AMS 10/10A, Homework 10

Problem 1. Let H be a subspace spanned by $u_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $u_{1}=\left[\begin{array}{r}-1 \\ 3 \\ -2\end{array}\right]$. Write $y=\left[\begin{array}{r}2 \\ 2 \\ -3\end{array}\right]$ as the sum of a vector in H and a vector orthogonal to H.

Problem 2. Find the closest point to y in the subspace spanned by v_{1} and v_{2}, where

$$
y=\left[\begin{array}{l}
1 \\
0 \\
3 \\
2
\end{array}\right], v_{1}=\left[\begin{array}{r}
1 \\
-2 \\
-1 \\
2
\end{array}\right], \text { and } v_{2}=\left[\begin{array}{r}
-4 \\
1 \\
0 \\
3
\end{array}\right]
$$

Problem 3-7. Let $A=\left[\begin{array}{rr}1 & 5 \\ 3 & 1 \\ 2 & -4\end{array}\right]$ and $b=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$.

- Is equation $A x=b$ consistent?
- Verify that the two columns of matrix A form an orthogonal basis for $\operatorname{Col}(A)$.
- Let \hat{b} be the orthogonal projection of b onto $\operatorname{Col}(A)$. Find \hat{b}.
- Let \hat{x} the least square solution of $A x=b$. Use the formula $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$ to compute \hat{x}.
- Verify that \hat{x} is the solution of $A x=\hat{b}$.

Problem 8-9. Let A be an $m \times n$ matrix. Use the steps below to show that a vector x in \mathbb{R}^{n} satisfies $A x=0$ if and only if $A^{T} A x=0$.

- Show that if $A x=0$, then $A^{T} A x=0$.
- Suppose $A^{T} A x=0$. Show that $x^{T} A^{T} A x=0$, and use this to prove $A x=0$.

Problem 10-11. Let A be an $m \times n$ matrix. Problem 8-9 implies that $N u l(A)=N u l\left(A^{T} A\right)$. Use this result to prove that

- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)$.
- If $\operatorname{rank}(A)=n$, then $A^{T} A$ is invertible.

