2

Matrix Algebra

2.2

THE INVERSE OF A MATRIX

Linear Algebra

David C. Lay
© 2012 Pearson Education, Inc.

MATRIX OPERATIONS

- An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C such that

$$
C A=I \text { and } A C=I
$$

where $I=I_{n}$, the $n \times n$ identity matrix.

- In this case, C is an inverse of A.
- In fact, C is uniquely determined by A, because if B were another inverse of A, then

$$
B=B I=B(A C)=(B A) C=I C=C
$$

- This unique inverse is denoted by A^{-1}, so that

$$
A^{-1} A=I \text { and } A A^{-1}=I .
$$

MATRIX OPERATIONS

- Theorem 5: If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^{n}, the equation $A \mathrm{x}=\mathrm{b}$ has the unique solution $\mathrm{x}=A^{-1} \mathrm{~b}$.
- Proof: Take any b in \mathbb{R}^{n}.
- A solution exists because if $A^{-1} \mathrm{~b}$ is substituted for \mathbf{x}, then $A \mathrm{x}=A\left(A^{-1} \mathrm{~b}\right)=\left(A A^{-1}\right) \mathrm{b}=\mathrm{l} \mathrm{b}=\mathrm{b}$.
- So $A^{-1} \mathrm{~b}$ is a solution.
- To prove that the solution is unique, show that if \mathbf{u} is any solution, then \mathbf{u} must be $A^{-1} \mathrm{~b}$.
- If $A \mathrm{u}=\mathrm{b}$, we can multiply both sides by A^{-1} and obtain $A^{-1} A \mathrm{u}=A^{-1} \mathrm{~b}, I \mathrm{u}=A^{-1} \mathrm{~b}$, and $\mathrm{u}=A^{-1} \mathrm{~b}$.

MATRIX OPERATIONS

- Theorem 6:
a. If A is an invertible matrix, then A^{-1} is invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

b. If A and B are $n \times n$ invertible matrices, then so is $A B$, and the inverse of $A B$ is the product of the inverses of A and B in the reverse order. That is, $\quad(A B)^{-1}=B^{-1} A^{-1}$
c. If A is an invertible matrix, then so is A^{T}, and the inverse of A^{T} is the transpose of A^{-1}. That is,

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

MATRIX OPERATIONS

- Proof: To verify statement (a), find a matrix C such that

$$
A^{-1} C=I \text { and } C A^{-1}=I
$$

- These equations are satisfied with A in place of C. Hence A^{-1} is invertible, and A is its inverse.
- Next, to prove statement (b), compute:

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I
$$

- A similar calculation shows that $\left(B^{-1} A^{-1}\right)(A B)=I$.
- For statement (c), use Theorem 3(d), read from right to left, $\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I$.
- Similarly, $A^{T}\left(A^{-1}\right)^{T}=I^{T}=I$.

ELEMENTARY MATRICES

- Hence A^{T} is invertible, and its inverse is $\left(A^{-1}\right) T$.
- The generalization of Theorem 6(b) is as follows:

The product of $n \times n$ invertible matrices is invertible, and the inverse is the product of their inverses in the reverse order.

- An invertible matrix A is row equivalent to an identity matrix, and we can find A^{-1} by watching the row reduction of A to I.
- An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.

ELEMENTARY MATRICES

- Example 1: Let $E_{1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$,

$$
E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right], A=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

Compute $E_{1} A, E_{2} A$, and $E_{3} A$, and describe how these products can be obtained by elementary row operations on A.

ELEMENTARY MATRICES

- Solution: Verify that
$E_{1} A=\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ g-4 a & h-4 b & i-4 c\end{array}\right], E_{2} A=\left[\begin{array}{ccc}d & e & f \\ a & b & c \\ g & h & i\end{array}\right]$,
$E_{3} A=\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ 5 g & 5 h & 5 i\end{array}\right]$.
- Addition of -4 times row 1 of A to row 3 produces $E_{1} A$.

ELEMENTARY MATRICES

- An interchange of rows 1 and 2 of A produces $E_{2} A$, and multiplication of row 3 of A by 5 produces $E_{3} A$.
- Left-multiplication by E_{1} in Example 1 has the same effect on any $3 \times n$ matrix.
- Since $E_{1} \cdot I=E_{1}$, we see that E_{1} itself is produced by this same row operation on the identity.

ELEMENTARY MATRICES

- Example 1 illustrates the following general fact about elementary matrices.
- If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as $E A$, where the $m \times m$ matrix E is created by performing the same row operation on I_{m}.
- Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I.

ELEMENTARY MATRICES

- Theorem 7: An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}, and in this case, any sequence of elementary row operations that reduces A to I_{n} also transforms I_{n} into A^{-1}.
- Proof: Suppose that A is invertible.
- Then, since the equation $A \mathrm{x}=\mathrm{b}$ has a solution for each \mathbf{b} (Theorem 5), A has a pivot position in every row.
- Because A is square, the n pivot positions must be on the diagonal, which implies that the reduced echelon form of A is I_{n}. That is, $A \sim I_{n}$.

ELEMENTARY MATRICES

- Now suppose, conversely, that $A \sim I_{n}$.
- Then, since each step of the row reduction of A corresponds to left-multiplication by an elementary matrix, there exist elementary matrices E_{1}, \ldots, E_{p} such that

$$
A \sim E_{1} A \sim E_{2}\left(E_{1} A\right) \sim \ldots \sim E_{p}\left(E_{p-1} \ldots E_{1} A\right)=I_{n} .
$$

- That is,

$$
\begin{equation*}
E_{p} \ldots E_{1} A=I_{n} \tag{1}
\end{equation*}
$$

- Since the product $E_{p} \ldots E_{1}$ of invertible matrices is invertible, (1) leads to

$$
\begin{aligned}
\left(E_{p} \ldots E_{1}\right)^{-1}\left(E_{p} \ldots E_{1}\right) A & =\left(E_{p} \ldots E_{1}\right)^{-1} I_{n} \\
A & =\left(E_{p} \ldots E_{1}\right)^{-1} .
\end{aligned}
$$

ALGORITHM FOR FINDING A^{-1}

- Thus A is invertible, as it is the inverse of an invertible matrix (Theorem 6). Also,

$$
A^{-1}=\left[\left(E_{p} \ldots E_{1}\right)^{-1}\right]^{-1}=E_{p} \ldots E_{1} .
$$

- Then $A^{-1}=E_{p} \ldots E_{1} \cdot I_{n}$, which says that A^{-1} results from applying E_{1}, \ldots, E_{p} successively to I_{n}.
- This is the same sequence in (1) that reduced A to I_{n}.
- Row reduce the augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$. If A is row equivalent to I, then $\left[\begin{array}{ll}A & I\end{array}\right]$ is row equivalent to $\left\lceil\begin{array}{ll}I & A^{-1}\end{array}\right]$. Otherwise, A does not have an inverse.

ALGORITHM FOR FINDING A^{-1}

- Example 2: Find the inverse of the matrix

$$
A=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right], \text { if it exists. }
$$

- Solution:
$\left[\begin{array}{ll}A & I\end{array}\right]=\left[\begin{array}{rrrrrr}0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{rrrrrr}1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1\end{array}\right]$

ALGORITHM FOR FINDING A^{-1}

$$
\begin{aligned}
& \sim\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & -3 & -4 & 0 & -4 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 3 & -4 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 / 2 & -2 & 1 / 2
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 0 & 0 & -9 / 2 & 7 & -3 / 2 \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 1 & 3 / 2 & -2 & 1 / 2
\end{array}\right] \\
& \\
& \sim
\end{aligned}
$$

ALGORITHM FOR FINDING A^{-1}

- Theorem 7 shows, since $A \sim I$, that A is invertible, and

$$
A^{-1}=\left[\begin{array}{ccc}
-9 / 2 & 7 & -3 / 2 \\
-2 & 4 & -1 \\
3 / 2 & -2 & 1 / 2
\end{array}\right]
$$

- Now, check the final answer.

$$
A A^{-1}=\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{array}\right]\left[\begin{array}{ccc}
-9 / 2 & 7 & -3 / 2 \\
-2 & 4 & -1 \\
3 / 2 & -2 & 1 / 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

ANOTHER VIEW OF MATRIX INVERSION

- It is not necessary to check that $A^{-1} A=I$ since A is invertible.
- Denote the columns of I_{n} by $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$.
- Then row reduction of $\left[\begin{array}{ll}A & I\end{array}\right]$ to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$ can be viewed as the simultaneous solution of the n systems

$$
\begin{equation*}
A \mathrm{x}=\mathrm{e}_{1}, A \mathrm{x}=\mathrm{e}_{2}, \ldots, A \mathrm{x}=\mathrm{e}_{n} \tag{2}
\end{equation*}
$$

where the "augmented columns" of these systems have all been placed next to A to form
$\left.\begin{array}{ccccc}A & \mathrm{e}_{1} & \mathrm{e}_{2} & \cdots & \mathrm{e}_{n}\end{array}\right]=\left[\begin{array}{ll}A & I\end{array}\right]$.

ANOTHER VIEW OF MATRIX INVERSION

- The equation $A A^{-1}=I$ and the definition of matrix multiplication show that the columns of A^{-1} are precisely the solutions of the systems in (2).

2

Matrix Algebra

2.3

CHARACTERIZATIONS OF INVERTIBLE MATRICES

Linear Algebra

David C. Lay
© 2012 Pearson Education, Inc.

THE INVERTIBLE MATRIX THEOREM

- Theorem 8: Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.
a. A is an invertible matrix.
b. A is row equivalent to the $n \times n$ identity matrix.
c. A has n pivot positions.
d. The equation $A \mathrm{x}=0$ has only the trivial solution.
e. The columns of A form a linearly independent

THE INVERTIBLE MATRIX THEOREM

f. The equation $A \mathrm{x}=\mathrm{b}$ has at least one solution for each b in \mathbb{R}^{n}.
g. The columns of A span \mathbb{R}^{n}.
h. A^{T} is an invertible matrix.

THE INVERTIBLE MATRIX THEOREM

- Theorem 8 could also be written as "The equation $A \mathrm{x}=\mathrm{b}$ has a unique solution for each \mathbf{b} in \mathbb{R}^{n}."
- This statement implies (b) and hence implies that A is invertible.
- The following fact follows from Theorem 8. Let A and B be square matrices. If $A B=I$, then A and B are both invertible, with $B=A^{-1}$ and $A=B^{-1}$.
- The Invertible Matrix Theorem divides the set of all $n \times n$ matrices into two disjoint classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.

THE INVERTIBLE MATRIX THEOREM

- Each statement in the theorem describes a property of every $n \times n$ invertible matrix.
- The negation of a statement in the theorem describes a property of every $n \times n$ singular matrix.
- For instance, an $n \times n$ singular matrix is not row equivalent to I_{n}, does not have n pivot position, and has linearly dependent columns.

THE INVERTIBLE MATRIX THEOREM

- Example 1: Use the Invertible Matrix Theorem to decide if A is invertible:

$$
A=\left[\begin{array}{rrr}
1 & 0 & -2 \\
3 & 1 & -2 \\
-5 & -1 & 9
\end{array}\right]
$$

- Solution:

$$
A \sim\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 4 \\
0 & -1 & -1
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 4 \\
0 & 0 & 3
\end{array}\right]
$$

THE INVERTIBLE MATRIX THEOREM

- So A has three pivot positions and hence is invertible, by the Invertible Matrix Theorem, statement (c).
- The Invertible Matrix Theorem applies only to square matrices.
- For example, if the columns of a 4×3 matrix are linearly independent, we cannot use the Invertible Matrix Theorem to conclude anything about the existence or nonexistence of solutions of equation of the form $A \mathrm{x}=\mathrm{b}$.

INVERTIBLE LINEAR TRANSFORMATIONS

- Matrix multiplication corresponds to composition of linear transformations.
- When a matrix A is invertible, the equation $A^{-1} A \mathrm{x}=\mathrm{x}$ can be viewed as a statement about linear transformations. See the following figure.

Multiplication

A^{-1} transforms $A \mathbf{x}$ back to \mathbf{x}.

