AMS 10/10A, Homework 6

Problems for Section 2.8 and 2.9

Problem 1. Let
$$v_1 = \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -2 \\ -3 \\ 7 \end{bmatrix}$, and $w = \begin{bmatrix} -3 \\ -3 \\ 10 \end{bmatrix}$.

Determine if w is in the subspace spanned by v_1 and v_2 .

Problem 2. Let
$$v_1 = \begin{bmatrix} -2\\0\\6 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -2\\3\\3 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0\\-5\\5 \end{bmatrix}$, and $w = \begin{bmatrix} -6\\1\\17 \end{bmatrix}$.

Determine if w is in Col A, where $A = [v_1 v_2 v_3]$. Determine if w is in Nul A.

Problem 3. Consider matrix A given below. Col A is a subspace in \mathbb{R}^p and Nul A is a subspace in \mathbb{R}^q . Write out the values of p and q.

$$A = \begin{bmatrix} -3.1 & 21 & 12 & 5 & 17 \\ -2 & 27 & -13 & 3 & -1 \\ 4 & 1 & 0 & 6 & 3 \end{bmatrix}$$

Problem 4. Find a basis for *Col A* and a basis for *Nul A*.

$$A = \begin{bmatrix} 3 & -6 & 9 & 0 \\ 2 & -4 & 7 & 2 \\ 3 & -6 & 6 & -6 \end{bmatrix}$$

Determine which sets in Problems 5-7 are bases for \mathbb{R}^2 or \mathbb{R}^3 . Justify your answer.

Problem 5. $\begin{bmatrix} 1\\2 \end{bmatrix}$, $\begin{bmatrix} -2\\3 \end{bmatrix}$ Problem 6. $\begin{bmatrix} 1\\0\\2 \end{bmatrix}$, $\begin{bmatrix} -2\\3\\1 \end{bmatrix}$, $\begin{bmatrix} 5\\0\\2 \end{bmatrix}$ Problem 7. $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\2 \end{bmatrix}$ Each of problems 8-9 displays a matrix A and its echelon form. In each problem,

- 1. find a basis for Col A,
- 2. state the dimension of Col A,
- 3. find a basis for Nul A, and
- 4. state the dimension of Nul A.

Problem 8.

$$A = \begin{bmatrix} 1 & 3 & 2 & -6 \\ 3 & 9 & 1 & 5 \\ 2 & 6 & -1 & 9 \\ 5 & 15 & 0 & 14 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Problem 9.

Problem 10. Suppose the rank of a 7×9 matrix is 5. what is the dimension of *Col A*? What is the dimension of *Nul A*?

Problem 11. Mark each statement True or False

- 11.1. The set of all solutions of a system of homogeneous equation with m equations and n unknowns is a subspace in \mathbb{R}^m .
- 11.2. The set of all linear combinations of columns of an $m \times n$ matrix is a subspace in \mathbb{R}^n .
- 11.3. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^n .
- 11.4. Let $A = [a_1 \ a_2 \ a_3]$, where $a_1, \ a_2$, and a_3 , are vectors in \mathbb{R}^n . Then the column space of matrix $[a_1 \ a_2 \ a_3]$ is the same as the column space of matrix $[a_3 \ a_1 \ a_2]$.
- 11.5. The columns of a singular (non-invertible) $n \times n$ matrix may still be a basis for \mathbb{R}^n .

Problem 12. Mark each statement True or False

12.1. The dimension of Col A is the number of pivot columns in A.

- 12.2. Suppose A is an invertible $n \times n$ matrix. Then $Col \ A = \mathbb{R}^n$.
- 12.3. Suppose A is an invertible $n \times n$ matrix. Then $Nul A = \{0\}$.
- 12.4. The dimension of Nul A is the number of variables in the equation Ax = 0.
- 12.5. The dimension of Nul A is the number of basic variables in the equation Ax = 0.
- 12.6. The dimension of Nul A is the number of free variables in the equation Ax = 0.

Problem 13. Let

$$A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ -1 & -1 & -1 & 1 \\ 0 & -4 & 2 & -8 \\ 2 & 0 & 3 & -1 \end{bmatrix}$$

Find a basis for *Col* A and find a basis for *Nul* A.

Problem 14. Consider two matrices

$$A = \begin{bmatrix} 1 & -4 & 2 & 3 \\ -2 & 1 & -1 & 7 \\ 3 & -4 & 2 & -5 \\ 2 & 0 & 3 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -4 & 2 & 3 & 0 \\ -2 & 1 & -1 & 7 & 0 \\ 3 & -4 & 2 & -5 & 0 \\ 2 & 0 & 3 & -1 & 0 \end{bmatrix}$$

Notice that matrix B is constructed by appending a column of zeros to matrix A.

- 1. Is it true that $Col \ A = Col \ B$?
- 2. Is it possible that $Nul \ A = Nul \ B$?