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EIGENVECTORS AND EIGENVALUES 

§  Definition: An eigenvector of an          matrix A is 
a nonzero vector x such that                 for some 
scalar λ. A scalar λ is called an eigenvalue of A if 
there is a nontrivial solution x of                 ; such an 
x is called an eigenvector corresponding to λ. 

§  λ is an eigenvalue of an           matrix A if and only 
if the equation 

                                                            ----(1) 
 has a nontrivial solution. 

§  The set of all solutions of (1) is just the null space 
of the matrix            . 

n n×
x λxA =

x λxA =

( λ )x 0A I− =

n n×

λA I−
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EIGENVECTORS AND EIGENVALUES 
§  So this set is a subspace of       and is called the 

eigenspace of A corresponding to λ. 

§  The eigenspace consists of the zero vector and all the 
eigenvectors corresponding to λ. 

§  Example 1: Show that 7 is an eigenvalue of matrix 

                        and find the corresponding eigenvectors. 

n

1 6
5 2

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦
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EIGENVECTORS AND EIGENVALUES 

§  Solution: The scalar 7 is an eigenvalue of A if and 
only if the equation 

                                                              ----(2) 
 has a nontrivial solution. 

§  But (2) is equivalent to                      , or  
                                                              ----(3) 
§  To solve this homogeneous equation, form the matrix 

x 7xA =

x 7x 0A − =
( 7 )x 0A I− =

1 6 7 0 6 6
7

5 2 0 7 5 5
A I

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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EIGENVECTORS AND EIGENVALUES 
§  The columns of               are obviously linearly 

dependent, so (3) has nontrivial solutions. 
§  To find the corresponding eigenvectors, use row 

operations: 

§  The general solution has the form           . 

§  Each vector of this form with              is an 
eigenvector corresponding to          . 

7A I−

−6 6 0
5 −5 0

"

#
$

%

&
' 1 −1 0

0 0 0

"

#
$

%

&
'

2

1
1

x ⎡ ⎤⎢ ⎥
⎣ ⎦

2 0x ≠
λ 7=



Slide 5.1- 6  © 2012 Pearson Education, Inc. 

EIGENVECTORS AND EIGENVALUES 

§  Example 2: Let                              . An eigenvalue of  

 A is 2. Find a basis for the corresponding eigenspace. 
§  Solution: Form 

  
 and row reduce the augmented matrix for                         .   

 

4 1 6
2 1 6
2 1 8

A
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
−⎢ ⎥⎣ ⎦

4 1 6 2 0 0 2 1 6
2 2 1 6 0 2 0 2 1 6

2 1 8 0 0 2 2 1 6
A I

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( 2 )x 0A I− =
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EIGENVECTORS AND EIGENVALUES 

§  At this point, it is clear that 2 is indeed an eigenvalue 
of A because the equation                        has free 
variables. 

§  The general solution is 

                                                   , x2 and x3 free. 

2 1 6 0 2 1 6 0
2 1 6 0 0 0 0 0
2 1 6 0 0 0 0 0

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

:

( 2 )x 0A I− =

1

2 2 3

3

1 / 2 3
1 0
0 1

x
x x x
x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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EIGENVECTORS AND EIGENVALUES 
§  The eigenspace, shown in the following figure, is a 

two-dimensional subspace of     . 

§  A basis is  
 

3

1 3
2 , 0
0 1

⎧ ⎫−⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥
⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭
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EIGENVECTORS AND EIGENVALUES 
§  Theorem 1: The eigenvalues of a triangular matrix 

are the entries on its main diagonal. 
§  Proof: For simplicity, consider the          case. 
§  If A is upper triangular, the             has the form 

3 3×
λA I−

11 12 13

22 23

33

11 12 13

22 23

33

λ 0 0
λ 0 0 λ 0

0 0 0 0 λ

λ
0 λ
0 0 λ

a a a
A I a a

a

a a a
a a

a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

−⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦
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EIGENVECTORS AND EIGENVALUES 

§  The scalar λ is an eigenvalue of A if and only if the 
equation                           has a nontrivial solution, 
that is, if and only if the equation has a free variable. 

§  Because of the zero entries in            , it is easy to see 
that                          has a free variable if and only if 
at least one of the entries on the diagonal of             is 
zero.  

    
§  This happens if and only if λ equals one of the entries 

a11, a22, a33 in A.        

( λ )x 0A I− =

λA I−
( λ )x 0A I− =

λA I−
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EIGENVECTORS AND EIGENVALUES 
§  Theorem 2: If v1, …, vr are eigenvectors that 

correspond to distinct eigenvalues λ1, …, λr of an 
 matrix A, then the set {v1, …, vr} is linearly 
independent.  

n n×
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THE CHARACTERISTIC EQUATION 

§  Theorem 3(a) shows how to determine when a matrix 
of the form             is not invertible. 

§  The scalar equation                             is called the 
characteristic equation of A. 

§  A scalar λ is an eigenvalue of an           matrix A if 
and only if λ satisfies the characteristic equation 

λA I−

det( λ ) 0A I− =

n n×

det( λ ) 0A I− =
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THE CHARACTERISTIC EQUATION 

§  Example 2: Find the characteristic equation of 

§  Solution: Form            , and use Theorem 3(d): 

5 2 6 1
0 3 8 0
0 0 5 4
0 0 0 1

A

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

λA I−
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THE CHARACTERISTIC EQUATION 
 
 
 
 
 
 
§  The characteristic equation is  

 or  

5 λ 2 6 1
0 3 λ 8 0

det( λ ) det
0 0 5 λ 4
0 0 0 1 λ

(5 λ)(3 λ)(5 λ)(1 λ)

A I

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥− =

−⎢ ⎥
⎢ ⎥−⎣ ⎦

= − − − −

2(5 λ) (3 λ)(1 λ) 0− − − =

2(λ 5) (λ 3)(λ 1) 0− − − =
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THE CHARACTERISTIC EQUATION 
§  Expanding the product, we can also write 

§  If A is an          matrix, then                     is a 
polynomial of degree n called the characteristic 
polynomial of A. 

§  The eigenvalue 5 in Example 2 is said to have 
multiplicity 2 because             occurs two times as a 
factor of the characteristic polynomial. 

§  In general, the (algebraic) multiplicity of an 
eigenvalue λ is its multiplicity as a root of the 
characteristic equation. 

4 3 2λ 14λ 68λ 130λ 75 0− + − + =

n n× det( λ )A I−

(λ 5)−
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SIMILARITY 
§  If A and B are          matrices, then A is similar to B if 

there is an invertible matrix P such that                    , 
or, equivalently,                   . 

§  Writing Q for       , we have                     . 

§  So B is also similar to A, and we say simply that A 
and B are similar. 

§  Changing A into              is called a similarity 
transformation. 

n n×
1P AP B− =

1A PBP−=

1P− 1Q BQ A− =

1P AP−
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SIMILARITY 
§  Theorem 4: If          matrices A and B are similar, then 

they have the same characteristic polynomial and hence 
the same eigenvalues (with the same multiplicities). 

§  Proof: If                     then, 

§  Using the multiplicative property (b) in Theorem (3), 
we compute 

                                                                                  ----(1) 
 

n n×

1B P AP−=
1 1 1 1λ λ ( λ ) ( λ )B I P AP P P P AP P P A I P− − − −− = − = − = −

1

1

det( λ ) det ( λ )

det( ) det( λ ) det( )

B I P A I P

P A I P

−

−

− = −⎡ ⎤⎣ ⎦

= ⋅ − ⋅
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SIMILARITY 

§  Since                                                                       , we 
see from equation (1) that                                              . 

§  Warnings: 
1.  The matrices 
                                    
                                 and 
 

 are not similar even though they have the same 
eigenvalues.   

1 1det( ) det( ) det( ) det 1P P P P I− −⋅ = = =
det( λ ) det( λ )B I A I− = −

2 1
0 2
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 0
0 2
⎡ ⎤
⎢ ⎥
⎣ ⎦
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SIMILARITY 

2.  Similarity is not the same as row equivalence. 
(If A is row equivalent to B, then               for 
some invertible matrix E ). Row operations on 
a matrix usually change its eigenvalues. 

B EA=
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DIAGONALIZATION 

§  Example 1: Let                       . Find a formula for  

 Ak, given that                    , where 
 
                                and 
 
§  Solution: The standard formula for the inverse of a    
                matrix yields    

7 2
4 1

A ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

1A PDP−=

1 1
1 2

P ⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

5 0
0 3

D ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

2 2×
1 2 1

1 1
P− ⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
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DIAGONALIZATION 

§  Then, by associativity of matrix multiplication, 

§  Again,  

A2 = (PDP−1)(PDP−1) = PD (P−1P)
I

DP
−1 = PDDP−1

= PD2P−1 = 1 1
−1 −2

"

#
$

%

&
' 52 0

0 32
"

#
$

%

&
' 2 1

−1 −1

"

#
$

%

&
'

A3 = (PDP−1)A2 = (PDP−1)P
I
D2P−1 = PDD2P−1 = PD3P−1
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DIAGONALIZATION 

§  In general, for         , 

§  A square matrix A is said to be diagonalizable if A is 
similar to a diagonal matrix, that is, if                      
for some invertible matrix P and some diagonal, 
matrix D. 

1k ≥
1 1 1 2 15 0

1 2 1 10 3

2 5 3 5 3
2 3 2 5 2 3 5

k
k k

k

k k k k

k k k k

A PD P− ⎡ ⎤⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦⎣ ⎦

⋅ − −⎡ ⎤
= ⎢ ⎥⋅ − ⋅ ⋅ −⎣ ⎦

1A PDP−=
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THE DIAGONALIZATION THEOREM 

§  Theorem 5: An          matrix A is diagonalizable if 
and only if A has n linearly independent eigenvectors. 
  In fact,                    , with D a diagonal matrix, if 
and only if the columns of P and n linearly 
independent eigenvectors of A. In this case, the 
diagonal entries of D are eigenvalues of A that 
correspond, respectively, to the eigenvectors in P. 
   
  In other words, A is diagonalizable if and only if 
there are enough eigenvectors to form a basis of      . 
We call such a basis an eigenvector basis of      . 

n n×

1A PDP−=

n

n
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DIAGONALIZING MATRICES 
§  Example 2: Diagonalize the following matrix, if 

possible. 

  
 That is, find an invertible matrix P and a diagonal 
matrix D such that                    . 

§  Solution: There are four steps to implement the 
description in Theorem 5. 

§  Step 1. Find the eigenvalues of A. 
§  Here, the characteristic equation turns out to involve 

a cubic polynomial that can be factored: 

1 3 3
3 5 3
3 3 1

A
⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

1A PDP−=
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DIAGONALIZING MATRICES 

§  The eigenvalues are           and             . 
§  Step 2. Find three linearly independent eigenvectors 

of A. 
§  Three vectors are needed because A is a         matrix. 
§  This is a critical step. 
§  If it fails, then Theorem 5 says that A cannot be 

diagonalized. 

3 2

2

0 det( λ ) λ 3λ 4
(λ 1)(λ 2)
A I= − = − − +

= − − +

λ 1= λ 2= −

3 3×
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DIAGONALIZING MATRICES 

§  Basis for 

§  Basis for                                  and 

§  You can check that {v1, v2, v3} is a linearly 
independent set.     

1

1
λ 1: v 1

1

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥⎣ ⎦

2

1
λ 2 : v 1

0

−⎡ ⎤
⎢ ⎥= − = ⎢ ⎥
⎢ ⎥⎣ ⎦

3

1
v 0

1

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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DIAGONALIZING MATRICES 
§  Step 3. Construct P from the vectors in step 2. 
§  The order of the vectors is unimportant. 
§  Using the order chosen in step 2, form 

§  Step 4. Construct D from the corresponding eigenvalues. 
§  In this step, it is essential that the order of the eigenvalues 

matches the order chosen for the columns of P. 

[ ]1 2 3

1 1 1
v v v 1 1 0

1 0 1
P

− −⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥⎣ ⎦
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DIAGONALIZING MATRICES 
§  Use the eigenvalue             twice, once for each of the 

eigenvectors corresponding to            : 

§  To avoid computing      , simply verify that                  . 
§  Compute 
 

λ 2= −
λ 2= −

1 0 0
0 2 0
0 0 2

D
⎡ ⎤
⎢ ⎥= −⎢ ⎥

−⎢ ⎥⎣ ⎦
1P− AD PD=

1 3 3 1 1 1 1 2 2
3 5 3 1 1 0 1 2 0
3 3 1 1 0 1 1 0 2

AP
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − − − = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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DIAGONALIZING MATRICES 

 

§  Theorem 6: An           matrix with n distinct 
eigenvalues is diagonalizable. 

§  Proof: Let v1, …, vn be eigenvectors corresponding 
to the n distinct eigenvalues of a matrix A. 

§  Then {v1, …, vn} is linearly independent, by  
Theorem 2 in Section 5.1. 

§  Hence A is diagonalizable, by Theorem 5. 

1 1 1 1 0 0 1 2 2
1 1 0 0 2 0 1 2 0
1 0 1 0 0 2 1 0 2

PD
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

n n×
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MATRICES WHOSE EIGENVALUES ARE NOT 
DISTINCT 

§  It is not necessary for an          matrix to have n 
distinct eigenvalues in order to be diagonalizable. 

§  Theorem 6 provides a sufficient condition for a matrix 
to be diagonalizable. 

§  If an           matrix A has n distinct eigenvalues, with 
corresponding eigenvectors v1, …, vn, and if 

                                 , then P is automatically invertible 
because its columns are linearly independent, by 
Theorem 2.  

n n×

n n×

P = v1  v2
!
"#

$
%&



Slide 5.3- 13  © 2012 Pearson Education, Inc. 

MATRICES WHOSE EIGENVALUES ARE NOT 
DISTINCT 

§  When A is diagonalizable but has fewer than n 
distinct eigenvalues, it is still possible to build P in 
a way that makes P automatically invertible, as the 
next theorem shows. 

§  Theorem 7: Let A be an          matrix whose distinct 
eigenvalues are λ1, …, λp. 

a.  For                , the dimension of the eigenspace 
for λk is less than or equal to the multiplicity 
of the eigenvalue λk.  

1 k p≤ ≤

n n×
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MATRICES WHOSE EIGENVALUES ARE NOT 
DISTINCT 

b.  The matrix A is diagonalizable if and only if 
the sum of the dimensions of the eigenspaces 
equals n, and this happens if and only if (i) the 
characteristic polynomial factors completely 
into linear factors and (ii) the dimension of the 
eigenspace for each λk equals the multiplicity 
of λk. 

c.  If A is diagonalizable and Bk is a basis for the 
eigenspace corresponding to Bk for each k, 
then the total collection of vectors in the sets 
B1, …, Bp forms an eigenvector basis for      . n


