AMS 10/10A, Homework 9

Problem 1. Let A and B be two similar matrices. Prove that A^{k} is also similar to B^{k} for positive integer k.

Problem 2. Matrix $A=\left[\begin{array}{rrr}3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3\end{array}\right]$ has the diagonalization given below. Use Theorem 5 in Section 5.3 to find the eigenvalues and corresponding eigenvectors of A.

$$
\begin{aligned}
& P=\left[\begin{array}{rrr}
3 & 0 & -1 \\
0 & 1 & -3 \\
1 & 0 & 0
\end{array}\right], \quad P^{-1}=\left[\begin{array}{rrr}
0 & 0 & 1 \\
-3 & 1 & 9 \\
-1 & 0 & 3
\end{array}\right] \\
& {\left[\begin{array}{rrr}
0 & 0 & 1 \\
-3 & 1 & 9 \\
-1 & 0 & 3
\end{array}\right]\left[\begin{array}{rrr}
3 & 0 & 0 \\
-3 & 4 & 9 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{rrr}
3 & 0 & -1 \\
0 & 1 & -3 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 3
\end{array}\right]}
\end{aligned}
$$

Problem 3. Diagonalize each of the matrices below, if possible.

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
3 & 2 & -2 \\
0 & 2 & 0 \\
0 & 1 & 3
\end{array}\right] \\
& B=\left[\begin{array}{rrrr}
-5 & 2 & -1 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

Problem 4. A is 9×9 matrix with three distinct eigenvalues. Two of the eigenvalues have geometric multiplicity 3 ; and one eigenvalue has geometric multiplicity 2. Is A diagonalizable? Why?

Problem 5. Is the following matrix diagonalizable? Why?

$$
\left[\begin{array}{rrrrrrr}
1 & 2 & -2 & 0 & 1 & -3 & 3 \\
0 & 2 & 1 & -2 & 3 & 0 & 2 \\
0 & 0 & 3 & -1 & 9 & 11 & 2 \\
0 & 0 & 0 & 4 & 7 & -1 & 3 \\
0 & 0 & 0 & 0 & 5 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 6 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 7
\end{array}\right]
$$

Problem 6. Prove that if A is both diagonalizable and invertible, then A^{-1} is also diagonalizable and invertible.

Problem 7. Prove that if A is diagonalizable, then A^{k} is also diagonalizable for any positive integer k.

Problem 8. Let $u=\left[\begin{array}{r}1 \\ 3 \\ -2\end{array}\right]$ and $v=\left[\begin{array}{r}-3 \\ 2 \\ 2\end{array}\right]$. Compute the following quantities.

$$
u^{T} v, \quad v^{T} u, \quad\left(\frac{u^{T} u}{v^{T} u}\right) u, \quad\|u-v\|
$$

Problem 9. Determine if the following pair of vectors are orthogonal.

$$
\left\{\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{r}
2 \\
1 \\
2.5
\end{array}\right]\right\}, \quad\left\{\left[\begin{array}{r}
-3 \\
7 \\
4 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
-8 \\
25 \\
-7
\end{array}\right]\right\}, \quad\left\{\left[\begin{array}{r}
13 \\
-3 \\
-7 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right\}
$$

Problem 10. Prove the parallelogram law:

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2}
$$

where u and v are vectors in \mathbb{R}^{n}.

Problem 11. Suppose a vector x is orthogonal to both vectors y and z. Prove that x is orthogonal to any vector in $\operatorname{span}\{y, z\}$.

Problem 12. Let $H=\operatorname{Col}(A)$, where $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4 \\ 3 & 1\end{array}\right]$. Find H^{\perp}, the orthogonal complement of H.

Problem 13. Let $u=\left[\begin{array}{r}1 \\ 1 \\ -2\end{array}\right]$, and $H=\operatorname{span}\{u\}$. What is the dimension of H^{\perp}, the orthogonal complement of H.

Problem 14. Let A be a 7×5 matrix. What is the smallest possible dimension of $[\operatorname{Col}(A)]^{\perp}$? Explain your answer.

Problem 15. Determine if the following sets of vectors are orthogonal.

$$
\left\{\left[\begin{array}{r}
3 \\
-2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{r}
-1 \\
3 \\
-3 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
8 \\
7 \\
0
\end{array}\right]\right\}, \quad\left\{\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
2 \\
6
\end{array}\right],\left[\begin{array}{r}
3 \\
1 \\
-4
\end{array}\right]\right\}
$$

Problem 16. Let $u_{1}=\left[\begin{array}{r}3 \\ -3 \\ 0\end{array}\right], u_{2}=\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right]$, and $u_{3}=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$.

- Show that $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{3};
- Express $x=\left[\begin{array}{r}5 \\ -3 \\ 2\end{array}\right]$ as a linear combination of $\left\{u_{1}, u_{2}, u_{3}\right\}$.

Problem 17.

Let $u_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{r}-2 \\ 1 \\ -1 \\ 1\end{array}\right], u_{3}=\left[\begin{array}{r}1 \\ 1 \\ -2 \\ -1\end{array}\right], u_{4}=\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ -2\end{array}\right]$, and $v=\left[\begin{array}{r}4 \\ 2 \\ -1 \\ 0\end{array}\right]$.
It is known that $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is an orthogonal basis for \mathbb{R}^{4}. Write v as the sum of two vectors, one in $\operatorname{span}\left\{u_{1}, u_{2}\right\}$ and the other in $\operatorname{span}\left\{u_{3}, u_{4}\right\}$.

