AMS 10/10A, Homework 3

Problems for Section 1.3
Problem 1. For each of the vector equations below, write down its equivalent linear system.

$$
\begin{aligned}
x_{1}\left[\begin{array}{r}
3 \\
0 \\
1 \\
-5
\end{array}\right]+x_{2}\left[\begin{array}{r}
-1 \\
9 \\
0 \\
5
\end{array}\right]+x_{3}\left[\begin{array}{r}
-1 \\
2 \\
7 \\
1
\end{array}\right] & =\left[\begin{array}{r}
5 \\
6 \\
0 \\
-5
\end{array}\right] \\
x_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{r}
-1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
7 \\
-1
\end{array}\right] & =\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{aligned}
$$

Problem 2. For each of the linear systems below, write down its equivalent vector equation.

$$
\begin{aligned}
& \left\{\begin{aligned}
2 x_{1}+3 x_{2}-x_{3} & =1 \\
4 x_{1}+7 x_{2}+x_{3} & =3 \\
7 x_{1}+10 x_{2}-4 x_{3} & =4
\end{aligned}\right. \\
& \left\{\begin{aligned}
x_{1}+2 x_{2}-3 x_{3} & =1 \\
3 x_{1}+6 x_{2}+x_{3} & =13
\end{aligned}\right.
\end{aligned}
$$

Problem 3. Determine if b is a linear combination of v_{1}, v_{2} and v_{3}.

$$
b=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right], \quad v_{1}=\left[\begin{array}{r}
0 \\
-4 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Problem 4. Let

$$
b=\left[\begin{array}{r}
3 \\
-5 \\
h
\end{array}\right], \quad v_{1}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right], \quad v_{2}=\left[\begin{array}{r}
-5 \\
-8 \\
1
\end{array}\right]
$$

For what value(s) of h is vector b in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$?

Problem 5. Let

$$
A=\left[\begin{array}{rrr}
1 & 3 & 1 \\
0 & 2 & 4 \\
1 & 5 & -3
\end{array}\right], \quad b=\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right]
$$

Let W be the set of all linear combinations of the columns of A.
5.1. Is b in W ? Why?
5.2. Show that the third column of A is in W.

Problems for Section 1.4
Problem 6. Compute the following products

$$
\left[\begin{array}{llll}
1 & 3 & 4 & 7 \\
3 & 9 & 7 & 6
\end{array}\right]\left[\begin{array}{r}
0 \\
3 \\
-1 \\
2
\end{array}\right], \quad\left[\begin{array}{rrr}
2 & -1 & 0 \\
2 & 1 & -1
\end{array}\right]\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right], \quad\left[\begin{array}{rrrr}
-5 & 2 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{r}
9 \\
1 \\
-1 \\
5
\end{array}\right]
$$

Problem 7. Use the definition of $A x$ to write the matrix equation as a vector equation, or vice versa.

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
-1 & 4 & 7 & -3 \\
2 & 9 & -6 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] } & =\left[\begin{array}{l}
6 \\
4
\end{array}\right] \\
x_{1}\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]+x_{3}\left[\begin{array}{r}
1 \\
1 \\
-5
\end{array}\right]+x_{4}\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] & =\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]
\end{aligned}
$$

Problem 8. Let

$$
A=\left[\begin{array}{rrrr}
1 & 3 & 0 & 3 \\
-1 & -1 & -1 & 1 \\
0 & -4 & 2 & -8 \\
2 & 0 & 3 & -1
\end{array}\right]
$$

How many rows of A contain a pivot position?
Does the equation $A x=b$ have a solution for each b in \mathbb{R}^{4} ?

Problem 9. Let $v_{1}=\left[\begin{array}{r}0 \\ -4 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, and $v_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Does $\left\{v_{1}, v_{2}, v_{3}\right\}$ span \mathbb{R}^{3} ? Why or why not?

Problem 10. Could a set of three vectors in \mathbb{R}^{4} span all of \mathbb{R}^{4} ? Explain. What about n vectors in \mathbb{R}^{m} where n is smaller than m ?

Problem 11. Mark each statement True or False.
11.1. If a matrix A has a row of all zeros, then its reduced echelon form also contains a row of all zeros.
11.2. If the reduced echelon form of matrix A has a row of all zeros, then matrix A contains a row of all zeros.
11.3. An example of a linear combination of vectors v_{1} and v_{2} is the vector $\frac{1}{3} v_{1}$.
11.4. Any linear combination of vectors can always be written in the form $A x$ for a suitable matrix A and vector x.
11.5. The equation $A x=b$ is consistent if the augmented matrix $[A b]$ has a pivot position in every row.

