by such a set, then {u₁, ..., u_p} is an orthonormal basis for W, since the set is automatically linearly independent, by Theorem 4.
- The simplest example of an orthonormal set is the standard basis {e₁,...,e_n} for ℝⁿ.
- Any nonempty subset of $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is orthonormal, too.

ORTHONORMAL SETS

Example 2: Show that {v₁, v₂, v₃} is an orthonormal basis of R³, where

$$\mathbf{v}_{1} = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, \mathbf{v}_{3} = \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix}$$

• Solution: Compute $v_1 \cdot v_2 = -3 / \sqrt{66} + 2 / \sqrt{66} + 1 / \sqrt{66} = 0$ $v_1 \cdot v_3 = -3 / \sqrt{726} - 4 / \sqrt{726} + 7 / \sqrt{726} = 0$

$$v_2 g v_3 = 1 / \sqrt{396} - 8 / \sqrt{396} + 7 / \sqrt{396} = 0$$

• Thus $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal set.

• Also,
$$V_1 \cdot V_1 = 9/11 + 1/11 + 1/11 = 0$$

$$v_2 \bullet v_2 = 1/6 + 4/6 + 1/6 = 1$$

$$v_3 \bullet v_3 = 1 / 66 + 16 / 66 + 49 / 66 = 1$$

which shows that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are unit vectors.

- Thus $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonormal set.
- Since the set is linearly independent, its three vectors form a basis for \mathbb{R}^3 . See the figure on the next slide.

ORTHONORMAL SETS

When the vectors in an orthogonal set of nonzero vectors are *normalized* to have unit length, the new vectors will still be orthogonal, and hence the new set will be an orthonormal set.

6 Orthogonality and Least Squares

6.3

ORTHOGONAL PROJECTIONS

David C. Lay

- The orthogonal projection of a point in \mathbb{R}^2 onto a line through the origin has an important analogue in \mathbb{R}^n .
- Given a vector y and a subspace W in \mathbb{R}^n , there is a vector \hat{y} in W such that (1) \hat{y} is the unique vector in W for which $y \hat{y}$ is orthogonal to W, and (2) \hat{y} is the unique vector in W closest to y. See the following figure.

THE ORTHOGONAL DECOMPOSITION THEOREM

- These two properties of \hat{y} provide the key to finding the least-squares solutions of linear systems.
- Theorem 8: Let W be a subspace of ℝⁿ. Then each y in ℝⁿ can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \qquad \qquad \text{----}(1)$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} .

In fact, if {u₁,...,u_p} is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p \qquad ----(2)$$

and
$$z = y - \hat{y}$$
.
© 2012 Pearson Education, Inc.

THE ORTHOGONAL DECOMPOSITION THEOREM

The vector ŷ in (1) is called the orthogonal projection of y onto W and often is written as proj_Wy. See the following figure.

The orthogonal projection of \mathbf{y} onto W.

- **Proof:** Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be any orthogonal basis for W, and define $\hat{\mathbf{y}}$ by (2).
- Then ŷ is in W because ŷ is a linear combination of the basis u₁,...,u_{p.}

• Let
$$z = y - \hat{y}$$
.

• Since \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$, it follows from (2) that

$$z \cdot u_{1} = (y - \hat{y}) \cdot u_{1} = y \cdot u_{1} - \left(\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}}\right) u_{1} \cdot u_{1} - 0 - \dots - 0$$
$$= y \cdot u_{1} - y \cdot u_{1} = 0$$

• Thus
$$\mathbf{z}$$
 is orthogonal to \mathbf{u}_1 .

- Similarly, \mathbf{z} is orthogonal to each \mathbf{u}_i in the basis for W.
- Hence **z** is orthogonal to every vector in *W*.
- That is, \mathbf{z} is in W^{\perp} .

- To show that the decomposition in (1) is unique, suppose y can also be written as $y = \hat{y}_1 + z_1$, with \hat{y}_1 in W and z_1 in W^{\perp} .
- Then $\hat{y} + z = \hat{y}_1 + z_1$ (since both sides equal y), and so $\hat{y} - \hat{y}_1 = z_1 - z$
- This equality shows that the vector $\mathbf{V} = \hat{\mathbf{y}} \hat{\mathbf{y}}_1$ is in W and in W^{\perp} (because \mathbf{z}_1 and \mathbf{z} are both in W^{\perp} , and W^{\perp} is a subspace).
- Hence $v \cdot v = 0$, which shows that v = 0.
- This proves that $\hat{y} = \hat{y}_1$ and also $z_1 = z$.

The uniqueness of the decomposition (1) shows that the orthogonal projection ŷ depends only on W and not on the particular basis used in (2).

• Example 1: Let
$$\mathbf{u}_1 = \begin{bmatrix} 2\\5\\-1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -2\\1\\1 \end{bmatrix}, \text{ and } \mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

Observe that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Write y as the sum of a vector in W and a vector orthogonal to W.

• Solution: The orthogonal projection of y onto W is

- Theorem 8 ensures that $y \hat{y}$ is in W^{\perp} .
- To check the calculations, verify that $y \hat{y}$ is orthogonal to both \mathbf{u}_1 and \mathbf{u}_2 and hence to all of W.
- The desired decomposition of y is

$$y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} + \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}$$

PROPERTIES OF ORTHOGONAL PROJECTIONS

If {u₁,...,u_p} is an orthogonal basis for W and if y happens to be in W, then the formula for proj_Wy is exactly the same as the representation of y given in Theorem 5 in Section 6.2.

• In this case,
$$proj_W y = y$$
.

• If y is in
$$W = \text{Span}\{u_1, \dots, u_p\}$$
, then $\text{proj}_W y = y$.

Theorem 9: Let W be a subspace of Rⁿ, let y be any vector in Rⁿ, and let ŷ be the orthogonal projection of y onto W. Then ŷ is the closest point in W to y, in the sense that

for all **v** in *W* distinct from $\hat{\mathbf{y}}$.

- The vector ŷ in Theorem 9 is called the best approximation to y by elements of W.
- The distance from y to v, given by ||y v||, can be regarded as the "error" of using v in place of y.
- Theorem 9 says that this error is minimized when $v = \hat{y}$.

- Inequality (3) leads to a new proof that ŷ does not depend on the particular orthogonal basis used to compute it.
- If a different orthogonal basis for W were used to construct an orthogonal projection of y, then this projection would also be the closest point in W to y, namely, ŷ.

• **Proof:** Take v in W distinct from \hat{y} . See the following figure.

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y} .

- Then $\hat{\mathbf{y}} \mathbf{v}$ is in W.
- By the Orthogonal Decomposition Theorem, $y \hat{y}$ is orthogonal to *W*.
- In particular, y ŷ is orthogonal to ŷ v (which is in W).

Since

$$\mathbf{y} - \mathbf{v} = (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \mathbf{v})$$

the Pythagorean Theorem gives

$$\|\mathbf{y} - \mathbf{v}\|^{2} = \|\mathbf{y} - \hat{\mathbf{y}}\|^{2} + \|\hat{\mathbf{y}} - \mathbf{v}\|^{2}$$

- (See the colored right triangle in the figure on the previous slide. The length of each side is labeled.)
- Now ||ŷ v||² > 0 because ŷ v ≠ 0, and so inequality (3) follows immediately.

PROPERTIES OF ORTHOGONAL PROJECTIONS

Example 2: The distance from a point y in Rⁿ to a subspace W is defined as the distance from y to the nearest point in W. Find the distance from y to W = Span{u₁, u₂}, where

$$\mathbf{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

• Solution: By the Best Approximation Theorem, the distance from **y** to *W* is $\|\mathbf{y} - \hat{\mathbf{y}}\|$, where $\hat{\mathbf{y}} = \text{proj}_W \mathbf{y}$.

PROPERTIES OF ORTHOGONAL PROJECTIONS

Since $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for W, $\hat{\mathbf{y}} = \frac{15}{30}\mathbf{u}_1 + \frac{-21}{6}\mathbf{u}_2 = \frac{1}{2}\begin{bmatrix}5\\-2\\1\end{bmatrix} - \frac{7}{2}\begin{bmatrix}1\\2\\-1\end{bmatrix} = \begin{bmatrix}-1\\-8\\4\end{bmatrix}$

$$y - \hat{y} = \begin{vmatrix} -1 & | & -1 & | & 0 \\ | & -5 & | & -8 & | & = & 3 \\ | & 10 & | & 4 & | & 6 \end{vmatrix}$$

$$||y - \hat{y}||^2 = 3^2 + 6^2 = 45$$

• The distance from y to W is $\sqrt{45} = 3\sqrt{5}$

6 Orthogonality and Least Squares

6.5

LEAST-SQUARES PROBLEMS

David C. Lay

LEAST-SQUARES PROBLEMS

• **Definition:** If A is $m \times n$ and **b** is in \mathbb{R}^m , a least-squares solution of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$
for all **x** in \mathbb{R}^n .

- The most important aspect of the least-squares problem is that no matter what x we select, the vector *A*x will necessarily be in the column space, Col *A*.
- So we seek an x that makes Ax the closest point in Col A to b. See the figure on the next slide.

LEAST-SQUARES PROBLEMS

The vector **b** is closer to $A\hat{\mathbf{x}}$ than to $A\mathbf{x}$ for other **x**.

Solution of the General Least-Squares Problem

• Given *A* and **b**, apply the Best Approximation Theorem to the subspace Col *A*.

Let
$$\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col} A} \mathbf{b}$$

- Because \hat{b} is in the column space A, the equation $Ax = \hat{b}$ is consistent, and there is an \hat{x} in \mathbb{R}^n such that $A\hat{x} = \hat{b}$ ----(1)
- Since \hat{b} is the closest point in Col *A* to **b**, a vector \hat{x} is a least-squares solution of Ax = b if and only if \hat{x} satisfies (1).
- Such an $\hat{\mathbf{x}}$ in \mathbb{R}^n is a list of weights that will build $\hat{\mathbf{b}}$ out of the columns of A. See the figure on the next slide.

The least-squares solution $\hat{\mathbf{x}}$ is in \mathbb{R}^n .

- Suppose $\hat{\mathbf{x}}$ satisfies $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$.
- By the Orthogonal Decomposition Theorem, the projection \hat{b} has the property that $b \hat{b}$ is orthogonal to Col *A*, so $b A\hat{x}$ is orthogonal to each column of *A*.
- If \mathbf{a}_j is any column of A, then $a_j \cdot (\mathbf{b} A\hat{\mathbf{x}}) = 0$, and $a_j^T (\mathbf{b} - A\hat{\mathbf{x}})$.

• Since each
$$a_j^T$$
 is a row of A^T ,
 $A^T(\mathbf{b} - A\hat{\mathbf{x}}) = 0$ ----(2)

Thus

$$A^{\mathrm{T}}\mathbf{b} - A^{\mathrm{T}}A\hat{\mathbf{x}} = \mathbf{0}$$

$$A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b}$$

- These calculations show that each least-squares solution of Ax = b satisfies the equation $A^T Ax = A^T b$ ----(3)
- The matrix equation (3) represents a system of equations called the **normal equations** for Ax = b.
- A solution of (3) is often denoted by \hat{x} .

- **Theorem 13:** The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equation $A^T Ax = A^T b$.
- **Proof:** The set of least-squares solutions is nonempty and each least-squares solution \hat{x} satisfies the normal equations.
- Conversely, suppose $\hat{\mathbf{x}}$ satisfies $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.
- Then \hat{x} satisfies (2), which shows that $b A\hat{x}$ is orthogonal to the rows of A^T and hence is orthogonal to the columns of A.
- Since the columns of A span Col A, the vector $\mathbf{b} A\hat{\mathbf{x}}$ is orthogonal to all of Col A.

Hence the equation

$$\mathbf{b} = A\hat{\mathbf{x}} + (\mathbf{b} - A\hat{\mathbf{x}})$$

is a decomposition of **b** into the sum of a vector in Col *A* and a vector orthogonal to Col *A*.

• By the uniqueness of the orthogonal decomposition, $A\hat{x}$ must be the orthogonal projection of **b** onto Col A.

• That is,
$$A\hat{x} = \hat{b}$$
 and \hat{x} is a least-squares solution.

• Example 1: Find a least-squares solution of the inconsistent system Ax = b for

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

• Solution: To use normal equations (3), compute:

$$A^{T}A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}$$

$$A^{T}\mathbf{b} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

• Then the equation $A^T A \mathbf{x} = A^T \mathbf{b}$ becomes

$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

• Row operations can be used to solve the system on the previous slide, but since $A^T A$ is invertible and 2×2 , it is probably faster to compute

$$(A^{T}A)^{-1} = \frac{1}{84} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix}$$

and then solve
$$A^{T}Ax = A^{T}b$$
 as
 $\hat{x} = (A^{T}A)^{-1}A^{T}b$
 $= \frac{1}{84} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix} \begin{bmatrix} 19 \\ 11 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 84 \\ 168 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

- **Theorem 14:** Let *A* be an *m*×*n* matrix. The following statements are logically equivalent:
 - a. The equation Ax = b has a unique least-squares solution for each **b** in \mathbb{R}^m .
 - b. The columns of *A* are linearly independent.
 - c. The matrix $A^T A$ is invertible.

When these statements are true, the least-squares solution \hat{x} is given by

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$
 ----(4)

When a least-squares solution $\hat{\mathbf{x}}$ is used to produce $A\hat{\mathbf{x}}$ as an approximation to **b**, the distance from **b** to $A\hat{\mathbf{x}}$ is called the **least-squares error** of this approximation.

ALTERNATIVE CALCULATIONS OF LEAST-SQUARES SOLUTIONS

• **Example 2:** Find a least-squares solution of Ax = b for

$$A = \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix}, b = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix}$$

• Solution: Because the columns \mathbf{a}_1 and \mathbf{a}_2 of A are orthogonal, the orthogonal projection of **b** onto Col A is given by

ALTERNATIVE CALCULATIONS OF LEAST-SQUARES SOLUTIONS

$$= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} + \begin{bmatrix} -3 \\ -1 \\ 1/2 \\ 7/2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 5/2 \\ 11/2 \end{bmatrix}$$

• Now that \hat{b} is known, we can solve $A\hat{x} = \hat{b}$.

- But this is trivial, since we already know weights to place on the columns of A to produce b.
- It is clear from (5) that

$$\hat{x} = \begin{bmatrix} 8/4 \\ 45/90 \end{bmatrix} = \begin{bmatrix} 2 \\ 1/2 \end{bmatrix}$$