1

Linear Equations in Linear Algebra

1.1

SYSTEMS OF LINEAR EQUATIONS

Linear Algebra

David C. Lay
© 2012 Pearson Education, Inc.

LINEAR EQUATION

- A linear equation in the variables x_{1}, \ldots, x_{n} is an equation that can be written in the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

where b and the coefficients a_{1}, \ldots, a_{n} are real or complex numbers that are usually known in advance.

- A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables - say, x_{1}, \ldots, x_{n}.

LINEAR EQUATION

- A solution of the system is a list $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of numbers that makes each equation a true statement when the values s_{1}, \ldots, s_{n} are substituted for x_{1}, \ldots, x_{n}, respectively.
- The set of all possible solutions is called the solution set of the linear system.
- Two linear systems are called equivalent if they have the same solution set.

LINEAR EQUATION

- A system of linear equations has

1. no solution, or
2. exactly one solution, or
3. infinitely many solutions.

- A system of linear equations is said to be consistent if it has either one solution or infinitely many solutions.
- A system of linear equation is said to be inconsistent if it has no solution.

MATRIX NOTATION

- The essential information of a linear system can be recorded compactly in a rectangular array called a matrix.
- For the following system of equations,

$$
x_{1}-2 x_{2}+x_{3}=0
$$

$$
2 x_{2}-8 x_{3}=8
$$

$$
-4 x_{1}+5 x_{2}+9 x_{3}=-9
$$

the matrix $\left[\begin{array}{rrr}1 & -2 & 1 \\ 0 & 2 & -8 \\ -4 & 5 & 9\end{array}\right]$
is called the coefficient matrix of the system.

MATRIX NOTATION

- An augmented matrix of a system consists of the coefficient matrix with an added column containing the constants from the right sides of the equations.
- For the given system of equations,

$$
\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

is called the augmented matrix.

MATRIX SIZE

- The size of a matrix tells how many rows and columns it has. If m and n are positive numbers, an $\boldsymbol{m} \times \boldsymbol{n}$ matrix is a rectangular array of numbers with m rows and n columns. (The number of rows always comes first.)
- The basic strategy for solving a linear system is to replace one system with an equivalent system (i.e., one with the same solution set) that is easier to solve.

SOLVING SYSTEM OF EQUATIONS

- Example 1: Solve the given system of equations.

$$
\begin{align*}
x_{1}-2 x_{2}+x_{3} & =0 \tag{1}\\
2 x_{2}-8 x_{3} & =8 \tag{2}\\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9 \tag{3}
\end{align*}
$$

Solution: The elimination procedure is shown here with and without matrix notation, and the results are placed side by side for comparison.

SOLVING SYSTEM OF EQUATIONS

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9
\end{aligned} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

- Keep x_{1} in the first equation and eliminate it from the other equations. To do so, add 4 times equation 1 to equation 3. $4 x_{1}-8 x_{2}+4 x_{3}=0$

$$
\begin{aligned}
-4 x_{1}+5 x_{2}+9 x_{3} & =-9 \\
-3 x_{2}+13 x_{3} & =-9
\end{aligned}
$$

SOLVING SYSTEM OF EQUATIONS

- The result of this calculation is written in place of the original third equation.

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-3 x_{2}+13 x_{3} & =-9
\end{aligned} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

- Now, multiply equation 2 by $1 / 2$ in order to obtain 1 as the coefficient for x_{2}.

SOLVING SYSTEM OF EQUATIONS

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-4 x_{3} & =4 \\
-3 x_{2}+13 x_{3} & =-9
\end{aligned} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

- Use the x_{2} in equation 2 to eliminate the $-3 x_{2}$ in equation 3 .

$$
\begin{aligned}
3 x_{2}-12 x_{3} & =12 \\
-3 x_{2}+13 x_{3} & =-9 \\
\hline x_{3} & =3
\end{aligned}
$$

SOLVING SYSTEM OF EQUATIONS

- The new system has a triangular form.

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
x_{2}-4 x_{3}=4 \\
\hline x_{3}=3
\end{array} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

- Now, you want to eliminate the $-2 x_{2}$ term from equation 1, but it is more efficient to use the x_{3} term in equation 3 first to eliminate the $-4 x_{3}$ and x_{3} terms in equations 2 and 1 .

SOLVING SYSTEM OF EQUATIONS

$$
\begin{aligned}
4 x_{3} & =12 \\
x_{2}-4 x_{3} & =4 \\
\hline x_{2} & =16
\end{aligned} \quad \begin{aligned}
-x_{3} & =-3 \\
x_{1}-2 x_{2} & =-3
\end{aligned}
$$

- Now, combine the results of these two operations.

$$
\begin{aligned}
x_{1}-2 x_{2} & =-3 \\
x_{2} & =16 \\
x_{3} & =3
\end{aligned} \quad\left[\begin{array}{rrrr}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

SOLVING SYSTEM OF EQUATIONS

- Move back to the x_{2} in equation 2, and use it to eliminate the $-2 x_{2}$ above it. Because of the previous work with x_{3}, there is now no arithmetic involving x_{3} terms. Add 2 times equation 2 to equation 1 and obtain the system:

$$
\begin{aligned}
& x_{1}=29 \\
& x_{2}=16 \\
& x_{3}=3
\end{aligned} \quad\left[\begin{array}{rrrr}
1 & 0 & 0 & 29 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

SOLVING SYSTEM OF EQUATIONS

- Thus, the only solution of the original system is $(29,16,3)$. To verify that $(29,16,3)$ is a solution, substitute these values into the left side of the original system, and compute.

$$
\begin{aligned}
(29)-2(16)+(3) & =29-32+3=0 \\
2(16)-8(3) & =32-24=8 \\
-4(29)+5(16)+9(3) & =-116+80+27=-9
\end{aligned}
$$

- The results agree with the right side of the original system, so $(29,16,3)$ is a solution of the system.

ELEMENTARY ROW OPERATIONS

- Elementary row operations include the following:

1. (Replacement) Replace one row by the sum of itself and a multiple of another row.
2. (Interchange) Interchange two rows.
3. (Scaling) Multiply all entries in a row by a nonzero constant.

- Two matrices are called row equivalent if there is a sequence of elementary row operations that transforms one matrix into the other.

ELEMENTARY ROW OPERATIONS

- It is important to note that row operations are reversible.
- If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.
- Two fundamental questions about a linear system are as follows:

1. Is the system consistent; that is, does at least one solution exist?
2. If a solution exists, is it the only one; that is, is the solution unique?

EXISTENCE AND UNIQUENESS OF SYSTEM OF EQUATIONS

- Example 2: Determine if the following system is consistent.

$$
\begin{array}{r}
x_{2}-4 x_{3}=8 \\
2 x_{1}-3 x_{2}+2 x_{3}=1 \tag{4}\\
5 x_{1}-8 x_{2}+7 x_{3}=1
\end{array}
$$

- Solution: The augmented matrix is

$$
\left[\begin{array}{rrrr}
0 & 1 & -4 & 8 \\
2 & -3 & 2 & 1 \\
5 & -8 & 7 & 1
\end{array}\right]
$$

EXISTENCE AND UNIQUENESS OF SYSTEM OF EQUATIONS

- To obtain an x_{1} in in the first equation, interchange rows 1 and 2.

$$
\left[\begin{array}{rrrr}
2 & -3 & 2 & 1 \\
0 & 1 & -4 & 8 \\
5 & -8 & 7 & 1
\end{array}\right]
$$

- To eliminate the $5 x_{1}$ term in the third equation, add -5/2 times row 1 to row 3 .

$$
\left[\begin{array}{rrrr}
2 & -3 & 2 & 1 \tag{5}\\
0 & 1 & -4 & 8 \\
0 & -1 / 2 & 2 & -3 / 2
\end{array}\right]
$$

EXISTENCE AND UNIQUENESS OF SYSTEM OF EQUATIONS

- Next, use the x_{2} term in the second equation to eliminate the $-(1 / 2) x_{2}$ term from the third equation. Add $1 / 2$ times row 2 to row 3 .

$$
\left[\begin{array}{rrrr}
2 & -3 & 2 & 1 \tag{6}\\
0 & 1 & -4 & 8 \\
0 & 0 & 0 & 5 / 2
\end{array}\right]
$$

- The augmented matrix is now in triangular form. To interpret it correctly, go back to equation notation.

$$
\begin{array}{r}
2 x_{1}-3 x_{2}+2 x_{3}=1 \\
x_{2}-4 x_{3}=8 \tag{7}
\end{array}
$$

$$
0=5 / 2
$$

EXISTENCE AND UNIQUENESS OF SYSTEM OF EQUATIONS

- The equation $0=5$ / 2 is a short form of $0 x_{1}+0 x_{2}+0 x_{3}=5 / 2$.
- There are no values of x_{1}, x_{2}, x_{3} that satisfy (7) because the equation $0=5 / 2$ is never true.
- Since (7) and (4) have the same solution set, the original system is inconsistent (i.e., has no solution).

1

Linear Equations in Linear Algebra

1.2

Row Reduction and Echelon Forms

Linear Algebra

David C. Lay
© 2012 Pearson Education, Inc.

ECHELON FORM

- A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:

1. All nonzero rows are above any rows of all zeros.
2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
3. All entries in a column below a leading entry are zeros.

ECHELON FORM

- If a matrix in echelon form satisfies the following additional conditions, then it is in reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1 .
5. Each leading 1 is the only nonzero entry in its column.

- An echelon matrix (respectively, reduced echelon matrix) is one that is in echelon form (respectively, reduced echelon form.)

ECHELON FORM

- Any nonzero matrix may be row reduced (i.e., transformed by elementary row operations) into more than one matrix in echelon form, using different sequences of row operations. However, the reduced echelon form one obtains from a matrix is unique. Theorem 1: Uniqueness of the Reduced Echelon Form Each matrix is row equivalent to one and only one reduced echelon matrix.

PIVOT POSITION

- If a matrix A is row equivalent to an echelon matrix U, we call U an echelon form (or row echelon form) of \boldsymbol{A}; if U is in reduced echelon form, we call U the reduced echelon form of \boldsymbol{A}.
- A pivot position in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.

PIVOT POSITION

- Example 1: Row reduce the matrix A below to echelon form, and locate the pivot columns of A.

$$
A=\left|\begin{array}{rrrrr}
0 & -3 & -6 & 4 & 9 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
1 & 4 & 5 & -9 & -7
\end{array}\right|
$$

- Solution: The top of the leftmost nonzero column is the first pivot position. A nonzero entry, or pivot, must be placed in this position.

PIVOT POSITION

- Now, interchange rows 1 and 4.

$$
\left\lceil\begin{array}{rrrrr}
1 & 4 & 5 & -9 & -7 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
0 & -3 & -6 & 4 & 9
\end{array}{ }^{4}\right. \text { Pivot column }
$$

- Create zeros below the pivot, 1 , by adding multiples of the first row to the rows below, and obtain the next matrix.

PIVOT POSITION

- Choose 2 in the second row as the next pivot.

$$
\left[\begin{array}{rrrrr}
1 & 4 & 5 & -9 & -7 \\
0 & 2 & 4 & -6 & -6 \\
0 & 5 & 10 & -15 & -15 \\
0 & -3 & -6 & 4 & 9
\end{array}\right]
$$

- Add $-5 / 2$ times row 2 to row 3, and add $3 / 2$ times row 2 to row 4 .

PIVOT POSITION

$$
\left[\left.\begin{array}{rrrrr}
1 & 4 & 5 & -9 & -7 \\
0 & 2 & 4 & -6 & -6 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -5 & 0
\end{array} \right\rvert\,\right.
$$

- There is no way a leading entry can be created in column 3. But, if we interchange rows 3 and 4, we can produce a leading entry in column 4.

PIVOT POSITION

$$
\left\lceil\begin{array}{rrrr|r}
1 & 4 & 5 & -9 & -7 \\
0 & 2 & 4 & -6 & -6 \\
0 & 0 & 0 & -5 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right\rceil
$$

Pivot columns

- The matrix is in echelon form and thus reveals that columns 1,2 , and 4 of A are pivot columns.

PIVOT POSITION

- The pivots in the example are 1,2 and -5 .

ROW REDUCTION ALGORITHM

- Example 2: Apply elementary row operations to transform the following matrix first into echelon form and then into reduced echelon form.

$$
\left[\begin{array}{rrrrrr}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{array}\right]
$$

- Solution:
- STEP 1: Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.

ROW REDUCTION ALGORITHM

$$
\left[\begin{array}{rrrrrr}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{array}\right]
$$

- STEP 2: Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.

ROW REDUCTION ALGORITHM

- Interchange rows 1 and 3. (Rows 1 and 2 could have also been interchanged instead.)

$$
\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 6 & 15 \\
3 & -7 & 8 & -5 & 8 & 9 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right]
$$

- STEP 3: Use row replacement operations to create zeros in all positions below the pivot.

ROW REDUCTION ALGORITHM

- We could have divided the top row by the pivot, 3 , but with two 3 s in column 1 , it is just as easy to add -1 times row 1 to row 2 .

$$
\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right]
$$

- STEP 4: Cover the row containing the pivot position, and cover all rows, if any, above it. Apply steps $1-3$ to the submatrix that remains. Repeat the process until there are no more nonzero rows to modify.

ROW REDUCTION ALGORITHM

- With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2 , select as a pivot the "top" entry in that column.
$\left[\begin{array}{cccccc}3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5\end{array}\right]$
- For step 3, we could insert an optional step of dividing the "top" row of the submatrix by the pivot, 2 . Instead, we add -3 / 2 times the "top" row to the row below.

ROW REDUCTION ALGORITHM

- This produces the following matrix.

$$
\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

- When we cover the row containing the second pivot position for step 4, we are left with a new submatrix that has only one row.

$$
\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]
$$

ROW REDUCTION ALGORITHM

- Steps 1-3 require no work for this submatrix, and we have reached an echelon form of the full matrix. We perform one more step to obtain the reduced echelon form.
- STEP 5: Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1 , make it 1 by a scaling operation.
- The rightmost pivot is in row 3. Create zeros above it, adding suitable multiples of row 3 to rows 2 and 1 .

ROW REDUCTION ALGORITHM

$$
\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 0 & -9 \\
0 & 2 & -4 & 4 & 0 & -14 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \leftarrow \text { Row } 1+(-6) \times \text { row } 3
$$

- The next pivot is in row 2 . Scale this row, dividing by the pivot.

$$
\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 0 & -9 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \leftarrow \text { Row scaled by } \frac{1}{2}
$$

ROW REDUCTION ALGORITHM

- Create a zero in column 2 by adding 9 times row 2 to row 1.

$$
\left[\begin{array}{rrrrrr}
3 & 0 & -6 & 9 & 0 & -72 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \leftarrow \text { Row } 1+(9) \times \text { row } 2
$$

- Finally, scale row 1, dividing by the pivot, 3.

ROW REDUCTION ALGORITHM

$$
\left[\begin{array}{rrrrrr}
1 & 0 & -2 & 3 & 0 & -24 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \leftarrow \text { Row scaled by } \frac{1}{3}
$$

- This is the reduced echelon form of the original matrix.
- The combination of steps 1-4 is called the forward phase of the row reduction algorithm. Step 5, which produces the unique reduced echelon form, is called the backward phase.

SOLUTIONS OF LINEAR SYSTEMS

- The row reduction algorithm leads to an explicit description of the solution set of a linear system when the algorithm is applied to the augmented matrix of the system.
- Suppose that the augmented matrix of a linear system has been changed into the equivalent reduced echelon form.

$$
\left[\begin{array}{rrrr}
1 & 0 & -5 & 1 \\
0 & 1 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

SOLUTIONS OF LINEAR SYSTEMS

- There are 3 variables because the augmented matrix has four columns. The associated system of equations is

$$
\begin{align*}
x_{1}-5 x_{3} & =1 \\
x_{2}+x_{3} & =4 \tag{1}\\
0 & =0
\end{align*}
$$

- The variables x_{1} and x_{2} corresponding to pivot columns in the matrix are called basic variables. The other variable, x_{3}, is called a free variable.

SOLUTIONS OF LINEAR SYSTEMS

- Whenever a system is consistent, as in (1), the solution set can be described explicitly by solving the reduced system of equations for the basic variables in terms of the free variables.
- This operation is possible because the reduced echelon form places each basic variable in one and only one equation.
- In (1), solve the first and second equations for x_{1} and x_{2}. (Ignore the third equation; it offers no restriction on the variables.)

SOLUTIONS OF LINEAR SYSTEMS

$$
\begin{align*}
& x_{1}=1+5 x_{3} \\
& x_{2}=4-x_{3} \tag{2}
\end{align*}
$$

x_{3} is free

- The statement " x_{3} is free" means that you are free to choose any value for x_{3}. Once that is done, the formulas in (2) determine the values for x_{1} and x_{2}. For instance, when $x_{3}=0$, the solution is $(1,4,0)$; when $x_{3}=1$, the solution is $(6,3,1)$.
- Each different choice of x_{3} determines a (different) solution of the system, and every solution of the system is determined by a choice of x_{3}.

PARAMETRIC DESCRIPTIONS OF SOLUTION SETS

- The description in (2) is a parametric description of solutions sets in which the free variables act as parameters.
- Solving a system amounts to finding a parametric description of the solution set or determining that the solution set is empty.
- Whenever a system is consistent and has free variables, the solution set has many parametric descriptions.

PARAMETRIC DESCRIPTIONS OF SOLUTION

SETS

- For instance, in system (1), add 5 times equation 2 to equation 1 and obtain the following equivalent system.

$$
\begin{aligned}
x_{1}+5 x_{2} & =21 \\
x_{2}+x_{3} & =4
\end{aligned}
$$

- We could treat x_{2} as a parameter and solve for x_{1} and x_{3} in terms of x_{2}, and we would have an accurate description of the solution set.
- When a system is inconsistent, the solution set is empty, even when the system has free variables. In this case, the solution set has no parametric representation.

EXISTENCE AND UNIQUENESS THEOREM

Theorem 2: Existence and Uniqueness Theorem A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column-i.e., if and only if an echelon form of the augmented matrix has no row of the form $[0 \ldots 0 b]$ with b nonzero.

- If a linear system is consistent, then the solution set contains either (i) a unique solution, when there are no free variables, or (ii) infinitely many solutions, when there is at least on free variable.

ROW REDUCTION TO SOLVE A LINEAR SYSTEM

Using Row Reduction to Solve a Linear System

1. Write the augmented matrix of the system.
2. Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If there is no solution, stop; otherwise, go to the next step.
3. Continue row reduction to obtain the reduced echelon form.
4. Write the system of equations corresponding to the matrix obtained in step 3.

ROW REDUCTION TO SOLVE A LINEAR SYSTEM

5. Rewrite each nonzero equation from step 4 so that its one basic variable is expressed in terms of any free variables appearing in the equation.
