AMS 10: Review for the Midterm Exam

The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items.

Complex numbers

The Cartesian form:

$$
a+b i
$$

Complex conjugate: ?
Arithmetics:
Example: $\frac{a_{1}+b_{1} i}{a_{2}+b_{2} i}$
How to calculate this division?
The polar form:

$$
r(\cos \theta+\sin \theta i)
$$

The absolute value: ?
The argument: ?
Conversion between $a+b i$ and $r(\cos \theta+\sin \theta i)$
How to calculate the absolute value given the Cartesian form?
How to calculate the argument given the Cartesian form?
The exponential form:

$$
r e^{\theta i}=r(\cos \theta+\sin \theta i)
$$

Arithmetics in the exponential form:
Example: $\frac{r_{1} e^{\theta_{1} i}}{r_{2} e^{\theta_{2} i}}$
How to calculate this division?
Example: $\left(\sqrt{2} e^{\frac{\pi}{3} i}\right)^{11}$

How to write out the exponential form of $\left(\sqrt{2} e^{\frac{\pi}{3} i}\right)^{11} ?$
How to write out the Cartesian form of $\left(\sqrt{2} e^{\frac{\pi}{3} i}\right)^{11}$ after we obtain its exponential form?
Roots of polynomials
The fundamental theorem of algebra
How to factor a real polynomial?
The n-th roots of a complex number (there are n of them)
Example: The 7 -th roots of $(-2+2 i)$
How to write out ALL of the 7 -th roots of $(-2+2 i)$ in the exponential form?
How to write out ALL of the 7-th roots of $(-2+2 i)$ in the Cartesian form after we obtain their exponential forms?

Chapter 1

Elementary row operations
What are the 3 kinds of elementary row operations?
Row reduction algorithm
Forward phase: row reduction to echelon form
Backward phase: row reduction to reduced echelon form
What is the definition of echelon form?
What is the definition of reduced echelon form?
Theorem 1 (Chapter 1):
Row equivalence to reduced echelon form
Pivot positions
What is a pivot position?
Pivot columns
What is a pivot column?
Basic variables
How do we identify basic variables?
Free variables
How do we identify free variables?

Theorem 2 (Chapter 1)
Existence and uniqueness of solution of $A \vec{x}=\vec{b}$
Solution set in parametric form
How to find the solution set of $A \vec{x}=\overrightarrow{0}$?
How to find the solution set of $A \vec{x}=\vec{b}$?
Matrix equation, vector equation and linear system
Theorem 3 (Chapter 1)
Equivalence of matrix equation, vector equation and linear system
Row-vector rule for computing $A \vec{X}$
Theorem 4 (Chapter 1): 4 statements are equivalent to each other
a. $A \vec{x}=\vec{b}$ is consistent for every \vec{b} in \mathbb{R}^{m}.
b.
c.
d. Matrix A has a pivot position in every row.

Theorem 5 (Chapter 1):
Properties of matrix-vector multiplication
Theorem 6 (Chapter 1):
The solution set of $A \vec{x}=\vec{b}$
Linear independence and dependence
Theorem 7 (Chapter 1)
A necessary and sufficient condition for linear dependence
3 special cases:
*) A set of 2 vectors
*) A set containing the zero vector Theorem 9 (Chapter 1)
*) \# of vectors in the set > \# of entries in each vector Theorem 8 (Chapter 1)

Chapter 2:

Matrix addition and scalar multiplication
Theorem 1 (Chapter 2)
Properties of matrix addition and scalar multiplication
Matrix multiplication

Theorem 2 (Chapter 2)
Properties of matrix multiplication
Row-column rule for computing AB
The transpose of a matrix
Theorem 3 (Chapter 2)
Properties of matrix transpose

$$
\begin{aligned}
& (A B)^{T}=? \\
& \left(A_{1} A_{2} \cdots A_{k}\right)^{T}=?
\end{aligned}
$$

Question 1:

Is $A \vec{x}=\vec{b}$ consistent for a particular given \vec{b} ? How to check?
Hint: use Theorem 2 (Chapter 1)
Question 1B:
How to find pivot positions of the augmented matrix $\left[\begin{array}{lll}A & \vec{b} \\ & \end{array}\right]$?
Hint: Row reduction to an echelon form.

Question 2:

Suppose $A \vec{x}=\vec{b}$ is consistent for the given \vec{b}.
How to check if $A \vec{x}=\vec{b}$ have a unique solution or infinitely many solutions?
Hint: use Theorem 2 (Chapter 1)
Question 2B:
How to identify basic variables and free variables of $A \vec{x}=\vec{b}$?
Hint: Row reduction to echelon form, identify pivot positions and ...
Question 2C:
Suppose $A \vec{x}=\vec{b}$ is consistent for the given \vec{b}.
How to write out the solution set of $A \vec{x}=\vec{b}$?
Hint: Row reduction to reduced echelon form; Identify basic variables and free variables;

Question 3:

Is \vec{b} a linear combination of $\vec{a}_{1}, \ldots, \vec{a}_{n}$? How to check?
Hint: use Theorem 3 (Chapter 1) and Theorem 2 (Chapter 1)

Question 4:
Is \vec{b} in $\operatorname{span}\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$? How to check?
Hint: use Theorem 3 (Chapter 1) and Theorem 2 (Chapter 1)

Question 5:

Suppose matrix A is $m \times n$.
Is $A \vec{x}=\vec{b}$ consistent for every \vec{b} in \mathbb{R}^{m} ?
Hint: use Theorem 4 (Chapter 1)
Question 5B:
Suppose matrix A is 11×9.
Is it possible that matrix A has a pivot position in every row?
Hint: Can a column have more than 1 pivot position?

Question 6:
Suppose $\vec{a}_{1}, \ldots, \vec{a}_{n}$ are in \mathbb{R}^{m}.
Is $\operatorname{span}\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}=\mathbb{R}^{m}$? How to check?
Hint: use Theorem 4 (Chapter 1)

Question 7:
Suppose $\vec{a}_{1}, \ldots, \vec{a}_{n}$ are in \mathbb{R}^{m}.
Is every \vec{b} in \mathbb{R}^{m} a linear combination of $\vec{a}_{1}, \ldots, \vec{a}_{n}$? How to check
Hint: use Theorem 4 (Chapter 1)

Question 8:

Does $A \vec{X}=\overrightarrow{0}$ have a non-trivial solution?
Hint: use Theorem 2 (Chapter 1)
Question 8B:
Is $A \vec{X}=\overrightarrow{0}$ always consistent?
Hint: What is the trivial solution?
Question 8C:
Suppose matrix A is 11×15.
Does $A \vec{x}=\overrightarrow{0}$ have a non-trivial solution?
Hint: Check the number of free variables.

Question 9:
Is $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ in \mathbb{R}^{m} linearly dependent? How to check?
Hint: Is this question related to question 8?

Question 10:
Is $\left\{\vec{u}_{1}, \vec{u}_{2}, \overrightarrow{0}\right\}$ linearly dependent?
Can we conclude anything without doing row reduction?
Hint: use Theorem 9 (Chapter 1)

Question 11:
Is $\{2 \vec{u}, 7 \vec{u}\}$ linearly dependent?
Can we conclude anything without knowing \vec{u} ?
Hint: use Theorem 7 (Chapter 1)

Question 12:
Suppose $\vec{a}_{1}, \ldots, \vec{a}_{n}$ are in \mathbb{R}^{m}.
Suppose $n>m$.
Is $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ linearly dependent?

Can we conclude anything without knowing $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$?
Hint: use Theorem 8 (Chapter 1)

Question 13:
Suppose matrix A is $m \times n$.
Suppose $n>m$.
Does $A \vec{x}=\overrightarrow{0}$ have a non-trivial solution?
Hint: Examine the number of free variables, ...

Question 14:

Suppose AB is well defined.
Does that necessarily imply BA is well defined?
Suppose AB $=0$.
Does that imply $\mathrm{BA}=0$?
Suppose AB = AC.
Does that imply $\mathrm{A}=0$ or $\mathrm{B}=\mathrm{C}$?
Suppose matrix A is $n \times n$.
Is A^{5} well defined?
Suppose A is 3×5 and B is 4×3.
Is $A B$ well defined?
Is BA well defined?
Is A^{7} well defined?
Is $(\mathrm{AB})^{7}$ well defined?

