AMS 10/10A, Homework 4

Problems for Section 1.5 and 1.7
Problem 1. For each of the linear systems below, write the solution set in parametric vector form.

$$
\begin{aligned}
& \left\{\begin{array}{r}
x_{1}+2 x_{2}=0 \\
3 x_{1}+6 x_{2}=0 \\
5 x_{1}+10 x_{2}=0
\end{array}\right. \\
& \left\{\begin{aligned}
& x_{1}+3 x_{2}+2 x_{3}+4 x_{4}= 0 \\
&-x_{1}+2 x_{2}+3 x_{3}+x_{4}= 0 \\
& 2 x_{1}-3 x_{2}-5 x_{3}-x_{4}=0 \\
& x_{1}+x_{2}+2 x_{4}= 0
\end{aligned}\right.
\end{aligned}
$$

Problem 2. Let A be an $m \times n$ matrix and let vector v be a solution of the equation $A x=0$. Show that for any scalar c, the vector $c v$ is also a solution of $A x=0$.

Problem 3. Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a set of vectors in \mathbb{R}^{m} such that v_{n} is a linear combination of $\left\{v_{1}, v_{2}, \cdots, v_{n-1}\right\}$. Show that homogeneous equation $A x=0$ has infinitely many solutions, where matrix $A=\left[v_{1}, v_{2}, \cdots, v_{n}\right]$.

Problem 4. Let A be a matrix whose echelon form is

$$
\left[\begin{array}{rrrr}
-2 & -3 & 1 & 4 \\
0 & 0 & -3 & -1 \\
0 & 0 & 0 & 6
\end{array}\right] .
$$

Does $A x=b$ has a solution for every $b \in \mathbb{R}^{3}$? Explain.

Problem 5. Mark each statement True or False
5.1. The equation $A x=b$ is homogeneous if the zero vector is a solution.
5.2. The homogeneous equation $A x=0$ has the trivial solution if and only if the equation has at least one free variable.
5.3. A homogeneous system of equations can be inconsistent.
5.4. If v is a nontrivial solution of $A x=0$, then every entry in v is nonzero.
5.5. If homogeneous equation $A x=0$ has a unique solution, then $A x=b$ cannot have infinitely many solutions.

Problem 6. Determine if the set of vectors $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ given below is linearly independent, where

$$
v_{1}=\left[\begin{array}{l}
2 \\
1 \\
3 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
6 \\
3 \\
9 \\
3
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
5 \\
2 \\
6 \\
3
\end{array}\right]
$$

Problem 7. Let $v_{1}=\left[\begin{array}{r}2 \\ -3\end{array}\right], v_{2}=\left[\begin{array}{r}-1 \\ 4\end{array}\right]$, and $v_{3}=\left[\begin{array}{r}8 \\ -2\end{array}\right]$.

- Show that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent.
- Write v_{2} as a linear combination of v_{1} and v_{3}.

Problem 8. For what value(s) of k are the columns of the following matrix linearly dependent.

$$
\left[\begin{array}{rrr}
1 & -5 & 3 \\
3 & -8 & -5 \\
-1 & 2 & k
\end{array}\right]
$$

Problem 9. Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a set of linearly independent vectors in \mathbb{R}^{n}. Show that $\left\{v_{1}+v_{3}, v_{1}-2 v_{2},-4 v_{1}+v_{2}+3 v_{3}\right\}$ is also linearly independent.

Problem 10. Mark each statement True or False
10.1. The set $\left\{0, v_{1}, v_{2}, \cdots, v_{k}\right\}$ is always linearly dependent.
10.2. Let v_{1}, v_{2}, v_{3} and v_{4} be vectors in \mathbb{R}^{n} such that $v_{1}-v_{2}=v_{3}-v_{4}$. Then the the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly dependent.
10.3. If u and v are linearly independent, and if w is in $\operatorname{span}\{u, v\}$, then $\{u, v, w\}$ is linearly dependent.
10.4. If a set in \mathbb{R}^{n} is linearly dependent, then the set contains more than n vectors.
10.5. If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a set of vectors in \mathbb{R}^{4} and $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent, then $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is also linearly dependent.

Problems for Section 2.1

Problem 11. Given the following matrices
$A=\left[\begin{array}{rrr}-1 & 5 & 2 \\ 3 & -4 & -1 \\ 2 & 2 & -3\end{array}\right], \quad B=\left[\begin{array}{rr}2 & 1 \\ -3 & 2 \\ 7 & 0\end{array}\right], \quad C=\left[\begin{array}{rrrr}1 & 1 & -1 & 2 \\ -3 & 2 & 0 & 1\end{array}\right], \quad D=\left[\begin{array}{rr}0 & 1 \\ -1 & 2 \\ 2 & 0 \\ 1 & 1\end{array}\right]$
Compute $A B, A^{T} B, B C, C D$ and $(C D)^{2}$.

Problem 12. How many rows does B have if $B C$ is a 6×8 matrix?

Problem 13. Suppose the second column of B is all zeros. What can be said about the second column of $A B$?

Problem 14. Let $A=\left[\begin{array}{rr}2 & 3 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 9 \\ -3 & k\end{array}\right]$. What value(s) of k, if any, will make $A B=B A$?

Problem 15. Prove that if the columns of matrix B are linear dependent, then so are the columns of $A B$.

Problem 16. Let

$$
W=\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
2 & 1 & -2 & 3
\end{array}\right] \cdot\left[\begin{array}{rr}
-1 & 5 \\
3 & -4 \\
2 & 2 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{rrr}
-1 & 5 & 2 \\
3 & -4 & -1
\end{array}\right]
$$

Use your knowledge of row-column rule to compute $w_{2,1}$, the entry in the 2 nd row and 1 st column of W without computing the whole product.

Problem 17. Let $A=\left[\begin{array}{rr}2 & 1 \\ -1 & 3\end{array}\right]$. Compute $A^{2}-3 A$.

Problem 18. Let $B=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Show that $B^{n}=0$ for all nature number $n \geq 3$.

