

2.2

THE INVERSE OF A MATRIX

David C. Lay

© 2012 Pearson Education, Inc.

 An *n*×*n* matrix *A* is said to be invertible if there is an *n*×*n* matrix *C* such that

$$CA = I$$
 and $AC = I$

where $I = I_n$, the $n \times n$ identity matrix.

- In this case, *C* is an inverse of *A*.
- In fact, C is uniquely determined by A, because if B were another inverse of A, then

B = BI = B(AC) = (BA)C = IC = C.

• This unique inverse is denoted by A^{-1} , so that $A^{-1}A = I$ and $AA^{-1} = I$.

- Theorem 5: If *A* is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.
- **Proof:** Take any **b** in \mathbb{R}^n .
- A solution exists because if $A^{-1}b$ is substituted for **x**, then $A\mathbf{x} = A(A^{-1}b) = (AA^{-1})b = Ib = b$.
- So $A^{-1}b$ is a solution.
- To prove that the solution is unique, show that if **u** is any solution, then **u** must be $A^{-1}b$.
- If Au = b, we can multiply both sides by A^{-1} and obtain $A^{-1}Au = A^{-1}b$, $Iu = A^{-1}b$, and $u = A^{-1}b$.

• Theorem 6:

a. If A is an invertible matrix, then A^{-1} is invertible and

$$(A^{-1})^{-1} = A$$

- b. If *A* and *B* are $n \times n$ invertible matrices, then so is *AB*, and the inverse of *AB* is the product of the inverses of *A* and *B* in the reverse order. That is, $(AB)^{-1} = B^{-1}A^{-1}$
- c. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . That is, $(A^T)^{-1} = (A^{-1})^T$

• **Proof:** To verify statement (a), find a matrix *C* such that

 $A^{-1}C = I$ and $CA^{-1} = I$

- These equations are satisfied with A in place of C. Hence A^{-1} is invertible, and A is its inverse.
- Next, to prove statement (b), compute: $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$
- A similar calculation shows that $(B^{-1}A^{-1})(AB) = I$.
- For statement (c), use Theorem 3(d), read from right to left, $(A^{-1})^T A^T = (AA^{-1})^T = I^T = I$.
- Similarly, $A^{T}(A^{-1})^{T} = I^{T} = I$.

© 2012 Pearson Education, Inc.

- Hence A^T is invertible, and its inverse is $(A^{-1})T$.
- The generalization of Theorem 6(b) is as follows:
 The product of *n* × *n* invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order.
- An invertible matrix A is row equivalent to an identity matrix, and we can find A⁻¹ by watching the row reduction of A to I.
- An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.

• Example 1: Let
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,
 $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$, $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$

Compute E_1A , E_2A , and E_3A , and describe how these products can be obtained by elementary row operations on A.

• Solution: Verify that $E_1 A = \begin{bmatrix} a & b & c \\ d & e & f \\ g - 4a & h - 4b & i - 4c \end{bmatrix}, E_2 A = \begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix},$ • Solution: Verify that $E_{3}A = \begin{bmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{bmatrix}.$

• Addition of -4 times row 1 of A to row 3 produces E_1A .

- An interchange of rows 1 and 2 of A produces E_2A , and multiplication of row 3 of A by 5 produces E_3A .
- Left-multiplication by E_1 in Example 1 has the same effect on any $3 \times n$ matrix.
- Since $E_1 \cdot I = E_1$, we see that E_1 itself is produced by this same row operation on the identity.

- Example 1 illustrates the following general fact about elementary matrices.
- If an elementary row operation is performed on an *m*×*n* matrix *A*, the resulting matrix can be written as *EA*, where the *m*×*m* matrix *E* is created by performing the same row operation on *I_m*.
- Each elementary matrix *E* is invertible. The inverse of *E* is the elementary matrix of the same type that transforms *E* back into *I*.

- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .
- **Proof:** Suppose that *A* is invertible.
- Then, since the equation Ax = b has a solution for each b (Theorem 5), A has a pivot position in every row.
- Because A is square, the n pivot positions must be on the diagonal, which implies that the reduced echelon form of A is I_n . That is, $A \sim I_n$.

- Now suppose, conversely, that $A \sim I_n$.
- Then, since each step of the row reduction of A corresponds to left-multiplication by an elementary matrix, there exist elementary matrices E_1, \ldots, E_p such that

$$A \sim E_{1}A \sim E_{2}(E_{1}A) \sim \dots \sim E_{p}(E_{p-1}\dots E_{1}A) = I_{n}.$$

That is,
$$E_{p}\dots E_{1}A = I_{n} \qquad ----(1)$$

• Since the product $E_p \dots E_1$ of invertible matrices is invertible, (1) leads to

$$(E_{p}...E_{1})^{-1}(E_{p}...E_{1})A = (E_{p}...E_{1})^{-1}I_{n}$$

$$A = (E_p \dots E_1)^{-1} \cdot$$

- Thus *A* is invertible, as it is the inverse of an invertible matrix (Theorem 6). Also, $A^{-1} = \left[(E_p ... E_1)^{-1} \right]^{-1} = E_p ... E_1.$
- Then $A^{-1} = E_p \dots E_1 \cdot I_n$, which says that A^{-1} results from applying E_1, \dots, E_p successively to I_n .
- This is the same sequence in (1) that reduced A to I_n .
- Row reduce the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$. If A is row equivalent to I, then $\begin{bmatrix} A & I \end{bmatrix}$ is row equivalent to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$. Otherwise, A does not have an inverse.

• Example 2: Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$, if it exists.

Solution:

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix}$$

 Theorem 7 shows, since A ~ I, that A is invertible, and

$$A^{-1} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}.$$

• Now, check the final answer. $AA^{-1} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix} \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

ANOTHER VIEW OF MATRIX INVERSION

- It is not necessary to check that $A^{-1}A = I$ since A is invertible.
- Denote the columns of I_n by $\mathbf{e}_1, \dots, \mathbf{e}_n$.
- Then row reduction of $\begin{bmatrix} A & I \end{bmatrix}$ to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$ can be viewed as the simultaneous solution of the *n* systems

$$A\mathbf{x} = \mathbf{e}_1, A\mathbf{x} = \mathbf{e}_2, \dots, A\mathbf{x} = \mathbf{e}_n$$
 ----(2)
where the "augmented columns" of these systems
have all been placed next to A to form
 $A = \mathbf{e}_1 = \mathbf{e}_2 \cdots = \mathbf{e}_n = \begin{bmatrix} A & I \end{bmatrix}$.

🕏 2012 Pearson Education, Inc

ANOTHER VIEW OF MATRIX INVERSION

• The equation $AA^{-1} = I$ and the definition of matrix multiplication show that the columns of A^{-1} are precisely the solutions of the systems in (2).

2.3

CHARACTERIZATIONS OF INVERTIBLE MATRICES

David C. Lay

© 2012 Pearson Education, Inc.

- Theorem 8: Let A be a square n×n matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
 - a. *A* is an invertible matrix.
 - b. *A* is row equivalent to the $n \times n$ identity matrix.
 - c. A has n pivot positions.
 - d. The equation Ax = 0 has only the trivial solution.
 - e. The columns of *A* form a linearly independent

© 2012 Pearson Education, Inc.

- f. The equation Ax = b has at least one solution for each b in \mathbb{R}^n .
- g. The columns of A span \mathbb{R}^n .
- h. A^T is an invertible matrix.

- Theorem 8 could also be written as "The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for each \mathbf{b} in \mathbb{R}^n ."
- This statement implies (b) and hence implies that *A* is invertible.
- The following fact follows from Theorem 8. Let *A* and *B* be square matrices. If AB = I, then *A* and *B* are both invertible, with $B = A^{-1}$ and $A = B^{-1}$.
- The Invertible Matrix Theorem divides the set of all *n×n* matrices into two disjoint classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.

- Each statement in the theorem describes a property of every $n \times n$ invertible matrix.
- The *negation* of a statement in the theorem describes a property of every $n \times n$ singular matrix.
- For instance, an $n \times n$ singular matrix is *not* row equivalent to I_n , does *not* have *n* pivot position, and has linearly *dependent* columns.

• Example 1: Use the Invertible Matrix Theorem to decide if *A* is invertible:

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$$

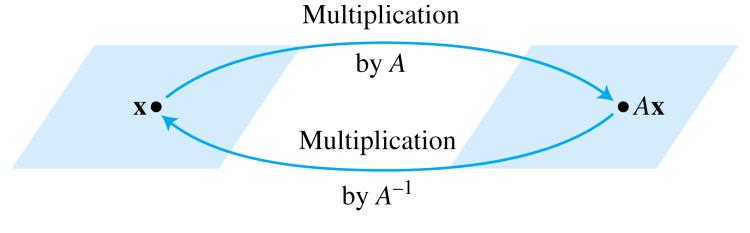
Solution:

$$A \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

- So *A* has three pivot positions and hence is invertible, by the Invertible Matrix Theorem, statement (c).
- The Invertible Matrix Theorem *applies only to square matrices*.
- For example, if the columns of a 4×3 matrix are linearly independent, we cannot use the Invertible Matrix Theorem to conclude anything about the existence or nonexistence of solutions of equation of the form Ax = b.

INVERTIBLE LINEAR TRANSFORMATIONS

- Matrix multiplication corresponds to composition of linear transformations.
- When a matrix A is invertible, the equation $A^{-1}Ax = x$ can be viewed as a statement about linear transformations. See the following figure.



A^{-1} transforms $A\mathbf{x}$ back to \mathbf{x} .