1

Linear Equations in Linear Algebra

1.7

LINEAR INDEPENDENCE

Linear Algebra

David C. Lay
(c) 2012 Pearson Education, Inc.

LINEAR INDEPENDENCE

- Definition: An indexed set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathrm{v}_{1}+x_{2} \mathrm{v}_{2}+\ldots+x_{p} \mathrm{v}_{p}=0
$$

has only the trivial solution. The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exist weights c_{1}, \ldots, c_{p}, not all zero, such that

$$
\begin{equation*}
c_{1} \mathrm{v}_{1}+c_{2} \mathrm{v}_{2}+\ldots+c_{p} \mathrm{v}_{p}=0 \tag{1}
\end{equation*}
$$

LINEAR INDEPENDENCE

- Equation (1) is called a linear dependence relation among $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ when the weights are not all zero.
- An indexed set is linearly dependent if and only if it is not linearly independent.
- Example 1: Let $\mathrm{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$, and $\mathrm{v}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$.
a. Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.
b. If possible, find a linear dependence relation among $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.
- Solution: We must determine if there is a nontrivial solution of the following equation.

$$
x_{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

LINEAR INDEPENDENCE

- Row operations on the associated augmented matrix show that

$$
\left[\begin{array}{llll}
1 & 4 & 2 & 0 \\
2 & 5 & 1 & 0 \\
3 & 6 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 4 & 2 & 0 \\
0 & -3 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- x_{1} and x_{2} are basic variables, and x_{3} is free.
- Each nonzero value of x_{3} determines a nontrivial solution of (1).
- Hence, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent.

LINEAR INDEPENDENCE

b. To find a linear dependence relation among \mathbf{v}_{1}, \mathbf{v}_{2}, and \mathbf{v}_{3}, row reduce the augmented matrix and write the new system:

$$
\left[\begin{array}{rrrr}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
x_{1}-2 x_{3} & =0 \\
x_{2}+x_{3} & =0 \\
0 & =0
\end{aligned}
$$

- Thus, $x_{1}=2 x_{3}, x_{2}=-x_{3}$, and x_{3} is free.
- Choose any nonzero value for x_{3}-say, $x_{3}=5$.
- Then $x_{1}=10$ and $x_{2}=-5$.

LINEAR INDEPENDENCE

- Substitute these values into equation (1) and obtain the equation below.

$$
10 v_{1}-5 v_{2}+5 v_{3}=0
$$

- This is one (out of infinitely many) possible linear dependence relations among $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.

LINEAR INDEPENDENCE OF MATRIX COLUMNS

- Suppose that we begin with a matrix $A=\left[\begin{array}{lll}\mathrm{a}_{1} & \cdots & \mathrm{a}_{n}\end{array}\right]$ instead of a set of vectors.
- The matrix equation $A \mathrm{x}=0$ can be written as

$$
x_{1} \mathrm{a}_{1}+x_{2} \mathrm{a}_{2}+\ldots+x_{n} \mathrm{a}_{n}=0
$$

- Each linear dependence relation among the columns of A corresponds to a nontrivial solution of $A \mathrm{x}=0$.
- Thus, the columns of matrix A are linearly independent if and only if the equation $A \mathrm{x}=0$ has only the trivial solution.

SETS OF ONE OR TWO VECTORS

- A set containing only one vector - say, \mathbf{v} - is linearly independent if and only if \mathbf{v} is not the zero vector.
- This is because the vector equation $x_{1} \mathrm{~V}=0$ has only the trivial solution when $\mathrm{v} \neq 0$.
- The zero vector is linearly dependent because $x_{1} 0=0$ has many nontrivial solutions.

SETS OF ONE OR TWO VECTORS

- A set of two vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent if at least one of the vectors is a multiple of the other.
- The set is linearly independent if and only if neither of the vectors is a multiple of the other.

SETS OF TWO OR MORE VECTORS

- Theorem 7: Characterization of Linearly Dependent Sets
- An indexed set $S=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, if S is linearly dependent and $\mathrm{v}_{1} \neq 0$, then some \mathbf{v}_{j} (with $j>1$) is a linear combination of the preceding vectors, $\mathbf{v}_{1}, \ldots, \mathrm{~V}_{j-1}$.

SETS OF TWO OR MORE VECTORS

- Proof: If some \mathbf{v}_{j} in S equals a linear combination of the other vectors, then \mathbf{v}_{j} can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight (-1) on \mathbf{v}_{j}.
- [For instance, if $\mathrm{v}_{1}=c_{2} \mathrm{v}_{2}+c_{3} \mathrm{v}_{3}$, then
$\left.0=(-1) \mathrm{v}_{1}+c_{2} \mathrm{v}_{2}+c_{3} \mathrm{v}_{3}+0 \mathrm{v}_{4}+\ldots+0 \mathrm{v}_{p}.\right]$
- Thus S is linearly dependent.
- Conversely, suppose S is linearly dependent.
- If \mathbf{v}_{1} is zero, then it is a (trivial) linear combination of the other vectors in S.

SETS OF TWO OR MORE VECTORS

- Otherwise, $\mathrm{v}_{1} \neq 0$, and there exist weights c_{1}, \ldots, c_{p}, not all zero, such that

$$
c_{1} \mathrm{v}_{1}+c_{2} \mathrm{v}_{2}+\ldots+c_{p} \mathrm{v}_{p}=0
$$

- Let j be the largest subscript for which $c_{j} \neq 0$.
- If $j=1$, then $c_{1} \mathrm{~V}_{1}=0$, which is impossible because $\mathrm{v}_{1} \neq 0$.

SETS OF TWO OR MORE VECTORS

- So $j>1$, and
$c_{1} \mathrm{v}_{1}+\ldots+c_{j} \mathrm{v}_{j}+0 \mathrm{v}_{j}+0 \mathrm{v}_{j+1}+\ldots+0 \mathrm{v}_{p}=0$

$$
c_{j} \mathrm{v}_{j}=-c_{1} \mathrm{v}_{1}-\ldots-c_{j-1} \mathrm{v}_{j-1}
$$

$$
\mathrm{v}_{j}=\left(-\frac{c_{1}}{c_{j}}\right) \mathrm{v}_{1}+\ldots+\left(-\frac{c_{j-1}}{c_{j}}\right) \mathrm{v}_{j-1} .
$$

SETS OF TWO OR MORE VECTORS

- Theorem 7 does not say that every vector in a linearly dependent set is a linear combination of the preceding vectors.
- A vector in a linearly dependent set may fail to be a linear combination of the other vectors.
- Example 2: Let $u=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ and $\mathrm{v}=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right]$. Describe the
set spanned by \mathbf{u} and \mathbf{v}, and explain why a vector \mathbf{w} is in Span $\{\mathbf{u}, \mathbf{v}\}$ if and only if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

SETS OF TWO OR MORE VECTORS

- Solution: The vectors \mathbf{u} and \mathbf{v} are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbb{R}^{3}.
- Span $\{\mathbf{u}, \mathbf{v}\}$ is the $x_{1} x_{2}$-plane (with $x_{3}=0$).
- If \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v}, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, by Theorem 7.
- Conversely, suppose that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.
- By theorem 7, some vector in $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linear combination of the preceding vectors (since $u \neq 0$).
- That vector must be \mathbf{w}, since \mathbf{v} is not a multiple of \mathbf{u}.

SETS OF TWO OR MORE VECTORS

- So \mathbf{w} is in Span $\{\mathbf{u}, \mathbf{v}\}$. See the figures given below.

Linearly dependent, \mathbf{w} in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$

Linearly independent, \mathbf{w} not in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$

- Example 2 generalizes to any set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ in \mathbb{R}^{3} with \mathbf{u} and \mathbf{v} linearly independent.
- The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ will be linearly dependent if and only if \mathbf{w} is in the plane spanned by \mathbf{u} and \mathbf{v}.

SETS OF TWO OR MORE VECTORS

- Theorem 8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is linearly dependent if $p>n$.
- Proof: Let $A=\left[\begin{array}{ccc}\mathrm{v}_{1} & \cdots & \mathrm{v}_{p}\end{array}\right]$.
- Then A is $n \times p$, and the equation $A \mathrm{x}=0$ corresponds to a system of n equations in p unknowns.
- If $p>n$, there are more variables than equations, so there must be a free variable.

SETS OF TWO OR MORE VECTORS

- Hence $A \mathrm{x}=0$ has a nontrivial solution, and the columns of A are linearly dependent.
- See the figure below for a matrix version of this theorem.

$$
n\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right]
$$

If $p>n$, the columns are linearly dependent.

- Theorem 8 says nothing about the case in which the number of vectors in the set does not exceed the number of entries in each vector.

SETS OF TWO OR MORE VECTORS

- Theorem 9: If a set $S=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{p}\right\}$ in \mathbb{R}^{n} contains the zero vector, then the set is linearly dependent.
- Proof: By renumbering the vectors, we may suppose $\mathrm{v}_{1}=0$.
- Then the equation $1 \mathrm{v}_{1}+0 \mathrm{v}_{2}+\ldots+0 \mathrm{v}_{p}=0$ shows that S in linearly dependent.

2

Matrix Algebra

2.1

MATRIX OPERATIONS

Linear Algebra

© 2012 Pearson Education, Inc.

MATRIX OPERATIONS

- If A is an $m \times n$ matrix - that is, a matrix with m rows and n columns-then the scalar entry in the i th row and j th column of A is denoted by $a_{i j}$ and is called the (i, j)-entry of A. See the figure below.
- Each column of A is a list of m real numbers, which identifies a vector in \mathbb{R}^{m}.

Column

MATRIX OPERATIONS

- The columns are denoted by $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, and the matrix A is written as $A=\left[\begin{array}{llll}\mathrm{a}_{1} & \mathrm{a}_{2} & \cdots & \mathrm{a}_{n}\end{array}\right]$.
- The number $a_{i j}$ is the i th entry (from the top) of the j th column vector \mathbf{a}_{j}.
- The diagonal entries in an $m \times n$ matrix $A=\left\lceil a_{i j}\right]$ are $\mathrm{a}_{11}, \mathrm{a}_{22}, \mathrm{a}_{33}, \ldots$, and they form the main diagonal of A.
- A diagonal matrix is a sequence $n \times m$ matrix whose nondiagonal entries are zero.
- An example is the $n \times n$ identity matrix, I_{n}.

SUMS AND SCALAR MULTIPLES

- An $m \times n$ matrix whose entries are all zero is a zero matrix and is written as 0 .
- The two matrices are equal if they have the same size (i.e., the same number of rows and the same number of columns) and if their corresponding columns are equal, which amounts to saying that their corresponding entries are equal.
- If A and B are $m \times n$ matrices, then the sum $A+B$ is the $m \times n$ matrix whose columns are the sums of the corresponding columns in A and B.

SUMS AND SCALAR MULTIPLES

- Since vector addition of the columns is done entrywise, each entry in $A+B$ is the sum of the corresponding entries in A and B.
- The sum $A+B$ is defined only when A and B are the same size.
- Example 1: Let $A=\left[\begin{array}{rrr}4 & 0 & 5 \\ -1 & 3 & 2\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 7\end{array}\right]$,
and $C=\left[\begin{array}{rr}2 & -3 \\ 0 & 1\end{array}\right\rceil$. Find $A+B$ and $A+C$.

SUMS AND SCALAR MULTIPLES

- Solution: $A+B=\left[\begin{array}{lll}5 & 1 & 6 \\ 2 & 8 & 9\end{array}\right]$ but $A+C$ is not defined because A and C have different sizes.
- If r is a scalar and A is a matrix, then the scalar multiple $r A$ is the matrix whose columns are r times the corresponding columns in A.
- Theorem 1: Let A, B, and C be matrices of the same size, and let r and s be scalars.

$$
\text { a. } A+B=B+A
$$

SUMS AND SCALAR MULTIPLES

b. $(A+B)+C=A+(B+C)$
c. $A+0=A$
d. $r(A+B)=r A+r B$
e. $(r+s) A=r A+s A$
f. $r(s A)=(r s) A$

- Each quantity in Theorem 1 is verified by showing that the matrix on the left side has the same size as the matrix on the right and that corresponding columns are equal.

MATRIX MULTIPLICATION

- When a matrix B multiplies a vector \mathbf{x}, it transforms \mathbf{x} into the vector $B \mathbf{x}$.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(B \mathbf{x})$. See the Fig. below.

Multiplication by B and then A.

- Thus $A(B \mathbf{x})$ is produced from x by a composition of mappings-the linear transformations.

MATRIX MULTIPLICATION

- Our goal is to represent this composite mapping as multiplication by a single matrix, denoted by $A B$, so that $A(B \mathrm{x})=(\mathrm{AB}) \mathrm{x}$. See the figure below.

Multiplication by $A B$.

- If A is $m \times n, B$ is $n \times p$, and \mathbf{x} is in \mathbb{R}^{p}, denote the columns of B by $\mathbf{b}_{1}, \ldots, \mathbf{b} p$ and the entries in \mathbf{x} by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}$.

MATRIX MULTIPLICATION

- Then

$$
B \mathrm{x}=x_{1} \mathrm{~b}_{1}+\ldots+x_{p} \mathrm{~b}_{p}
$$

- By the linearity of multiplication by A,

$$
\begin{aligned}
A(B \mathrm{x}) & =A\left(x_{1} \mathrm{~b}_{1}\right)+\ldots+A\left(x_{p} \mathrm{~b}_{p}\right) \\
& =x_{1} A \mathrm{~b}_{1}+\ldots+x_{p} A \mathrm{~b}_{p}
\end{aligned}
$$

- The vector $A(B \mathbf{x})$ is a linear combination of the vectors $A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{p}$, using the entries in \mathbf{x} as weights.
- In matrix notation, this linear combination is written as

$$
A(B \mathrm{x})=\left[\begin{array}{cccc}
A \mathrm{~b}_{1} & A \mathrm{~b}_{2} & \cdots & A \mathrm{~b}_{p}
\end{array}\right] \mathrm{x}
$$

MATRIX MULTIPLICATION

- Thus multiplication by $\left[\begin{array}{llll}A \mathrm{~b}_{1} & A \mathrm{~b}_{2} & \cdots & A \mathrm{~b}_{p}\end{array}\right]$ transforms \mathbf{x} into $A(B \mathbf{x})$.
- Definition: If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}$, then the product $A B$ is the $m \times p$ matrix whose columns are $A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{p}$.
- That is,

$$
A B=A\left[\begin{array}{llll}
\mathrm{b}_{1} & \mathrm{~b}_{2} & \cdots & \mathrm{~b}_{p}
\end{array}\right]=\left[\begin{array}{llll}
A \mathrm{~b}_{1} & A \mathrm{~b}_{2} & \cdots & A \mathrm{~b}_{p}
\end{array}\right]
$$

- Multiplication of matrices corresponds to composition of linear transformations.

MATRIX MULTIPLICATION

- Example 2: Compute $A B$, where $A=\left[\begin{array}{rr}2 & 3 \\ 1 & -5\end{array}\right]$ and
$B=\left[\begin{array}{rrr}4 & 3 & 9 \\ 1 & -2 & 3\end{array}\right]$.
- Solution: Write $B=\left[\begin{array}{lll}\mathrm{b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right]$ and compute:

MATRIX MULTIPLICATION

$A \mathrm{~b}_{1}=\left[\begin{array}{rr}2 & 3 \\ 1 & -5\end{array}\right]\left[\begin{array}{l}4 \\ 1\end{array}\right], A \mathrm{~b}_{2}=\left[\begin{array}{rr}2 & 3 \\ 1 & -5\end{array}\right]\left[\begin{array}{r}3 \\ -2\end{array}\right], A \mathrm{~b}_{3}=\left[\begin{array}{rr}2 & 3 \\ 1 & -5\end{array}\right]\left[\begin{array}{l}6 \\ 3\end{array}\right]$

$$
=\left[\begin{array}{l}
11 \\
-1
\end{array}\right]
$$

$$
=\left\lceil\begin{array}{r}
0 \\
13
\end{array}\right\rceil
$$

$$
=\left|\begin{array}{c}
21 \\
-9
\end{array}\right|
$$

Then

$$
A B=A\left[\begin{array}{lll}
\mathrm{b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}
\end{array}\right]=\left[\left.\begin{array}{rrr}
11 & 0 & 21 \\
-1 & 13 & -9
\end{array} \right\rvert\,\right.
$$

MATRIX MULTIPLICATION

- Each column of $A B$ is a linear combination of the columns of A using weights from the corresponding column of B.
- Row-column rule for computing $A B$
- If a product $A B$ is defined, then the entry in row i and column j of $A B$ is the sum of the products of corresponding entries from row i of A and column j of B.
- If $(A B)_{i j}$ denotes the (i, j)-entry in $A B$, and if A is an $m \times n$ matrix, then

$$
(A B)_{i j}=a_{i 1} b_{1 j}+\ldots+a_{i n} b_{n j}
$$

PROPERTIES OF MATRIX MULTIPLICATION

- Theorem 2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.
a. $A(B C)=(A B) C$ (associative law of multiplication)
b. $A(B+C)=A B+A C$ (left distributive law)
c. $(B+C) A=B A+C A$ (right distributive law)
d. $r(A B)=(r A) B=A(r B)$ for any scalar r
e. $I_{m} A=A=A I_{n}$ (identity for matrix multiplication)

PROPERTIES OF MATRIX MULTIPLICATION

- Proof: Property (a) follows from the fact that matrix multiplication corresponds to composition of linear transformations (which are functions), and it is known that the composition of functions is associative.
- Let $C=\left[\begin{array}{llll}\mathrm{c}_{1} & \cdots & \mathrm{c} \\ \hline\end{array}\right]$
- By the definition of matrix multiplication,

$$
\begin{aligned}
B C & =\left[\begin{array}{lll}
B \mathrm{c}_{1} & \cdots & B \mathrm{c}_{p}
\end{array}\right] \\
A(B C) & =\left[\begin{array}{lll}
A\left(B \mathrm{c}_{1}\right) & \cdots & A\left(B \mathrm{c}_{p}\right)
\end{array}\right]
\end{aligned}
$$

PROPERTIES OF MATRIX MULTIPLICATION

- The definition of $A B$ makes $A(B \mathbf{x})=(A B) \mathrm{x}$ for all \mathbf{x}, so

$$
A(B C)=\left[\begin{array}{lll}
(A B) \mathrm{c}_{1} & \cdots & (A B) \mathrm{c}_{p}
\end{array}\right]=(A B) C
$$

- The left-to-right order in products is critical because $A B$ and $B A$ are usually not the same.
- Because the columns of $A B$ are linear combinations of the columns of A, whereas the columns of $B A$ are constructed from the columns of B.
- The position of the factors in the product $A B$ is emphasized by saying that A is right-multiplied by B or that B is left-multiplied by A.

PROPERTIES OF MATRIX MULTIPLICATION

- If $A B=B A$, we say that A and B commute with one another.

Warnings:

1. In general, $A B \neq B A$.
2. The cancellation laws do not hold for matrix multiplication. That is, if $A B=A C$, then it is not true in general that $B=C$.
3. If a product $A B$ is the zero matrix, you cannot conclude in general that either $A=0$ or $B=0$.

POWERS OF A MATRIX

- If A is an $n \times n$ matrix and if k is a positive integer, then A^{k} denotes the product of k copies of A :

$$
A^{k}=\underbrace{A \cdots A}_{k}
$$

- If A is nonzero and if \mathbf{x} is in \mathbb{R}^{n}, then $A^{k} \mathbf{x}$ is the result of left-multiplying \mathbf{x} by A repeatedly k times.
- If $k=0$, then $A^{0} \mathbf{x}$ should be \mathbf{x} itself.
- Thus A^{0} is interpreted as the identity matrix.

THE TRANSPOSE OF A MATRIX

- Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted by A^{T}, whose columns are formed from the corresponding rows of A.

Theorem 3: Let A and B denote matrices whose sizes are appropriate for the following sums and products.
a. $\left(A^{T}\right)^{T}=A$
b. $(A+B)^{T}=A^{T}+B^{T}$
c. For any scalar $r,(r A)^{T}=r A^{T}$
d. $(A B)^{T}=B^{T} A^{T}$

THE TRANSPOSE OF A MATRIX

- The transpose of a product of matrices equals the product of their transposes in the reverse order.

