AMS 10/10A, Homework 4

Problems for Section 1.5 and 1.7

Problem 1. For each of the linear systems below, write the solution set in parametric vector form.

$$\begin{cases} x_1 + 2x_2 = 0\\ 3x_1 + 6x_2 = 0\\ 5x_1 + 10x_2 = 0 \end{cases}$$
$$\begin{cases} x_1 + 3x_2 + 2x_3 + 4x_4 = 0\\ -x_1 + 2x_2 + 3x_3 + x_4 = 0\\ 2x_1 - 3x_2 - 5x_3 - x_4 = 0\\ x_1 + x_2 + 2x_4 = 0 \end{cases}$$

Problem 2. Let A be an $m \times n$ matrix and let vector v be a solution of the equation Ax = 0. Show that for any scalar c, the vector cv is also a solution of Ax = 0.

Problem 3. Let $\{v_1, v_2, \dots, v_n\}$ be a set of vectors in \mathbb{R}^m such that v_n is a linear combination of $\{v_1, v_2, \dots, v_{n-1}\}$. Show that homogeneous equation Ax = 0 has infinitely many solutions, where matrix $A = [v_1, v_2, \dots, v_n]$.

Problem 4. Let A be a matrix whose echelon form is

$$\left[\begin{array}{rrrrr} -2 & -3 & 1 & 4 \\ 0 & 0 & -3 & -1 \\ 0 & 0 & 0 & 6 \end{array}\right].$$

Does Ax = b has a solution for every $b \in \mathbb{R}^3$? Explain.

Problem 5. Mark each statement True or False

- 5.1. The equation Ax = b is homogeneous if the zero vector is a solution.
- 5.2. The homogeneous equation Ax = 0 has the trivial solution if and only if the equation has at least one free variable.
- 5.3. A homogeneous system of equations can be inconsistent.
- 5.4. If v is a nontrivial solution of Ax = 0, then every entry in v is nonzero.
- 5.5. If homogeneous equation Ax = 0 has a unique solution, then Ax = b cannot have infinitely many solutions.

Problem 6. Determine if the set of vectors $S = \{v_1, v_2, v_3, v_4\}$ given below is linearly independent, where

$$v_1 = \begin{bmatrix} 2\\1\\3\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 6\\3\\9\\3 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 5\\2\\6\\3 \end{bmatrix}$$

Problem 7. Let $v_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, $v_2 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$.

- Show that $\{v_1, v_2, v_3\}$ is linearly dependent.
- Write v_2 as a linear combination of v_1 and v_3 .

Problem 8. For what value(s) of k are the columns of the following matrix linearly dependent.

$$\left[\begin{array}{rrrr} 1 & -5 & 3 \\ 3 & -8 & -5 \\ -1 & 2 & k \end{array}\right]$$

Problem 9. Let $\{v_1, v_2, v_3\}$ be a set of linearly independent vectors in \mathbb{R}^n . Show that $\{v_1 + v_3, v_1 - 2v_2, -4v_1 + v_2 + 3v_3\}$ is also linearly independent.

Problem 10. Mark each statement True or False

- 10.1. The set $\{0, v_1, v_2, \cdots, v_k\}$ is always linearly dependent.
- 10.2. Let v_1 , v_2 , v_3 and v_4 be vectors in \mathbb{R}^n such that $v_1 v_2 = v_3 v_4$. Then the set $\{v_1, v_2, v_3, v_4\}$ is linearly dependent.
- 10.3. If u and v are linearly independent, and if w is in $span\{u, v\}$, then $\{u, v, w\}$ is linearly dependent.
- 10.4. If a set in \mathbb{R}^n is linearly dependent, then the set contains more than *n* vectors.
- 10.5. If $\{v_1, v_2, v_3, v_4\}$ is a set of vectors in \mathbb{R}^4 and $\{v_1, v_2, v_3\}$ is linearly dependent, then $\{v_1, v_2, v_3, v_4\}$ is also linearly dependent.

Problems for Section 2.1

Problem 11. Given the following matrices

$$A = \begin{bmatrix} -1 & 5 & 2 \\ 3 & -4 & -1 \\ 2 & 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ -3 & 2 \\ 7 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 & -1 & 2 \\ -3 & 2 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 & 1 \\ -1 & 2 \\ 2 & 0 \\ 1 & 1 \end{bmatrix}$$

Compute AB, A^TB , BC, CD and $(CD)^2$.

Problem 12. How many rows does *B* have if *BC* is a 6×8 matrix?

Problem 13. Suppose the second column of B is all zeros. What can be said about the second column of AB?

Problem 14. Let $A = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 9 \\ -3 & k \end{bmatrix}$. What value(s) of k, if any, will make AB = BA?

Problem 15. Prove that if the columns of matrix B are linear dependent, then so are the columns of AB.

Problem 16. Let

$$W = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} -1 & 5 \\ 3 & -4 \\ 2 & 2 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} -1 & 5 & 2 \\ 3 & -4 & -1 \end{bmatrix}$$

Use your knowledge of row-column rule to compute $w_{2,1}$, the entry in the 2nd row and 1st column of W without computing the whole product.

Problem 17. Let $A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$. Compute $A^2 - 3A$.

Problem 18. Let $B = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Show that $B^n = 0$ for all nature number $n \ge 3$.