AMS 10/10A, Homework 10

Problem 1. Let *H* be a subspace spanned by $u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $u_1 = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$. Write

 $y = \begin{bmatrix} 2\\ 2\\ -3 \end{bmatrix}$ as the sum of a vector in *H* and a vector orthogonal to *H*.

Problem 2. Find the closest point to y in the subspace spanned by v_1 and v_2 , where

$$y = \begin{bmatrix} 1\\0\\3\\2 \end{bmatrix}, v_1 = \begin{bmatrix} 1\\-2\\-1\\2 \end{bmatrix}, \text{ and } v_2 = \begin{bmatrix} -4\\1\\0\\3 \end{bmatrix}$$

Problem 3-7. Let $A = \begin{bmatrix} 1 & 5 \\ 3 & 1 \\ 2 & -4 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$.

- Is equation Ax = b consistent?
- Verify that the two columns of matrix A form an orthogonal basis for Col(A).
- Let \hat{b} be the orthogonal projection of b onto Col(A). Find \hat{b} .
- Let \hat{x} the least square solution of Ax = b. Use the formula $\hat{x} = (A^T A)^{-1} A^T b$ to compute \hat{x} .
- Verify that \hat{x} is the solution of $Ax = \hat{b}$.

Problem 8-9. Let A be an $m \times n$ matrix. Use the steps below to show that a vector x in \mathbb{R}^n satisfies Ax = 0 if and only if $A^T A x = 0$.

- Show that if Ax = 0, then $A^T Ax = 0$.
- Suppose $A^T A x = 0$. Show that $x^T A^T A x = 0$, and use this to prove A x = 0.

Problem 10-11. Let A be an $m \times n$ matrix. Problem 8-9 implies that $Nul(A) = Nul(A^TA)$. Use this result to prove that

- $rank(A) = rank(A^T A)$.
- If rank(A) = n, then $A^T A$ is invertible.