AMS 10/10A, Homework 5

Problems for Section 2.2 and 2.3
Problem 1. Find the inverse of each of the following matrices, if is exist.

$$
A=\left[\begin{array}{rr}
-2 & 3 \\
-3 & -1
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 1 & 4 \\
-1 & 1 & 2 \\
2 & 0 & 4
\end{array}\right], \quad C=\left[\begin{array}{rrr}
-5 & 1 & -4 \\
0 & 1 & 1 \\
2 & 0 & 2
\end{array}\right]
$$

Problem 2. Find the value(s) of k for which the matrix $\left[\begin{array}{cc}k^{2} & 2 k \\ 8 & k\end{array}\right]$ is not invertible.

Problem 3. If A, B, and C are $n \times n$ invertible matrices, does the equation

$$
C^{-1}(A+X) B^{-1}=I_{n}
$$

have a solution for X ? If so, find it.

Problem 4. Let D be a $n \times n$ diagonal matrix, i.e.,

$$
D=\left[\begin{array}{ccccc}
d_{11} & 0 & \cdots & 0 & 0 \\
0 & d_{22} & \cdots & 0 & 0 \\
0 & 0 & \ddots & d_{n-1, n-1} & 0 \\
0 & 0 & \cdots & 0 & d_{n n}
\end{array}\right]
$$

with $d_{i i} \neq 0$, for all $i=1,2, \cdots, n$. Find the inverse of D.

Problem 5. Let

$$
A=\left[\begin{array}{rrr}
2 & 1 & 0 \\
-2 & -1 & 2 \\
4 & 1 & 0
\end{array}\right]
$$

Find the second column of A^{-1} (you don't need to compute other columns).

Problem 6. Let A be a $n \times n$ invertible matrix. Prove that the columns A^{T} are linearly independent.

Problem 7. Let A and B be $n \times n$ matrices such that $A B$ is invertible. Prove that both A and B are invertible.

Problem 8. Let A be a $n \times n$ matrix whose columns are linearly independent. Prove that the columns of A^{2} are linearly independent.

Problem 9. A square matrix A is called symmetric if $A^{T}=A$. Prove that if a symmetric matrix is invertible, then its inverse is also symmetric.

Problem 10. If A, B and $A+B$ are all $n \times n$ invertible matrices. Prove that $A^{-1}+B^{-1}$ is invertible and the inverse is $A(A+B)^{-1} B$.

Problem 11. Mark each statement below True or False
11.1. If A and B are invertible, then $A+B$ is invertible.
11.2. If A is $n \times n$ and not invertible, then the linear system $A x=b$ is inconsistent.
11.3. If $(A-I)$ is invertible, then the linear system $A x=x$ has a nonzero solution for x.
11.4. If a square matrix has nonzero entries on the diagonal, then A is invertible.
11.5. If A is $n \times n$, and the columns of A are linearly independent, then the columns of A span \mathbb{R}^{n}.

Problem 12. Mark each statement below True or False
12.1. Let A be a square matrix. If the equation $A x=0$ has a nontrivial solution, then A is not invertible.
12.2. A square matrix with two identical rows cannot be invertible.
12.3. A square matrix with two identical columns cannot be invertible.
12.4. A product of invertible matrices is invertible.
12.5. If A and B are $n \times n$ invertible matrices, then $A^{-1} B^{-1}$ is the inverse of $A B$.

