1

Linear Equations in Linear Algebra

1.3

VECTOR EQUATIONS

Linear Algebra

David C. Lay
© 2012 Pearson Education, Inc.

VECTOR EQUATIONS

Vectors in \mathbb{R}^{2}

- A matrix with only one column is called a column vector, or simply a vector.
- An example of a vector with two entries is

$$
\mathrm{w}=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

where w_{1} and w_{2} are any real numbers.

- The set of all vectors with 2 entries is denoted by \mathbb{R}^{2} (read "r-two").

VECTOR EQUATIONS

- The \mathbb{R} stands for the real numbers that appear as entries in the vector, and the exponent 2 indicates that each vector contains 2 entries.
- Two vectors in \mathbb{R}^{2} are equal if and only if their corresponding entries are equal.
- Given two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{2}, their sum is the vector $\mathbf{u}+$ Vobtained by adding corresponding entries of \mathbf{u} and \mathbf{v}.
- Given a vector \mathbf{u} and a real number c, the scalar multiple of \mathbf{u} by c is the vector $c \mathbf{u}$ obtained by multiplying each entry in \mathbf{u} by c.

VECTOR EQUATIONS

- Example 1: Given $u=\left[\begin{array}{r}1 \\ -2\end{array}\right]$ and $v=\left[\begin{array}{r}2 \\ -5\end{array}\right]$, find $4 \mathbf{u},(-3) v$, and $4 u+(-3) v$.
Solution: $4 \mathrm{u}=\left[\begin{array}{r}4 \\ -8\end{array}\right],(-3) \mathrm{v}=\left[\begin{array}{r}-6 \\ 15\end{array}\right]$ and

$$
4 u+(-3) v=\left[\begin{array}{r}
4 \\
-8
\end{array}\right]+\left[\begin{array}{r}
-6 \\
15
\end{array}\right]=\left[\begin{array}{r}
-2 \\
7
\end{array}\right]
$$

GEOMETRIC DESCRIPTIONS OF \mathbb{R}^{2}

- Consider a rectangular coordinate system in the plane. Because each point in the plane is determined by an ordered pair of numbers, we can identify a geometric point (a, b) with the column vector $\left[\begin{array}{l}a \\ b\end{array}\right]$.
- So we may regard \mathbb{R}^{2} as the set of all points in the plane.

PARALLELOGRAM RULE FOR ADDITION

- If \mathbf{u} and \mathbf{v} in \mathbb{R}^{2} are represented as points in the plane, then $u+v$ corresponds to the fourth vertex of the parallelogram whose other vertices are $\mathbf{u}, \mathbf{0}$, and \mathbf{v}. See the figure below.

VECTORS $\operatorname{IN} \mathbb{R}^{3}$ and \mathbb{R}^{n}

- Vectors in \mathbb{R}^{3} are 3×1 column matrices with three entries.
- They are represented geometrically by points in a three-dimensional coordinate space, with arrows from the origin.
- If n is a positive integer, \mathbb{R}^{n} (read "r-n") denotes the collection of all lists (or ordered n-tuples) of n real numbers, usually written as $n \times 1$ column matrices, such as

$$
\mathrm{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]
$$

ALGEBRAIC PROPERTIES OF \mathbb{R}^{n}

The vector whose entries are all zero is called the zero vector and is denoted by 0 .

- For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^{n} and all scalars c and d :
(i) $u+v=v+u$
(ii) $(\mathrm{u}+\mathrm{v})+\mathrm{W}=\mathrm{u}+(\mathrm{v}+\mathrm{w})$
(iii) $\mathrm{u}+0=0+\mathrm{u}=\mathrm{u}$
(iv) $\mathrm{u}+(-\mathrm{u})=-\mathrm{u}+\mathrm{u}=0$,
where $-u$ denotes $(-1) u$
(v) $c(\mathrm{u}+\mathrm{v})=c \mathrm{u}+c \mathrm{v}$
(vi) $(c+d) \mathrm{u}=c \mathrm{u}+d \mathrm{u}$

LINEAR COMBINATIONS

$$
\begin{aligned}
& \text { (vii) } c(d \mathrm{u})=(\mathrm{cd})(\mathrm{u}) \\
& \text { (viii) } 1 \mathrm{u}=\mathrm{u}
\end{aligned}
$$

- Given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ in \mathbb{R}^{n} and given scalars c_{1}, c_{2}, \ldots, c_{p}, the vector \mathbf{y} defined by

$$
\mathrm{y}=c_{1} \mathrm{v}_{1}+\ldots+c_{p} \mathrm{v}_{p}
$$

is called a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ with weights c_{1}, \ldots, c_{p}.

- The weights in a linear combination can be any real numbers, including zero.
© 2012 Pearson Education, Inc.

LINEAR COMBINATIONS

- Example 2: Let $a_{1}=\left[\begin{array}{l}-2 \\ -5\end{array}\right] \mathrm{a}_{2}=\left[\begin{array}{l}5 \\ 6\end{array}\right]$ and $\mathrm{b}=\left[\begin{array}{r}4 \\ -3\end{array}\right]$.

Determine whether \mathbf{b} can be generated (or written) as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}. That is, determine whether weights x_{1} and x_{2} exist such that

$$
\begin{equation*}
x_{1} \mathrm{a}_{1}+x_{2} \mathrm{a}_{2}=\mathrm{b} \tag{1}
\end{equation*}
$$

If vector equation (1) has a solution, find it.

LINEAR COMBINATIONS

Solution: Use the definitions of scalar multiplication and vector addition to rewrite the vector equation

$$
\begin{aligned}
x_{1}\left[\begin{array}{r}
1 \\
-2 \\
-5
\end{array}\right]+x_{2}\left[\begin{array}{c}
2 \\
5 \\
6
\end{array}\right] & =\left[\begin{array}{r}
7 \\
4 \\
-3
\end{array}\right], ~ \\
a_{1} & a_{2}
\end{aligned}
$$

which is same as

$$
\left[\begin{array}{r}
x_{1} \\
-2 x_{1} \\
-5 x_{1}
\end{array}\right]+\left[\begin{array}{l}
2 x_{2} \\
5 x_{2} \\
6 x_{2}
\end{array}\right]=\left[\begin{array}{r}
7 \\
4 \\
-3
\end{array}\right]
$$

LINEAR COMBINATIONS

and $\left[\begin{array}{r}x_{1}+2 x_{2} \\ -2 x_{1}+5 x_{2} \\ -5 x_{1}+6 x_{2}\end{array}\right]=\left[\begin{array}{r}7 \\ 4 \\ -3\end{array}\right]$.

- The vectors on the left and right sides of (2) are equal if and only if their corresponding entries are both equal. That is, x_{1} and x_{2} make the vector equation (1) true if and only if x_{1} and x_{2} satisfy the following system.

$$
x_{1}+2 x_{2}=7
$$

$$
\begin{align*}
& -2 x_{1}+5 x_{2}=4 \tag{3}\\
& -5 x_{1}+6 x_{2}=-3
\end{align*}
$$

LINEAR COMBINATIONS

- To solve this system, row reduce the augmented matrix of the system as follows.

$$
\left[\begin{array}{rrr}
1 & 2 & 7 \\
-2 & 5 & 4 \\
-5 & 6 & -3
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & 7 \\
0 & 9 & 18 \\
0 & 16 & 32
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & 7 \\
0 & 1 & 2 \\
0 & 16 & 32
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

- The solution of (3) is $x_{1}=3$ and $x_{2}=2$. Hence \mathbf{b} is a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}, with weights $x_{1}=3$ and $x_{2}=2$. That is, $\left[\begin{array}{r}1 \\ -2 \\ -5\end{array}\right]+2\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]=\left[\begin{array}{r}7 \\ 4 \\ -3\end{array}\right]$.

LINEAR COMBINATIONS

- Now, observe that the original vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{b} are the columns of the augmented matrix that we row reduced:

$$
\left[\begin{array}{rrr}
1 & 2 & 7 \\
-2 & 5 & 4 \\
-5 & 6 & -3
\end{array}\right]
$$

- Write this matrix in a way that identifies its columns.

$$
\left[\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{~b} \tag{4}
\end{array}\right]
$$

LINEAR COMBINATIONS

- A vector equation

$$
x_{1} \mathrm{a}_{1}+x_{2} \mathrm{a}_{2}+\ldots+x_{n} \mathrm{a}_{n}=\mathrm{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \cdots & \mathrm{a}_{n} & \mathrm{~b} \tag{5}
\end{array}\right]
$$

- In particular, \mathbf{b} can be generated by a linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ if and only if there exists a solution to the linear system corresponding to the matrix (5).

LINEAR COMBINATIONS

- Definition: If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in \mathbb{R}^{n}, then the set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted by Span $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ and is called the subset of \mathbb{R}^{n} spanned (or generated) by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$. That is, Span $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is the collection of all vectors that can be written in the form

$$
c_{1} \mathrm{v}_{1}+c_{2} \mathrm{v}_{2}+\ldots+c_{p} \mathrm{v}_{p}
$$

with c_{1}, \ldots, c_{p} scalars.

A GEOMETRIC DESCRIPTION OF SPAN \{V\}

- Let \mathbf{v} be a nonzero vector in \mathbb{R}^{3}. Then Span $\{\mathbf{v}\}$ is the set of all scalar multiples of \mathbf{v}, which is the set of points on the line in \mathbb{R}^{3} through \mathbf{v} and $\mathbf{0}$. See the figure below.

A GEOMETRIC DESCRIPTION OF SPAN \{U, V\}

- If \mathbf{u} and \mathbf{v} are nonzero vectors in \mathbb{R}^{3}, with \mathbf{v} not a multiple of \mathbf{u}, then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is the plane in \mathbb{R}^{3} that contains \mathbf{u}, \mathbf{v}, and $\mathbf{0}$.
- In particular, $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ contains the line in \mathbb{R}^{3} through \mathbf{u} and $\mathbf{0}$ and the line through \mathbf{v} and $\mathbf{0}$. See the figure below.

1

Linear Equations in Linear Algebra

1.4

THE MATRIX EQUATION $A \mathrm{x}=\mathrm{b}$

Linear Algebra

David C. Lay
© 2012 Pearson Education, Inc.

MATRIX EQUATION $A x=\mathrm{b}$

- Definition: If A is an $m \times n$ matrix, with columns \mathbf{a}_{1}, \ldots, \mathbf{a}_{n}, and if \mathbf{x} is in \mathbb{R}^{n}, then the product of A and \mathbf{x}, denoted by $A \mathbf{x}$, is the linear combination of the columns of A using the corresponding entries in x as weights; that is,

$$
A \mathrm{x}=\left[\begin{array}{llll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \cdots & \mathrm{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathrm{a}_{1}+x_{2} \mathrm{a}_{2}+\ldots+x_{n} \mathrm{a}_{n}
$$

- $A \mathbf{x}$ is defined only if the number of columns of A equals the number of entries in \mathbf{x}.

MATRIX EQUATION $A \mathrm{x}=\mathrm{b}$

- Example 1: For $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ in \mathbb{R}^{m}, write the linear combination $3 \mathrm{v}_{1}-5 \mathrm{v}_{2}+7 \mathrm{v}_{3}$ as a matrix times a vector.
- Solution: Place $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ into the columns of a matrix A and place the weights $3,-5$, and 7 into a vector \mathbf{x}.
- That is,

$$
3 \mathrm{v}_{1}-5 \mathrm{v}_{2}+7 \mathrm{v}_{3}=\left[\begin{array}{lll}
\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3}
\end{array}\right]\left[\begin{array}{r}
-5 \\
7
\end{array}\right]=A \mathrm{x}
$$

MATRIX EQUATION $A \mathrm{x}=\mathrm{b}$

- Now, write the system of linear equations as a vector equation involving a linear combination of vectors.
- For example, the following system

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=4 \\
-5 x_{2}+3 x_{3}=1
\end{array}
$$

is equivalent to

$$
x_{1}\left[\begin{array}{l}
1 \tag{2}\\
0
\end{array}\right]+x_{2}\left[\begin{array}{r}
2 \\
-5
\end{array}\right]+x_{3}\left[\begin{array}{r}
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

MATRIX EQUATION $A \mathrm{x}=\mathrm{b}$

- As in the given example (1), the linear combination on the left side is a matrix times a vector, so that (2) becomes

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \tag{3}\\
0 & -5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

- Equation (3) has the form $A \mathrm{x}=\mathrm{b}$. Such an equation is called a matrix equation.

MATRIX EQUATION $A \mathrm{x}=\mathrm{b}$

- Theorem 3: If A is an $m \times n$ matrix, with columns $\mathrm{a} 1, \ldots$, an, and if b is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathrm{x}=\mathrm{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathrm{a}_{1}+x_{2} \mathrm{a}_{2}+\ldots+x_{n} a_{n}=\mathrm{b}
$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{~L} & \mathrm{a}_{n} & \mathrm{~b}
\end{array}\right]
$$

EXISTENCE OF SOLUTIONS

- The equation $A \mathrm{x}=\mathrm{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.
- Theorem 4: Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.
a. For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathrm{x}=\mathrm{b}$ has a solution.
b. Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
c. The columns of A span \mathbb{R}^{m}.
d. A has a pivot position in every row.

PROOF OF THEOREM 4

- Statements (a), (b), and (c) are logically equivalent.
- So, it suffices to show (for an arbitrary matrix A) that (a) and (d) are either both true or false.
- Let U be an echelon form of A.
- Given \mathbf{b} in \mathbb{R}^{m}, we can row reduce the augmented matrix $\left[\begin{array}{ll}A & \mathrm{~b}\end{array}\right]$ to an augmented matrix $\left[\begin{array}{ll}U & \mathrm{~d}\end{array}\right]$ for some \mathbf{d} in \mathbb{R}^{m} :

$$
\left[\begin{array}{ll}
A & \mathrm{~b}
\end{array}\right] \sim \ldots \sim\left[\begin{array}{ll}
U & \mathrm{~d}
\end{array}\right]
$$

- If statement (d) is true, then each row of U contains a pivot position, and there can be no pivot in the augmented column.

PROOF OF THEOREM 4

- So $A \mathrm{x}=\mathrm{b}$ has a solution for any \mathbf{b}, and (a) is true.
- If (d) is false, then the last row of U is all zeros.
- Let d be any vector with a 1 in its last entry.
- Then $\left[\begin{array}{ll}U & d\end{array}\right]$ represents an inconsistent system.
- Since row operations are reversible, $\left[\begin{array}{ll}U & d\end{array}\right]$ can be transformed into the form $\left[\begin{array}{ll}A & \mathrm{~b}\end{array}\right]$.
- The new system $A \mathrm{x}=\mathrm{b}$ is also inconsistent, and (a) is false.

COMPUTATION OF Ax

- Example 2: Compute $A \mathbf{x}$, where $A=\left[\begin{array}{rrr}2 & 3 & 4 \\ -1 & 5 & -3 \\ 6 & -2 & 8\end{array}\right]$
and $\mathrm{x}=\left[\begin{array}{l}x_{2} \\ x_{3}\end{array}\right]$.
- Solution: From the definition,

$$
\left[\begin{array}{rrr}
2 & 3 & 4 \\
-1 & 5 & -3 \\
6 & -2 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{r}
2 \\
-1 \\
6
\end{array}\right]+x_{2}\left[\begin{array}{r}
3 \\
5 \\
-2
\end{array}\right]+x_{3}\left[\begin{array}{r}
4 \\
-3 \\
8
\end{array}\right]
$$

COMPUTATION OF Ax

$$
\begin{aligned}
& =\left[\begin{array}{c}
2 x_{1} \\
-x_{1} \\
6 x_{1}
\end{array}\right]+\left[\begin{array}{r}
3 x_{2} \\
5 x_{2} \\
-2 x_{2}
\end{array}\right]+\left[\begin{array}{r}
4 x_{3} \\
-3 x_{3} \\
8 x_{3}
\end{array}\right]--(1) \\
& =\left[\begin{array}{l}
2 x_{1}+3 x_{2}+4 x_{3} \\
-x_{1}+5 x_{2}-3 x_{3} \\
6 x_{1}-2 x_{2}+8 x_{3}
\end{array}\right] .
\end{aligned}
$$

- The first entry in the product $A \mathbf{x}$ is a sum of products (a dot product), using the first row of A and the entries in \mathbf{x}.

COMPUTATION OF Ax

- That is, $\left[\begin{array}{lll}2 & 3 & 4 \\ & & \\ & & \end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}2 x_{1}+3 x_{2}+4 x_{3} \\ \end{array}\right]$.
- Similarly, the second entry in $A \mathbf{x}$ can be calculated by multiplying the entries in the second row of A by the corresponding entries in \mathbf{x} and then summing the resulting products.

ROW-VECTOR RULE FOR COMPUTING Ax

- Likewise, the third entry in $A \mathbf{x}$ can be calculated from the third row of A and the entries in \mathbf{x}.
- If the product $A \mathbf{x}$ is defined, then the i th entry in $A \mathbf{x}$ is the sum of the products of corresponding entries from row i of A and from the vertex \mathbf{x}.
- The matrix with 1 s on the diagonal and 0s elsewhere is called an identity matrix and is denoted by I.
- For example, $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is an identity matrix.

PROPERTIES OF THE MATRIX-VECTOR PRODUCT Ax

- Theorem 5: If A is an $m \times n$ matrix, u and v are vectors in \mathbb{R}^{n}, and c is a scalar, then
a. $A(\mathrm{u}+\mathrm{v})=A \mathrm{u}+A \mathrm{v}$;
b. $A(c \mathrm{u})=c(A \mathrm{u})$.
- Proof: For simplicity, take $n=3, A=\left\lceil\begin{array}{lll}\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3}\end{array}\right]$, and \mathbf{u}, \mathbf{v} in \mathbb{R}^{3}
- For $i=1,2,3$, let u_{i} and v_{i} be the i th entries in \mathbf{u} and \mathbf{v}, respectively.

PROPERTIES OF THE MATRIX-VECTOR PRODUCT Ax

- To prove statement (a), compute $A(\mathrm{u}+\mathrm{v})$ as a linear combination of the columns of A using the entries in $\mathrm{u}+\mathrm{V}$ as weights.

$$
\begin{aligned}
A(\mathrm{u}+\mathrm{v}) & =\left[\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3}
\end{array}\right]\left[\begin{array}{l}
u_{2}+v_{2} \\
u_{3}+v_{3}
\end{array}\right] \\
& =\left(u_{1}+v_{1}\right) \mathrm{a}_{1}+\left(u_{2}+v_{2}\right) \mathrm{a}_{\uparrow}+\left(u_{3}+v_{3}\right) \mathrm{a}_{3} \\
& =\left(u_{1} \mathrm{a}_{1}+u_{2} \mathrm{a}_{2}+u_{3} \mathrm{a}_{3}\right)+\left(v_{1} \mathrm{a}_{1}+v_{2} \mathrm{a}_{2}+v_{3} \mathrm{a}_{3}\right) \\
& =A \mathrm{u}+A \mathrm{v}
\end{aligned}
$$

PROPERTIES OF THE MATRIX-VECTOR PRODUCT Ax

- To prove statement (b), compute $A(\mathrm{cu})$ as a linear combination of the columns of A using the entries in $c \mathbf{u}$ as weights.

$$
\begin{aligned}
A(c \mathrm{u}) & =\left[\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3}
\end{array}\right]\left[\begin{array}{l}
c u_{1} \\
c u_{2} \\
c u_{3}
\end{array}\right]=\left(c u_{1}\right) \mathrm{a}_{1}+\left(c u_{2}\right) \mathrm{a}_{2}+\left(c u_{3}\right) \mathrm{a}_{3} \\
& =c\left(u_{1} \mathrm{a}_{1}\right)+c\left(u_{2} \mathrm{a}_{2}\right)+c\left(u_{3} \mathrm{a}_{3}\right) \\
& =c\left(u_{1} \mathrm{a}_{1}+u_{2} \mathrm{a}_{2}+u_{3} \mathrm{a}_{3}\right) \\
& =c(A \mathbf{u})
\end{aligned}
$$

