AMS 10/10A, Homework 7

Problems for Section 2.8 and 2.9
Problem 1. Suppose A is $m \times n$. Prove the following equality

$$
\operatorname{dim} \operatorname{Col}(A)+\operatorname{dim} \operatorname{Nul}\left(A^{T}\right)=m
$$

Problem 2. Suppose A is $m \times n$ and b is in R^{m}. Prove that if the equation $A x=b$ is consistent, then $\operatorname{rank}[A, b]=\operatorname{rank} A$.

Problem 3. Suppose A is 5×8 and rank $A=5$.
Does $A x=0$ have a non-trivial solution? Why?
Does $A^{T} x=0$ have a non-trivial solution? Why?

Problems for Section 3.1 and 3.2
Problem 4. Compute the determinant of each of the following matrices.
You can use either co-factor expansion or row reduction.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & -6 \\
2 & -4
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 2 & 3 \\
-2 & 3 & 4 \\
5 & -7 & 6
\end{array}\right], \\
C=\left[\begin{array}{rrrr}
6 & 2 & 5 & 4 \\
7 & 3 & 6 & 0 \\
1 & 1 & 0 & 0 \\
-2 & 0 & 0 & 0
\end{array}\right], \quad D=\left[\begin{array}{rrrr}
2 & 0 & 0 & 4 \\
0 & 0 & 6 & 4 \\
0 & -1 & 0 & 4 \\
0 & 0 & 0 & 4
\end{array}\right]
\end{gathered}
$$

Problem 5. Show that for arbitrary real numbers a, b, c, and d, the determinant of the following matrix is always zero.

$$
\left[\begin{array}{rrrr}
a & 0 & d & c \\
b & 0 & -c & d \\
0 & c & -b & a \\
0 & d & a & b
\end{array}\right]
$$

Problem 6. Find the value(s) of a for which the determinant of the following matrix is zero.

$$
\left[\begin{array}{rrr}
a & \sqrt{2} & 0 \\
\sqrt{2} & a & \sqrt{2} \\
0 & \sqrt{2} & a
\end{array}\right]
$$

Problem 7. Let A and B be 4×4 square matrices such that $\operatorname{det}(A)=3$ and $\operatorname{det}(B)=-2$. Compute $\operatorname{det}(2 A), \operatorname{det}\left(A^{3}\right), \operatorname{det}\left(A^{-1}\right), \operatorname{det}\left(A^{2} B^{3}\right)$ and $\operatorname{det}\left(A^{3} B^{-2}\right)$.

Problem 8. Prove that $\operatorname{det}\left(A A^{T}\right)$ is nonnegative for any $n \times n$ matrix A.

Problem 9. Let A be an $n \times n$ matrix and let P be an $n \times n$ invertible matrix. Prove that $\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}(A)$.

Problem 10. Let A be an $n \times n$ matrix such that $A^{T}=-A$. Prove that A is not invertible if n is odd.

Problem 11. Let

$$
A=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Show that i) $A^{T}=-A$ and ii) A is invertible.
Does this result contradict the conclusion in Problem 10 above?

Problem 12. Suppose $\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=5$. Find

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{rrr}
a & b & c \\
d+2 a & e+2 b & f+2 c \\
g & h & i
\end{array}\right] \\
\operatorname{det}\left[\begin{array}{lll}
d & e & f \\
g & h & i \\
a & b & c
\end{array}\right] \\
\operatorname{det}\left(3\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\right) \\
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
a & b & c
\end{array}\right]
\end{gathered}
$$

