AMS 10/10A, Homework 6

Problems for Section 2.8 and 2.9

Problem 1. Let $v_{1}=\left[\begin{array}{r}1 \\ 3 \\ -4\end{array}\right], v_{2}=\left[\begin{array}{r}-2 \\ -3 \\ 7\end{array}\right]$, and $w=\left[\begin{array}{r}-3 \\ -3 \\ 10\end{array}\right]$.
Determine if w is in the subspace spanned by v_{1} and v_{2}.

Problem 2. Let $v_{1}=\left[\begin{array}{r}-2 \\ 0 \\ 6\end{array}\right], v_{2}=\left[\begin{array}{r}-2 \\ 3 \\ 3\end{array}\right], v_{3}=\left[\begin{array}{r}0 \\ -5 \\ 5\end{array}\right]$, and $w=\left[\begin{array}{r}-6 \\ 1 \\ 17\end{array}\right]$.
Determine if w is in $\operatorname{Col} A$, where $A=\left[v_{1} v_{2} v_{3}\right]$. Determine if w is in $N u l A$.

Problem 3. Consider matrix A given below. Col A is a subspace in \mathbb{R}^{p} and $N u l A$ is a subspace in \mathbb{R}^{q}. Write out the values of p and q.

$$
A=\left[\begin{array}{rrrrr}
-3.1 & 21 & 12 & 5 & 17 \\
-2 & 27 & -13 & 3 & -1 \\
4 & 1 & 0 & 6 & 3
\end{array}\right]
$$

Problem 4. Find a basis for $\operatorname{Col} A$ and a basis for $N u l A$.

$$
A=\left[\begin{array}{rrrr}
3 & -6 & 9 & 0 \\
2 & -4 & 7 & 2 \\
3 & -6 & 6 & -6
\end{array}\right]
$$

Determine which sets in Problems 5-7 are bases for \mathbb{R}^{2} or \mathbb{R}^{3}. Justify your answer.
Problem 5. $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{r}-2 \\ 3\end{array}\right]$

Problem 6. $\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{r}-2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 0 \\ 2\end{array}\right]$

Problem 7. $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$

Each of problems 8-9 displays a matrix A and its echelon form. In each problem,

1. find a basis for $\operatorname{Col} A$,
2. state the dimension of $\operatorname{Col} A$,
3. find a basis for $N u l A$, and
4. state the dimension of $N u l A$.

Problem 8.

$$
A=\left[\begin{array}{rrrr}
1 & 3 & 2 & -6 \\
3 & 9 & 1 & 5 \\
2 & 6 & -1 & 9 \\
5 & 15 & 0 & 14
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Problem 9.

$$
A=\left[\begin{array}{rrrrr}
2 & 4 & -5 & 2 & -3 \\
3 & 6 & -8 & 3 & -5 \\
0 & 0 & 9 & 0 & 9 \\
-3 & -6 & -7 & -3 & -10
\end{array}\right] \sim\left[\begin{array}{lllll}
1 & 2 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Problem 10. Suppose the rank of a 7×9 matrix is 5 . what is the dimension of $\operatorname{Col} A$? What is the dimension of Nul A?

Problem 11. Mark each statement True or False
11.1. The set of all solutions of a system of homogeneous equation with m equations and n unknowns is a subspace in \mathbb{R}^{m}.
11.2. The set of all linear combinations of columns of an $m \times n$ matrix is a subspace in \mathbb{R}^{n}.
11.3. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^{n}.
11.4. Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]$, where a_{1}, a_{2}, and a_{3}, are vectors in \mathbb{R}^{n}. Then the column space of matrix $\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]$ is the same as the column space of matrix $\left[\begin{array}{lll}a_{3} & a_{1} & a_{2}\end{array}\right]$.
11.5. The columns of a singular (non-invertible) $n \times n$ matrix may still be a basis for \mathbb{R}^{n}.

Problem 12. Mark each statement True or False
12.1. The dimension of $\operatorname{Col} A$ is the number of pivot columns in A.
12.2. Suppose A is an invertible $n \times n$ matrix. Then $\operatorname{Col} A=\mathbb{R}^{n}$.
12.3. Suppose A is an invertible $n \times n$ matrix. Then $N u l A=\{0\}$.
12.4. The dimension of $N u l A$ is the number of variables in the equation $A x=0$.
12.5. The dimension of $N u l A$ is the number of basic variables in the equation $A x=0$.
12.6. The dimension of $N u l A$ is the number of free variables in the equation $A x=0$.

Problem 13. Let

$$
A=\left[\begin{array}{rrrr}
1 & 3 & 0 & 3 \\
-1 & -1 & -1 & 1 \\
0 & -4 & 2 & -8 \\
2 & 0 & 3 & -1
\end{array}\right]
$$

Find a basis for $\operatorname{Col} A$ and find a basis for $N u l A$.

Problem 14. Consider two matrices

$$
A=\left[\begin{array}{rrrr}
1 & -4 & 2 & 3 \\
-2 & 1 & -1 & 7 \\
3 & -4 & 2 & -5 \\
2 & 0 & 3 & -1
\end{array}\right], \quad B=\left[\begin{array}{rrrrr}
1 & -4 & 2 & 3 & 0 \\
-2 & 1 & -1 & 7 & 0 \\
3 & -4 & 2 & -5 & 0 \\
2 & 0 & 3 & -1 & 0
\end{array}\right]
$$

Notice that matrix B is constructed by appending a column of zeros to matrix A.

1. Is it true that $\operatorname{Col} A=\operatorname{Col} B$?
2. Is it possible that $N u l A=N u l B$?
