
6 

6.1 

 © 2012 Pearson Education, Inc. 

Orthogonality and Least 
Squares 

INNER PRODUCT, LENGTH, 
AND ORTHOGONALITY 



Slide 6.1- 2  © 2012 Pearson Education, Inc. 

INNER PRODUCT 

§  If u and v are vectors in      , then we regard u and v 
as         matrices. 

§  The transpose uT is a         matrix, and the matrix  
 product uTv is a        matrix, which we write as a 
single real number (a scalar) without brackets. 

§  The number uTv is called the inner product of u 
and v, and it is written as        . 

§  The inner product is also referred to as a dot 
product. 

n

1n×

1 n×
1 1×

uiv
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INNER PRODUCT 

§  If                  and                    ,  

 then the inner product of u and v is 
 
 
                                                                                   .  
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INNER PRODUCT 

§  Theorem 1: Let u, v, and w be vectors in      , and 
let c be a scalar. Then 

a.                          
b.    
c.                           
d.                , and               if and only if 

§  Properties (b) and (c) can be combined several 
times to produce the following useful rule:   

n

uiv = viu
(u + v)iw = uiw + viw
(cu)iv = c(uiv) = ui(cv)
uiu ≥ 0 uiu = 0 u 0=

(c1u1 ++ cpu p )iw = c1(u1iw)++ cp (u p iw)
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THE LENGTH OF A VECTOR 

§  If v is in      , with entries v1, …, vn, then the square 
root of         is defined because        is nonnegative. 

§  Definition: The length (or norm) of v is the 
nonnegative scalar       defined by 

                                                              and 
 

§  Suppose v is in      , say,                . 

n

viv viv

v

v = viv = v1
2 + v2

2 ++ vn
2 v

2
= viv
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THE LENGTH OF A VECTOR 
§  If we identify v with a geometric point in the plane, 

as usual, then       coincides with the standard notion 
of the length of the line segment from the origin to v. 

§  This follows from the Pythagorean Theorem applied 
to a triangle such as the one shown in the following 
figure. 

§  For any scalar c, the length cv is     times the length of 
v. That is, 

v

c
v vc c=
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THE LENGTH OF A VECTOR 

§  A vector whose length is 1 is called a unit vector. 

§  If we divide a nonzero vector v by its length—that is, 
multiply by           —we obtain a unit vector u 
because the length of u is                    . 

§  The process of creating u from v is sometimes called 
normalizing v, and we say that u is in the same 
direction as v. 

1/ v
(1/ v ) v
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THE LENGTH OF A VECTOR 
§  Example 1: Let                         . Find a unit vector u 

in the same direction as v. 
§  Solution: First, compute the length of v: 

§  Then, multiply v by            to obtain 

v (1, 2,2,0)= −

2 2 2 2 2v v v (1) ( 2) (2) (0) 9

v 9 3

= = + − + + =

= =

g
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DISTANCE IN  
§  To check that            , it suffices to show that              . 

§  Definition: For u and v in     , the distance between u 
and v, written as dist (u, v), is the length of the vector 

             . That is,               
                      
 

u 1= 2u 1=

( )
2 2

22 1 2 2u u u 0
3 3 3

1 4 4 0 1
9 9 9

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + + + =

g

n

−u v

n

dist (u,v) u v= −
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DISTANCE IN 

§  Example 2: Compute the distance between the 
vectors                 and                 .  

§  Solution: Calculate 

§  The vectors u, v, and           are shown in the figure on 
the next slide.  

§  When the vector          is added to v, the result is u.  

n

u (7,1)= v (3,2)=

2 2

7 3 4
u v

1 2 1

u v 4 ( 1) 17

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− = + − =

u v−

u v−
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DISTANCE IN 

 

§  Notice that the parallelogram in the above figure 
shows that the distance from u to v is the same as the 
distance from           to 0. u v−

n
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ORTHOGONAL VECTORS 
§  Consider       or       and two lines through the origin 

determined by vectors u and v. 
§  See the figure below. The two lines shown in the 

figure are geometrically perpendicular if and only if 
the distance from u to v is the same as the distance 
from u to      . 

§  This is the same as requiring the squares of the 
distances to be the same. 

2 3

v−
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ORTHOGONAL VECTORS 
§  Now 

§  The same calculations with v and       interchanged 
show that 

dist(u,− v)"# $%
2
= u − (−v)

2
= u + v

2

= (u + v)i(u + v)
= ui(u + v)+ vi(u + v)
= uiu + uiv+ viu + viv

= u
2
+ v

2
+ 2uiv

Theorem 1(b) 

Theorem 1(a), (b) 

Theorem 1(a) 

v−
dist(u,v)!" #$

2
= u

2
+ −v

2
+ 2ui(− v)

= u
2
+ v

2
− 2uiv
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ORTHOGONAL VECTORS 

§  The two squared distances are equal if and only if   
                         , which happens if and only if              . 

§  This calculation shows that when vectors u and v are 
identified with geometric points, the corresponding 
lines through the points and the origin are perpendicular 
if and only if              . 

§  Definition: Two vectors u and v in      are orthogonal 
(to each other) if              . 

§  The zero vector is orthogonal to every vector in       
because               for all v. 

2uiv = −2uiv uiv = 0

uiv = 0

n

uiv = 0
n

0 v 0T =
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THE PYTHOGOREAN THEOREM 
§  Theorem 2: Two vectors u and v are orthogonal if 

and only if                                    . 

§  Orthogonal Complements 
§  If a vector z is orthogonal to every vector in a 

subspace W of       , then z is said to be orthogonal to 
W. 

§  The set of all vectors z that are orthogonal to W is 
called the orthogonal complement of W and is 
denoted by        (and read as “W perpendicular” or 
simply “W perp”). 

2 2 2u v u v+ = +

n

W ⊥
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ORTHOGONAL COMPLEMENTS 
1.  A vector x is in        if and only if x is 

orthogonal to every vector in a set that spans 
W. 

2.         is a subspace of       . 

 
§  Theorem 3: Let A be an           matrix. The 

orthogonal complement of the column space of A is 
the null space of AT 

W ⊥

W ⊥ n

m n×

(Col ) Nul TA A⊥ =
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ORTHOGONAL SETS 

§  A set of vectors {u1,…,up} in       is said to be an 
orthogonal set if each pair of distinct vectors from 
the set is orthogonal, that is, if                  whenever  

           . 

§  Theorem 4: If                            is an orthogonal set 
of nonzero vectors in      , then S is linearly 
independent and hence is a basis for the subspace 
spanned by S. 

n

u i iu j = 0
i j≠

S ={u1,…,u p}
n
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ORTHOGONAL SETS 
§  Proof: If                                    for some scalars c1,

…,cp, then 

 because u1 is orthogonal to u2,…,up.  
§  Since u1 is nonzero,           is not zero and so           . 
§  Similarly, c2,…,cp must be zero. 

0 = c1u1 ++ cpu p

0 = 0iu1 = (c1u1 + c2u2 ++ cpu p )iu1
= (c1u1)iu1 + (c2u2 )iu1 ++ (cpu p )iu1
= c1(u1iu1)+ c2 (u2 iu1)++ cp (u p iu1)

= c1(u1iu1)

u1iu1 1 0c =
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ORTHOGONAL SETS 

§  Thus S is linearly independent. 
§  Definition: An orthogonal basis for a subspace W of    

is a basis for W that is also an orthogonal set. 

§  Theorem 5: Let {u1,…,up} be an orthogonal basis for a 
subspace W of      . For each y in W, the weights in the 
linear combination 

 are given by 

n

n

y = c1u1 ++ cpu p

c j =
yiu j
u j iu j

( 1, , )j p= K
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ORTHOGONAL SETS 

§  Proof: The orthogonality of {u1,…,up} shows that  

§  Since           is not zero, the equation above can be 
solved for c1. 

§  To find cj for                    , compute          and solve 
for cj. 

yiu1 = (c1u1 + c2u2 ++ cpu p )iu1 = c1(u1iu1)

u1iu1

j = 2,…, p yiu j
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AN ORTHOGONAL PROJECTION 
§  Given a nonzero vector u in     , consider the problem 

of decomposing a vector y in      into the sum of two 
vectors, one a multiple of u and the other orthogonal 
to u. 

§  We wish to write 
                                                                              ----(1) 

 where              for some scalar α and z is some vector 
orthogonal to u. See the following figure. 

n

n

ˆy y z= +
ŷ uα=
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AN ORTHOGONAL PROJECTION 
§  Given any scalar α, let                    , so that (1) is 

satisfied. 
§  Then           is orthogonal to u if an only if 

§  That is, (1) is satisfied with z orthogonal to u if and  
  
 only if                  and                  . 

 
§  The vector     is called the orthogonal projection of 

y onto u, and the vector z is called the component of 
y orthogonal to u. 

z y uα= −

ˆy y−
0 = (y−αu)iu = yiu − (αu)iu = yiu −α(uiu)

α =
yiu
uiu

ŷ = yiu
uiu

u

ŷ
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AN ORTHOGONAL PROJECTION 

§  If c is any nonzero scalar and if u is replaced by cu in 
the definition of    , then the orthogonal projection of 
y onto cu is exactly the same as the orthogonal 
projection of y onto u. 

§  Hence this projection is determined by the subspace L 
spanned by u (the line through u and 0). 

§  Sometimes    is denoted by projLy and is called the 
orthogonal projection of y onto L.  

§  That is, 
                                                                           ----(2) 

ŷ

ŷ

ŷ = projLy =
yiu
uiu

u
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AN ORTHOGONAL PROJECTION 

§  Example 1: Let               and               . Find the  
  
 orthogonal projection of y onto u. Then write y as the 
sum of two orthogonal vectors, one in Span {u} and 
one orthogonal to u. 

§  Solution: Compute 

7
y

6
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

4
u

2
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

yiu = 7
6

!

"
#

$

%
&i 4
2

!

"
#

$

%
&= 40

uiu = 4
2

!

"
#

$

%
&i 4
2

!

"
#

$

%
&= 20
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AN ORTHOGONAL PROJECTION 

§  The orthogonal projection of y onto u is 

  
 and the component of y orthogonal to u is 

 
 
 
§  The sum of these two vectors is y. 
 

ŷ = yiu
uiu

u = 40
20
u = 2 4

2

!

"
#

$

%
&= 8

4

!

"
#

$

%
&

y− ŷ = 7
6

"

#
$

%

&
'− 8

4

"

#
$

%

&
'= −1

2

"

#
$

%

&
'
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AN ORTHOGONAL PROJECTION 
§  That is, 

§  The decomposition of y is illustrated in the following 
figure. 

7
6

!

"
#

$

%
&= 8

4

!

"
#

$

%
&+ −1

2

!

"
#

$

%
&

ŷy ˆ(y y)−
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AN ORTHOGONAL PROJECTION 
§  Note: If the calculations above are correct, then                 

will be an orthogonal set. 

§  As a check, compute 

§  Since the line segment in the figure on the previous slide 
between y and    is perpendicular to L, by construction   
of    , the point identified with    is the closest point of L 
to y. 

ˆ ˆ{y,y y}−

ŷi(y− ŷ) = 8
4

"

#
$

%

&
'i −1

2

"

#
$

%

&
'= −8+8 = 0

ŷ
ŷ ŷ
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ORTHONORMAL SETS 
§  A set {u1,…,up} is an orthonormal set if it is an 

orthogonal set of unit vectors. 

§  If W is the subspace spanned by such a set, then {u1,
…,up} is an orthonormal basis for W, since the set is 
automatically linearly independent, by Theorem 4.  

§  The simplest example of an orthonormal set is the 
standard basis {e1,…,en} for     . 

§  Any nonempty subset of {e1,…,en} is orthonormal, too. 

n
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ORTHONORMAL SETS 
§  Example 2: Show that {v1, v2, v3} is an orthonormal 

basis of      , where 

                            ,                           , 
 
 
§  Solution: Compute 

3

v1 =
3 / 11
1/ 11
1/ 11

!

"

#
#
#
#

$

%

&
&
&
&

v2 =
−1/ 6
2 / 6
1/ 6

"

#

$
$
$
$

%

&

'
'
'
'

v3 =
−1/ 66
−4 / 66
7 / 66

"

#

$
$
$
$

%

&

'
'
'
'

v1iv2 = −3 / 66 + 2 / 66 +1/ 66 = 0

v1iv3 = −3 / 726 − 4 / 726 +7 / 726 = 0
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ORTHONORMAL SETS 

§  Thus {v1, v2, v3} is an orthogonal set. 
§  Also, 

 which shows that v1, v2, and v3 are unit vectors. 
§   Thus {v1, v2, v3} is an orthonormal set. 
§  Since the set is linearly independent, its three vectors 

form a basis for     . See the figure on the next slide.   

2 3v v 1/ 396 8 / 396 7 / 396 0= − + =g

v1iv1 = 9 /11+1/11+1/11= 0
v2 iv2 =1/ 6+ 4 / 6+1/ 6 =1
v3iv3 =1/ 66+16 / 66+ 49 / 66 =1

3
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ORTHONORMAL SETS 

§  When the vectors in an orthogonal set of nonzero 
vectors are normalized to have unit length, the new 
vectors will still be orthogonal, and hence the new set 
will be an orthonormal set. 



6 

6.3 

 © 2012 Pearson Education, Inc. 

Orthogonality and Least 
Squares 

ORTHOGONAL PROJECTIONS 



Slide 6.3- 2  © 2012 Pearson Education, Inc. 

ORTHOGONAL PROJECTIONS 
§  The orthogonal projection of a point in      onto a line 

through the origin has an important analogue in      . 

§  Given a vector y and a subspace W in      , there is a 
vector    in W such that (1)    is the unique vector in W 
for which            is orthogonal to W, and (2)    is the 
unique vector in W closest to y. See the following 
figure. 

2

n

n

ŷ ŷ
ˆy y− ŷ
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THE ORTHOGONAL DECOMPOSITION THEOREM 
§  These two properties of     provide the key to finding 

the least-squares solutions of linear systems. 
§  Theorem 8: Let W be a subspace of      . Then each y 

in      can be written uniquely in the form 
                                                                       ----(1) 

 where    is in W and z is in       . 
§  In fact, if {u1,…,up} is any orthogonal basis of W, 

then 
                                                                       ----(2) 

  
 and                 . 

ŷ

n

n

ˆy y z= +
ŷ W ⊥

ŷ = yiu1
u1iu1

u1 ++
yiu p
u p iu p

u p

ˆz y y= −
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THE ORTHOGONAL DECOMPOSITION THEOREM 
§  The vector     in (1) is called the orthogonal 

projection of y onto W and often is written as 
projWy. See the following figure. 

§  Proof: Let {u1,…,up} be any orthogonal basis for W, 
and define     by (2). 

§  Then     is in W because     is a linear combination of 
the basis u1,…,up. 

ŷ

ŷ
ŷ ŷ
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THE ORTHOGONAL DECOMPOSITION THEOREM 

§  Let                 . 
§  Since u1 is orthogonal to u2,…,up, it follows from (2) 

that 

§  Thus z is orthogonal to u1. 
§  Similarly, z is orthogonal to each uj in the basis for W. 
§  Hence z is orthogonal to every vector in W. 
§  That is, z is in       . 

ˆz y y= −

ziu1 = (y− ŷ)iu1 = yiu1 −
yiu1
u1iu1

"

#
$

%

&
'u1iu1 −0−−0

= yiu1 − yiu1 = 0

W ⊥
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THE ORTHOGONAL DECOMPOSITION THEOREM 
§  To show that the decomposition in (1) is unique, 

suppose y can also be written as                   , with      
in W and z1 in       . 

§  Then                          (since both sides equal y), and 
so 

§  This equality shows that the vector                   is in W 
and in       (because z1 and z are both in        , and      
is a subspace). 

§  Hence              , which shows that          . 
§  This proves that             and also           . 

1 1ˆy y z= +
W ⊥

1 1ˆ ˆy z y z+ = +

1 1ˆ ˆy y z z− = −

1ˆ ˆv y y= −
W ⊥ W ⊥ W ⊥

viv = 0 v 0=
1ˆ ˆy y= 1z z=

1ŷ
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THE ORTHOGONAL DECOMPOSITION THEOREM 

§  The uniqueness of the decomposition (1) shows that 
the orthogonal projection    depends only on W and not 
on the particular basis used in (2). 

§  Example 1: Let                                                            . 

  
 Observe that {u1, u2} is an orthogonal basis for 

                                   . Write y as the sum of a vector in 
W and a vector orthogonal to W. 

ŷ

1 2

2 2 1
u 5 ,u 1 ,and y 2

1 1 3

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 2Span{u ,u }W =
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THE ORTHOGONAL DECOMPOSITION THEOREM 
§  Solution: The orthogonal projection of y onto W is 

§  Also   

ŷ = yiu1
u1iu1

u1 +
yiu2
u2 iu2

u2

=
9
30

2
5
−1

"

#

$
$
$

%

&

'
'
'
+
3
6

−2
1
1

"

#

$
$
$

%

&

'
'
'
=
9
30

2
5
−1

"

#

$
$
$

%

&

'
'
'
+
15
30

−2
1
1

"

#

$
$
$

%

&

'
'
'
=

−2 / 5
2

1/ 5

"

#

$
$
$

%

&

'
'
'

1 2 / 5 7 / 5
ˆy y 2 2 0

3 1/ 5 14 / 5

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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THE ORTHOGONAL DECOMPOSITION THEOREM 

§  Theorem 8 ensures that            is in       . 

§  To check the calculations, verify that           is 
orthogonal to both u1 and u2 and hence to all of W. 

§  The desired decomposition of y is 

ˆy y− W ⊥

ˆy y−

1 2 / 5 7 / 5
y 2 2 0

3 1/ 5 14 / 5

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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PROPERTIES OF ORTHOGONAL PROJECTIONS 

§  If {u1,…,up} is an orthogonal basis for W and if y 
happens to be in W, then the formula for projWy is 
exactly the same as the representation of y given in 
Theorem 5 in Section 6.2. 

§  In this case,                   . 

§  If y is in                                      , then                    . 

proj y yW =

W =Span{u1,…,u p} proj y yW =
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THE BEST APPROXIMATION THEOREM 
§  Theorem 9: Let W be a subspace of     , let y be any 

vector in     , and let     be the orthogonal projection of y 
onto W. Then     is the closest point in W to y, in the 
sense that 

                                                                              ----(3) 
 for all v in W distinct from    . 

§  The vector    in Theorem 9 is called the best 
approximation to y by elements of W. 

§  The distance from y to v, given by             , can be 
regarded as the “error” of using v in place of y. 

§  Theorem 9 says that this error is minimized when          . 

n

ŷn

ŷ
ŷ

ˆy y y v− < −

ŷ

y v−

ˆv y=
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THE BEST APPROXIMATION THEOREM 

§  Inequality (3) leads to a new proof that    does not 
depend on the particular orthogonal basis used to 
compute it. 

§  If a different orthogonal basis for W were used to 
construct an orthogonal projection of y, then this 
projection would also be the closest point in W to y, 
namely,   . 

ŷ

ŷ
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THE BEST APPROXIMATION THEOREM 
§  Proof: Take v in W distinct from   . See the following 

figure. 

§  Then            is in W. 
§  By the Orthogonal Decomposition Theorem,           is 

orthogonal to W. 
§  In particular,           is orthogonal to           (which is in 

W ). 

ŷ

ŷ v−
ˆy y−

ˆy y− ŷ v−
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THE BEST APPROXIMATION THEOREM 

§  Since 

 the Pythagorean Theorem gives  
 
 

§  (See the colored right triangle in the figure on the 
previous slide. The length of each side is labeled.) 

§  Now                    because                , and so inequality  
 (3) follows immediately. 

ˆ ˆy v (y y) (y v)− = − + −

2 2 2ˆ ˆy v y y y v− = − + −

2ŷ v 0− > ŷ v 0− ≠
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PROPERTIES OF ORTHOGONAL PROJECTIONS 

§  Example 2: The distance from a point y in       to a 
subspace W is defined as the distance from y to the 
nearest point in W. Find the distance from y to  

                                  , where 
 
 
 
 
§  Solution: By the Best Approximation Theorem, the 

distance from y to W is              , where                   .  

n

1 2Span{u ,u }W =

1 2

1 5 1
y 5 ,u 2 ,u 2

10 1 1

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ˆy y− ŷ proj yW=
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PROPERTIES OF ORTHOGONAL PROJECTIONS 
§  Since {u1, u2} is an orthogonal basis for W, 

§  The distance from y to W is                     .  

1 2

2 2 2

5 1 1
15 21 1 7ŷ u u 2 2 8
30 6 2 2

1 1 4

1 1 0
ˆy y 5 8 3

10 4 6

ˆy y 3 6 45

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = − − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = − − − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− = + =
45 3 5=
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Orthogonality and Least 
Squares 

LEAST-SQUARES PROBLEMS 
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LEAST-SQUARES PROBLEMS 
§  Definition: If A is            and b is in      , a least-

squares solution of              is an    in       such that 
 

 for all x in      . 

§  The most important aspect of the least-squares 
problem is that no matter what x we select, the vector 
Ax will necessarily be in the column space, Col A. 

§  So we seek an x that makes Ax the closest point in 
Col A to b. See the figure on the next slide. 

m n× m

x bA = x̂ n

n
ˆb x b xA A− ≤ −
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LEAST-SQUARES PROBLEMS 

§  Solution of the General Least-Squares Problem 

§  Given A and b, apply the Best Approximation 
Theorem to the subspace Col A. 

§  Let  
Col b̂ proj bA=
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SOLUTION OF THE GENREAL LEAST-SQUARES 
PROBLEM 

§  Because    is in the column space A, the equation            
is consistent, and there is an     in      such that 

                                                                               ----(1)   
 
§  Since    is the closest point in Col A to b, a vector    is a 

least-squares solution of               if and only if     
satisfies (1). 

§  Such an     in       is a list of weights that will build    out 
of the columns of A. See the figure on the next slide. 

b̂ ˆx bA =
x̂ n

ˆx̂ bA =

b̂ x̂
x bA = x̂

x̂ n b̂
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SOLUTION OF THE GENREAL LEAST-SQUARES 
PROBLEM 

§  Suppose     satisfies             . 
§  By the Orthogonal Decomposition Theorem, the 

projection     has the property that           is orthogonal 
to Col A, so              is orthogonal to each column of A. 

§  If aj is any column of A, then                             ,       
and                     .             

x̂ ˆx̂ bA =

b̂ ˆb b−
ˆb xA−

a j i(b− Ax̂) = 0ˆa (b x)T
j A−
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SOLUTION OF THE GENREAL LEAST-SQUARES 
PROBLEM 

§  Since each      is a row of AT, 
                                                                         ----(2) 
§  Thus 

§  These calculations show that each least-squares 
solution of              satisfies the equation  

                                                                         ----(3) 
§  The matrix equation (3) represents a system of 

equations called the normal equations for             . 
§  A solution of (3) is often denoted by   . 

aTj
ˆ(b x) 0TA A− =

ˆb x 0
x̂ b

T T

T T

A A A
A A A

− =

=

x bA =
x bT TA A A=

x bA =
x̂
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SOLUTION OF THE GENREAL LEAST-SQUARES 
PROBLEM 

§  Theorem 13: The set of least-squares solutions of         
coincides with the nonempty set of solutions of the 
normal equation                       . 

§  Proof: The set of least-squares solutions is nonempty and 
each least-squares solution     satisfies the normal 
equations. 

§  Conversely, suppose    satisfies                       . 
§  Then    satisfies (2), which shows that              is 

orthogonal to the rows of AT and hence is orthogonal to 
the columns of A. 

§  Since the columns of A span Col A, the vector              is 
orthogonal to all of Col A. 

x bA =

x bT TA A A=

x̂

x̂ x̂ bT TA A A=
x̂ ˆb xA−

ˆb xA−
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SOLUTION OF THE GENREAL LEAST-SQUARES 
PROBLEM 

§  Hence the equation  

 is a decomposition of b into the sum of a vector in Col 
A and a vector orthogonal to Col A. 

 
§  By the uniqueness of the orthogonal decomposition,   

must be the orthogonal projection of b onto Col A. 

§  That is,              and     is a least-squares solution. 

ˆ ˆb x (b x)A A= + −

x̂A

ˆx̂ bA = x̂
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SOLUTION OF THE GENREAL LEAST-SQUARES 
PROBLEM 
§  Example 1: Find a least-squares solution of the 

inconsistent system              for 

§  Solution: To use normal equations (3), compute:  

x bA =

A =
4 0
0 2
1 1

!

"

#
#
#

$

%

&
&
&
,b =

2
0
11

!

"

#
#
#

$

%

&
&
&

AT A = 4 0 1
0 2 1

!

"
#

$

%
&

4 0
0 2
1 1

!

"

#
#
#

$

%

&
&
&
= 17 1

1 5

!

"
#

$

%
&
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SOLUTION OF THE GENREAL LEAST-SQUARES 
PROBLEM 

§  Then the equation                        becomes 

ATb = 4 0 1
0 2 1

!

"
#

$

%
&

2
0
11

!

"

#
#
#

$

%

&
&
&
= 19

11

!

"
#

$

%
&

x bT TA A A=

17 1
1 5

!

"
#

$

%
&
x1
x2

!

"

#
#

$

%

&
&
= 19

11

!

"
#

$

%
&
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SOLUTION OF THE GENREAL LEAST-SQUARES 
PROBLEM 

§  Row operations can be used to solve the system on the 
previous slide, but since ATA is invertible and         , it 
is probably faster to compute 

  
 and then solve                        as 

2 2×

(AT A)−1 = 1
84

5 −1
−1 17

"

#
$

%

&
'

x bT TA A A=
x̂ = (AT A)−1ATb

= 1
84

5 −1
−1 17

"

#
$

%

&
' 19
11

"

#
$

%

&
'=

1
84

84
168

"

#
$

%

&
'= 1

2

"

#
$

%

&
'
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SOLUTION OF THE GENREAL LEAST-SQUARES 
PROBLEM 
§  Theorem 14: Let A be an           matrix. The following 

statements are logically equivalent: 
a.  The equation              has a unique least-squares 

solution for each b in      . 
b.  The columns of A are linearly independent. 
c.  The matrix ATA is invertible. 
 When these statements are true, the least-squares 
solution    is given by 

                                                                         ----(4) 
§  When a least-squares solution    is used to produce      

as an approximation to b, the distance from b to       is 
called the least-squares error of this approximation. 

m n×

x bA =
m

x̂
1x̂ ( ) bT TA A A−=
x̂

x̂A
x̂A
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ALTERNATIVE CALCULATIONS OF LEAST-
SQUARES SOLUTIONS 
§  Example 2: Find a least-squares solution of               for 

§  Solution: Because the columns a1 and a2 of A are 
orthogonal, the orthogonal projection of b onto Col A is 
given by 

                                                                                    ----(5) 

x bA =

A =

1 −6
1 −2
1 1
1 7

"

#

$
$
$
$

%

&

'
'
'
'

,b =

−1
2
1
6

"

#

$
$
$
$

%

&

'
'
'
'

b̂ = bia1
a1ia1

a1 +
bia2
a2 ia2

a2 =
8
4
a1 +

45
90
a2
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ALTERNATIVE CALCULATIONS OF LEAST-
SQUARES SOLUTIONS 

§  Now that     is known, we can solve             . 
§  But this is trivial, since we already know weights to 

place on the columns of A to produce   . 
§  It is clear from (5) that 

=

2
2
2
2

!

"

#
#
#
#

$

%

&
&
&
&

+

−3
−1
1/ 2
7 / 2

!

"

#
#
#
#

$

%

&
&
&
&

=

−1
1

5 / 2
11/ 2

!

"

#
#
#
#

$

%

&
&
&
&

b̂ ˆx̂ bA =

b̂

x̂ = 8 / 4
45 / 90

!

"
#

$

%
&= 2

1/ 2

!

"
#

$

%
&


