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LINEAR INDEPENDENCE 

§  Definition: An indexed set of vectors {v1, …, vp} in  
         is said to be linearly independent if the vector 

equation 
 

 has only the trivial solution. The set {v1, …, vp} is 
said to be linearly dependent if there exist weights 
c1, …, cp, not all zero, such that 

                                                                            ----(1) 

n

1 1 2 2v v ... v 0p px x x+ + + =

1 1 2 2v v ... v 0p pc c c+ + + =
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LINEAR INDEPENDENCE 

§  Equation (1) is called a linear dependence relation 
among v1, …, vp when the weights are not all zero. 

§  An indexed set is linearly dependent if and only if it 
is not linearly independent. 

§  Example 1: Let                ,                , and                . 1

1
v 2

3

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

2

4
v 5

6

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

3

2
v 1

0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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a.  Determine if the set {v1, v2, v3} is linearly 
independent. 

b.  If possible, find a linear dependence relation 
among v1, v2, and v3. 

 
§  Solution: We must determine if there is a nontrivial 

solution of the following equation. 

1 2 3

1 4 2 0
2 5 1 0
3 6 0 0

x x x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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LINEAR INDEPENDENCE 
§  Row operations on the associated augmented matrix 

show that  

                                                                              . 

§  x1 and x2 are basic variables, and x3 is free.  
§  Each nonzero value of x3 determines a nontrivial 

solution of (1). 
§  Hence, v1, v2, v3 are linearly dependent. 

1 4 2 0
2 5 1 0
3 6 0 0

!

"

#
#
#

$

%

&
&
&


1 4 2 0
0 −3 −3 0
0 0 0 0

!

"

#
#
#

$

%

&
&
&
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LINEAR INDEPENDENCE 
b.  To find a linear dependence relation among v1, 

v2, and v3, row reduce the augmented matrix 
and write the new system: 

§  Thus,             ,             , and x3 is free. 
§  Choose any nonzero value for x3—say,          .  
§  Then             and              . 

1 0 2 0
0 1 1 0
0 0 0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 3

2 3

2 0
0

0 0

x x
x x
− =

+ =

=

1 32x x= 2 3x x= −

3 5x =

1 10x = 2 5x = −
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LINEAR INDEPENDENCE 

§  Substitute these values into equation (1) and obtain 
the equation below. 

§  This is one (out of infinitely many) possible linear 
dependence relations among v1, v2, and v3. 

1 2 310v 5v 5v 0− + =
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LINEAR INDEPENDENCE OF MATRIX COLUMNS 
§  Suppose that we begin with a matrix                             
    instead of a set of vectors. 
 
§  The matrix equation              can be written as 
                                                                      . 

§  Each linear dependence relation among the columns of 
A corresponds to a nontrivial solution of              .  

§  Thus, the columns of matrix A are linearly independent if 
and only if the equation               has only the trivial 
solution.  

A = a1  a n
!
"#

$
%&

x 0A =

1 1 2 2a a ... a 0n nx x x+ + + =

x 0A =

x 0A =
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SETS OF ONE OR TWO VECTORS 

§  A set containing only one vector – say, v – is linearly 
independent if and only if v is not the zero vector. 

§  This is because the vector equation              has only 
the trivial solution when          . 

§  The zero vector is linearly dependent because            
has many nontrivial solutions. 

1v 0x =
v 0≠

10 0x =
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SETS OF ONE OR TWO VECTORS 

§  A set of two vectors {v1, v2} is linearly dependent if 
at least one of the vectors is a multiple of the other. 

§  The set is linearly independent if and only if neither 
of the vectors is a multiple of the other. 
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SETS OF TWO OR MORE VECTORS 

§  Theorem 7: Characterization of Linearly Dependent 
Sets 

§  An indexed set                           of two or more 
vectors is linearly dependent if and only if at least one 
of the vectors in S is a linear combination of the 
others.  

§  In fact, if S is linearly dependent and           , then 
some vj (with           ) is a linear combination of the 
preceding vectors, v1, …,       .  

1{v ,...,v }pS =

1v 0≠
1j >

1v j−
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SETS OF TWO OR MORE VECTORS 

§  Proof: If some vj in S equals a linear combination of 
the other vectors, then vj can be subtracted from both 
sides of the equation, producing a linear dependence 
relation with a nonzero weight        on vj. 

§  [For instance, if                             , then 
                                                                         .] 
§  Thus S is linearly dependent. 
§  Conversely, suppose S is linearly dependent. 
§  If v1 is zero, then it is a (trivial) linear combination of 

the other vectors in S. 
 

( 1)−

1 2 2 3 3v v vc c= +
0 = (−1)v1 + c2v2 + c3v3 +0v4 + ...+0v p
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SETS OF TWO OR MORE VECTORS 

§  Otherwise,           , and there exist weights c1, …, cp, not 
all zero, such that 

                                                                     . 

§  Let j be the largest subscript for which           . 

§  If          , then               , which is impossible because 
               . 

 

1v 0≠

1 1 2 2v v ... v 0p pc c c+ + + =

0jc ≠

1j = 1 1v 0c =

1v 0≠
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SETS OF TWO OR MORE VECTORS 

§  So         , and 1j >

1 1 1v ... v 0v 0v ... 0v 0j j j j pc c ++ + + + + + =

1 1 1 1v v ... vj j j jc c c − −= − − −

11
1 1v v ... v .j

j j
j j

cc
c c

−

−

⎛ ⎞ ⎛ ⎞
= − + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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SETS OF TWO OR MORE VECTORS 
§  Theorem 7 does not say that every vector in a linearly 

dependent set is a linear combination of the preceding 
vectors. 

§  A vector in a linearly dependent set may fail to be a 
linear combination of the other vectors. 

§  Example 2: Let                and              . Describe the  
 

  
 set spanned by u and v, and explain why a vector w is 
in Span {u, v} if and only if {u, v, w} is linearly 
dependent.  

3
u 1

0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1
v 6

0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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SETS OF TWO OR MORE VECTORS 
§  Solution: The vectors u and v are linearly 

independent because neither vector is a multiple of 
the other, and so they span a plane in      . 

§  Span {u, v} is the x1x2-plane (with          ). 
§  If w is a linear combination of u and v, then {u, v, w} 

is linearly dependent, by Theorem 7. 
§  Conversely, suppose that {u, v, w} is linearly 

dependent. 
§  By theorem 7, some vector in {u, v, w} is a linear 

combination of the preceding vectors (since           ). 
§  That vector must be w, since v is not a multiple of u.  

3

3 0x =

u 0≠
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SETS OF TWO OR MORE VECTORS 
§  So w is in Span {u, v}. See the figures given below. 

§  Example 2 generalizes to any set {u, v, w} in      with 
u and v linearly independent. 

§  The set {u, v, w} will be linearly dependent if and 
only if w is in the plane spanned by u and v. 

3
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SETS OF TWO OR MORE VECTORS 

§  Theorem 8: If a set contains more vectors than there 
are entries in each vector, then the set is linearly 
dependent. That is, any set {v1, …, vp} in       is 
linearly dependent if           . 

§  Proof: Let                                  .   
§  Then A is           , and the equation             

corresponds to a system of n equations in p 
unknowns. 

§  If           , there are more variables than equations, so 
there must be a free variable. 

n

p n>
A = v1  v p

!
"#

$
%&

n p× x 0A =

p n>
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SETS OF TWO OR MORE VECTORS 
§  Hence              has a nontrivial solution, and the 

columns of A are linearly dependent. 
§  See the figure below for a matrix version of this 

theorem. 

 

§  Theorem 8 says nothing about the case in which the 
number of vectors in the set does not exceed the 
number of entries in each vector.  

x 0A =
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SETS OF TWO OR MORE VECTORS 

§  Theorem 9: If a set                            in       contains 
the zero vector, then the set is linearly dependent. 

§  Proof: By renumbering the vectors, we may suppose  
            .  

§  Then the equation                                           shows 
that S in linearly dependent. 

 

1{v ,...,v }pS = n

1v 0=

1 21v 0v ... 0v 0p+ + + =
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Matrix Algebra 

MATRIX OPERATIONS 
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MATRIX OPERATIONS 
§  If A is an           matrix—that is, a matrix with m rows 

and n columns—then the scalar entry in the ith row 
and jth column of A is denoted by aij and is called the 
(i, j)-entry of A. See the figure below. 

§  Each column of A is a list of m real numbers, which 
identifies a vector in      .  

 

m n×

m
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MATRIX OPERATIONS 

§  The columns are denoted by a1, …, an, and the matrix 
A is written as 

                                                                     . 
§  The number aij is the ith entry (from the top) of the jth 

column vector aj.  
§  The diagonal entries in an           matrix                 are  

 a11, a22, a33, …, and they form the main diagonal of A.  
§  A diagonal matrix is a sequence           matrix whose 

nondiagonal entries are zero. 
§  An example is the          identity matrix, In. 

A = a1 a2  a
n

!
"#

$
%&

m n× ijA a⎡ ⎤= ⎣ ⎦

n m×

n n×
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SUMS AND SCALAR MULTIPLES 
§  An           matrix whose entries are all zero is a zero 

matrix and is written as 0. 

§  The two matrices are equal if they have the same size 
(i.e., the same number of rows and the same number 
of columns) and if their corresponding columns are 
equal, which amounts to saying that their 
corresponding entries are equal. 

§  If A and B are           matrices, then the sum            is 
the            matrix whose columns are the sums of the 
corresponding columns in A and B. 

m n×

m n× A B+
m n×
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SUMS AND SCALAR MULTIPLES 
§  Since vector addition of the columns is done 

entrywise, each entry in            is the sum of the 
corresponding entries in A and B. 

§  The sum             is defined only when A and B are the 
same size. 

§  Example 1: Let                                 

                             
 and                        . Find             and           . 

   

A B+

A B+

4 0 5 1 1 1
, ,

1 3 2 3 5 7
A B⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

2 3
0 1

C
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A B+ A C+
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SUMS AND SCALAR MULTIPLES 

§  Solution:                                    but             is not  

 defined because A and C have different sizes. 

§  If r is a scalar and A is a matrix, then the scalar 
multiple rA is the matrix whose columns are r 
times the corresponding columns in A. 

 
§  Theorem 1: Let A, B, and C be matrices of the 

same size, and let r and s be scalars. 
a.                          

5 1 6
2 8 9

A B ⎡ ⎤
+ = ⎢ ⎥

⎣ ⎦
A C+

A B B A+ = +
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SUMS AND SCALAR MULTIPLES 

b.                                                                    
c.                                                                                               
d.                                                                                        
e.                                                                                         
f.                                                                                          

§  Each quantity in Theorem 1 is verified by showing 
that the matrix on the left side has the same size as 
the matrix on the right and that corresponding 
columns are equal. 

  

( ) ( )A B C A B C+ + = + +
0A A+ =

( )r A B rA rB+ = +
( )r s A rA sA+ = +
( ) ( )r sA rs A=
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MATRIX MULTIPLICATION 
§  When a matrix B multiplies a vector x, it transforms x 

into the vector Bx. 
§  If this vector is then multiplied in turn by a matrix A, 

the resulting vector is A (Bx). See the Fig. below. 

§  Thus A (Bx) is produced from x by a composition of 
mappings—the linear transformations. 
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MATRIX MULTIPLICATION 
§  Our goal is to represent this composite mapping as 

multiplication by a single matrix, denoted by AB, so 
that                           . See the figure below.  

§  If A is          , B is          , and x is in      , denote the 
columns of B by b1, …, bp and the entries in x by   
x1, …, xp. 

( x)=(AB)xA B

m n× n p×  p
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MATRIX MULTIPLICATION 
§  Then 

§  By the linearity of multiplication by A,  

§  The vector A (Bx) is a linear combination of the 
vectors Ab1, …, Abp, using the entries in x as weights. 

§  In matrix notation, this linear combination is written 
as 

                                                                                  . 

1 1x b ... bp pB x x= + +

1 1

1 1

( x) ( b ) ... ( b )
b ... b

p p

p p

A B A x A x
x A x A

= + +

= + +

A(Bx) = Ab
1
Ab

2
 Ab p

!
"#

$
%&x
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MATRIX MULTIPLICATION 
§  Thus multiplication by                                    

 transforms x into A (Bx). 
 
§  Definition: If A is an           matrix, and if B is an         

matrix with columns b1, …, bp, then the product AB is 
the           matrix whose columns are Ab1, …, Abp.  

§  That is, 

§  Multiplication of matrices corresponds to composition 
of linear transformations.  

Ab1 Ab2  Ab p
!
"#

$
%&

m n× n p×

m p×

AB = A b1 b2  b
p

!
"#

$
%&= Ab1 Ab2  Ab p

!
"#

$
%&
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MATRIX MULTIPLICATION 

§  Example 2: Compute AB, where                         and 

                                  . 
 

§  Solution: Write                                , and compute:  

 
 

 
 

2 3
1 5

A ⎡ ⎤
= ⎢ ⎥−⎣ ⎦4 3 9

1 2 3
B ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

[ ]1 2 3b b bB =
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MATRIX MULTIPLICATION 

                               ,                                   , 
 
 
 
 
§  Then   

1

2 3 4
b

1 5 1

11
1

A ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

2

2 3 3
b

1 5 2

0
13

A ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

3

2 3 6
b

1 5 3

21
9

A ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

[ ]1 2 3

11 0 21
b b b

1 13 9
AB A ⎡ ⎤

= = ⎢ ⎥− −⎣ ⎦

Ab1 Ab2 Ab3 
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MATRIX MULTIPLICATION 
§  Each column of AB is a linear combination of the 

columns of A using weights from the corresponding 
column of B. 

§  Row—column rule for computing AB 
§  If a product AB is defined, then the entry in row i and 

column j of AB is the sum of the products of 
corresponding entries from row i of A and column j of B.  

§  If (AB)ij denotes the (i, j)-entry in AB, and if A is an  
          matrix, then 

                                                                    .   
  

m n×

1 1( ) ...ij i j in njAB a b a b= + +
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PROPERTIES OF MATRIX MULTIPLICATION 
§  Theorem 2: Let A be an           matrix, and let B and 

C have sizes for which the indicated sums and 
products are defined. 

a.                                (associative law of 
multiplication) 

b.                                        (left distributive law) 
c.                                      (right distributive law) 
d.                                            for any scalar r  
e.                           (identity for matrix     

multiplication) 
 
 

m n×

( ) ( )A BC AB C=

( )A B C AB AC+ = +
( )B C A BA CA+ = +
( ) ( ) ( )r AB rA B A rB= =

m nI A A AI= =
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PROPERTIES OF MATRIX MULTIPLICATION 
§  Proof: Property (a) follows from the fact that matrix 

multiplication corresponds to composition of linear 
transformations (which are functions), and it is 
known that the composition of functions is 
associative. 

§  Let 

§  By the definition of matrix multiplication,   

C = c1  c
p

!
"#

$
%&

BC = Bc1  Bc p
!
"#

$
%&

A(BC) = A(Bc1)  A(Bc p )
!
"#

$
%&
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PROPERTIES OF MATRIX MULTIPLICATION 
§  The definition of AB makes                              for all 

x, so   

§  The left-to-right order in products is critical because 
AB and BA are usually not the same.  

§  Because the columns of AB are linear combinations 
of the columns of A, whereas the columns of BA are 
constructed from the columns of B. 

§  The position of the factors in the product AB is 
emphasized by saying that A is right-multiplied by B 
or that B is left-multiplied by A. 

( x) ( )xA B AB=

A(BC) = (AB)c1  (AB)c p
!
"#

$
%&= (AB)C
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PROPERTIES OF MATRIX MULTIPLICATION 

§  If                  , we say that A and B commute with 
one another. 

§  Warnings: 
1.  In general,                  .  
2.  The cancellation laws do not hold for matrix 

multiplication. That is, if                   , then it is 
not true in general that            . 

3.  If a product AB is the zero matrix, you cannot 
conclude in general that either           or           . 

AB BA=

AB BA≠

AB AC=
B C=

0A = 0B =
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POWERS OF A MATRIX 

§  If A is an           matrix and if k is a positive integer, 
then Ak denotes the product of k copies of A: 

§  If A is nonzero and if x is in       , then Akx is the result 
of left-multiplying x by A repeatedly k times. 

§  If           , then A0x should be x itself. 

§  Thus A0 is interpreted as the identity matrix. 
 

n n×

Ak = AA
k


n

0k =
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THE TRANSPOSE OF A MATRIX 
§  Given an            matrix A, the transpose of A is the  

            matrix, denoted by AT, whose columns are 
formed from the corresponding rows of A. 

 
Theorem 3: Let A and B denote matrices whose sizes 

are appropriate for the following sums and 
products. 

a.                         
b.                                           
c.  For any scalar r, 
d.     

m n×
n m×

( )T TA A=
( )T T TA B A B+ = +

( )T TrA rA=
( )T T TAB B A=
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THE TRANSPOSE OF A MATRIX 

§  The transpose of a product of matrices equals the 
product of their transposes in the reverse order. 


