AMS 10/10A, Homework 9

Problem 1. Let A and B be two similar matrices. Prove that A^k is also similar to B^k for positive integer k.

Problem 2. Matrix $A = \begin{bmatrix} 3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix}$ has the diagonalization given below. Use Theorem 5 in Section 5.3 to find the eigenvalues and corresponding eigenvectors of A.

$$P = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 1 & -3 \\ 1 & 0 & 0 \end{bmatrix}, \qquad P^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ -3 & 1 & 9 \\ -1 & 0 & 3 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 & 1 \\ -3 & 1 & 9 \\ -1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 3 & 0 & -1 \\ 0 & 1 & -3 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Problem 3. Diagonalize each of the matrices below, if possible.

$$A = \begin{bmatrix} 3 & 2 & -2 \\ 0 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
$$B = \begin{bmatrix} -5 & 2 & -1 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Problem 4. A is 9×9 matrix with three distinct eigenvalues. Two of the eigenvalues have geometric multiplicity 3; and one eigenvalue has geometric multiplicity 2. Is A diagonalizable? Why?

Problem 5. Is the following matrix diagonalizable? Why?

[1]	2	-2	0	1	-3	3
0	2	1	-2	3	0	2
0	0	3	-1	9	11	2
0	0	0	4	$\overline{7}$	-1	3
0	0	0	0	5	-2	1
0	0	0	0	0	6	1
0	0	0	0	0	0	7

Problem 6. Prove that if A is both diagonalizable and invertible, then A^{-1} is also diagonalizable and invertible.

Problem 7. Prove that if A is diagonalizable, then A^k is also diagonalizable for any positive integer k.

Problem 8. Let
$$u = \begin{bmatrix} 1\\ 3\\ -2 \end{bmatrix}$$
 and $v = \begin{bmatrix} -3\\ 2\\ 2 \end{bmatrix}$. Compute the following quantities.
 $u^T v, \quad v^T u, \quad \left(\frac{u^T u}{v^T u}\right) u, \quad ||u - v||$

Problem 9. Determine if the following pair of vectors are orthogonal.

$$\left\{ \begin{bmatrix} 2\\1\\-2 \end{bmatrix}, \begin{bmatrix} 2\\1\\2.5 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} -3\\7\\4\\0 \end{bmatrix}, \begin{bmatrix} 1\\-8\\25\\-7 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} 13\\-3\\-7\\4 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} \right\}$$

Problem 10. Prove the parallelogram law:

$$||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$$

where u and v are vectors in \mathbb{R}^n .

Problem 11. Suppose a vector x is orthogonal to both vectors y and z. Prove that x is orthogonal to any vector in $span\{y, z\}$.

Problem 12. Let H = Col(A), where $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 1 \end{bmatrix}$. Find H^{\perp} , the orthogonal complement of H.

Problem 13. Let $u = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$, and $H = span\{u\}$. What is the dimension of H^{\perp} , the orthogonal complement of H.

Problem 14. Let A be a 7×5 matrix. What is the smallest possible dimension of $[Col(A)]^{\perp}$? Explain your answer.

Problem 15. Determine if the following sets of vectors are orthogonal.

$$\left\{ \begin{bmatrix} 3\\-2\\1\\3 \end{bmatrix}, \begin{bmatrix} -1\\3\\-3\\4 \end{bmatrix}, \begin{bmatrix} 3\\8\\7\\0 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} 2\\-2\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\6 \end{bmatrix}, \begin{bmatrix} 3\\1\\-4 \end{bmatrix} \right\}$$

Problem 16. Let $u_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, and $u_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$.

- Show that $\{u_1, u_2, u_3\}$ is an orthogonal basis for \mathbb{R}^3 ;
- Express $x = \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix}$ as a linear combination of $\{u_1, u_2, u_3\}$.

Problem 17.

Let
$$u_1 = \begin{bmatrix} 1\\ 2\\ 1\\ 1\\ 1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} -2\\ 1\\ -1\\ 1\\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 1\\ 1\\ -2\\ -1\\ 1 \end{bmatrix}$, $u_4 = \begin{bmatrix} -1\\ 1\\ 1\\ -2\\ -2\\ 1 \end{bmatrix}$, and $v = \begin{bmatrix} 4\\ 2\\ -1\\ 0 \end{bmatrix}$.

It is known that $\{u_1, u_2, u_3, u_4\}$ is an orthogonal basis for \mathbb{R}^4 . Write v as the sum of two vectors, one in $span\{u_1, u_2\}$ and the other in $span\{u_3, u_4\}$.