AMS 10/10A, Homework 1

Problem 1. Let $z_{1}=2-3 i$ and $z_{2}=-1+2 i$. Compute

1. $\frac{z_{1}}{z_{2}}$;
2. $\left(z_{1}+z_{2}\right)^{3}$;
3. $\left(z_{1}-\bar{z}_{2}\right)^{-2}$.

Problem 2. Find a complex number z so that

$$
(1+5 i) z=-1-3 i
$$

Problem 3. Let $z_{1}=\sqrt{3}+i$ and $z_{2}=-1-i$.

1. Express z_{1} and z_{2} using exponential notation, i.e., $z=r e^{\theta i}$;
2. Compute $\left|z_{1} \cdot z_{2}\right|$ and $\arg \left(z_{1} \cdot z_{2}\right)$;
3. Compute $\left|z_{1} / z_{2}\right|$ and $\arg \left(z_{1} / z_{2}\right)$.

Problem 4. Express the following complex numbers using exponential notation, i.e., $z=$ $r e^{\theta i}$.

1. $\cos \alpha-i \sin \alpha$;
2. $\sin \alpha+i \cos \alpha$;
3. $\sin \alpha-i \cos \alpha$.

Hint: first use trigonometric identities to write each one in the form of $\cos \theta+i \sin \theta$.

Problem 5. Consider the following polynomial equation

$$
x^{4}=2 x
$$

1. Find all real valued solutions of this equation;
2. Find all (real and complex) solutions of this equations.

Problem 6. Find all solutions of $z^{3}=-1+i$. Write out solutions using exponential notation.

Problem 7. Find all solutions of $z^{4}=i$. Write out solutions using exponential notation.

Problem 8. Find all solutions of $z^{4}=-1+i \sqrt{3}$. Write out solutions using exponential notation.

Problem 9. Let $z=\sqrt{3}-i$.

1. Express z in the exponential notation;
2. Find the real and imaginary parts of z^{13}.
3. Find the real and imaginary parts of z^{22}.

Problem 10. In the complex plane, consider the set of all complex numbers satisfying

$$
|z-(1+i)|=3
$$

Identify the geometric meaning of the set.

Problem 11. Use exponential notation to show that multiplication by $\sqrt{2}+i \sqrt{2}$ corresponds to counterclockwise rotation by an angle of $\pi / 4$ and stretching by a factor of 2 .

Problem 12. Consider a polynomial of odd degree with real coefficients. Show that the polynomial always has at least one real root.
Hint: use Proposition 4.5 in the lecture notes; look at what happens to the degree of the right hand side if there is no real root.

