AMS 10: Review for the Final Exam (Part 2)

Chapter 2 (continued)

The inverse of a matrix: <u>Definition of inverse:</u> Suppose matrix A is $n \times n$. If there exists C such that C A = I and A C = I, then we say A is invertible.

<u>Theorem 5</u> (of Chapter 2)

 $A\vec{x} = \vec{b} \xrightarrow{A \text{ is invertible}} \vec{x} = A^{-1}\vec{b}$

That is, invertibility of A implies existence and uniqueness of solution of $A\vec{x} = \vec{b}$.

If A and B are both invertible, then AB is invertible and

 $(AB)^{-1} = ?$ (Theorem 6 of Chapter 2)

<u>Theorem 7:</u> (of Chapter 2)

<u>Part 1:</u> Matrix A is invertible if and only if A is row equivalent to I.

<u>Part 2:</u> Suppose $E_p \dots E_2 E_1 A = I$.

Then we have $A^{-1} = E_p \dots E_2 E_1 I$

The algorithm for finding A⁻¹ (and determining if A is invertible)

(Theorem 7 of Chapter 2)

Theorem 8 of Chapter 2 (The invertible matrix theorem)

In particular, to show an $n \times n$ matrix A is invertible, we only need to find a matrix C such that C A = I

OR find a matrix C such that A C = I

Subspaces

Definition: 3 conditions

 $H = span \{ \vec{v}_1, \dots, \vec{v}_p \}$ is a subspace.

Col A				
Nul A				
A basis for a subspace				
Definition: 2 conditions				
How to find a basis for Col A?	(Theorem 13, chapter 2)			
How to find a basis for the subspace spanned by a set of vectors?				
How to find a basis for Nul A?				
Dimension of a subspace				
How to find dim (Col A)?				
How to find dim (Nul A)?				
Rank of a matrix				
How to find rank A?				

Theorem 13:

The pivot columns of A form a basis for Col A.

The rank theorem (Theorem 14):

Suppose A is $m \times n$. We have

- rank A^T = rank A
- rank A + dim (Nul A) = n

The basis theorem (Theorem 15):

If the number of vectors in the given set matches the dimension of the subspace, we only need to check <u>one of the two conditions for a basis</u>.

Chapter 3

Determinant of a matrix (det A)

Co-factor expansion

Co-factor expansion along row i

Co-factor expansion along column j

Determinant of a 2 × 2 matrix

Determinant of a triangular matrix

Procedure of using ERO's to calculate det A

- Row reduce A to an echelon form
- Record and incorporate the effect of every ERO used

Properties of determinants:

A: $n \times n$

- det A ≠ 0 if and only if A is invertible (Theorem 4)
 if and only if columns of A are independent (Theorem 8, chapter 2)
 if and only if rows of A are independent (Theorem 8, chapter 2)
- $\det A^{T} = \det A$ (Theorem 5)
- det (AB) = (det A) (det B) (Theorem 6)

•
$$\det A^{-1} = \frac{1}{\det A}$$

• det
$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ 0 & \ddots & \vdots \\ 0 & 0 & a_{nn} \end{bmatrix} = a_{11} \cdots a_{nn}$$

• det (
$$\alpha$$
 A) = α^n det A

<u>Caution</u>: in general, $det(A+B) \neq (det A) + (det B)$

Chapter 5

Eigenvalues and eigenvectors of A
Definition: λ is an eigenvalue of A if and only if det $(A - \lambda I) = 0$.Characteristic polynomial: det $(A - \lambda I)$ Characteristic equation: det $(A - \lambda I) = 0$
Algebraic multiplicity of an eigenvalueEigenspace of eigenvalue λ : Nul $(A - \lambda I)$
A basis for the eigenspace
Dimension of the eigenspace
Geometric multiplicity of an eigenvalue

Eigenvalues of a triangular matrix

Row reduction is not a tool for calculating eigenvalues of matrix A.

Theorem 2:

Eigenvectors for distinct eigenvalues are linearly independent.

Matrices A and B are similar if there exists an invertible matrix P such that

 $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$

Matrix A is diagonalizable if there exists an invertible matrix P such that

 $P^{-1}AP = D$ where D is a diagonal matrix

Theorem 4:

A and B are similar

==> They have the same characteristic polynomial

==> the same set of eigenvalues and algebraic multiplicities They also have the same geometric multiplicities

$$Nul(A - \lambda I) \xleftarrow{\text{One-to-one}}_{\text{correspondence}} Nul(B - \lambda I)$$

<u>Theorem 5 of chapter 5:</u> (The diagonalization theorem)

An $n \times n$ matrix is diagonalizable if and only if A has n linearly independent eigenvectors.

Theorem 6 of chapter 5:

If an $n \times n$ matrix A has *n* distinct eigenvalues, then A is diagonalizable.

Chapter 6

Inner product of two vectors

norm of a vector

distance between two vectors

orthogonal vectors

a vector orthogonal to a subspace

orthogonal complement of a subspace

orthogonal set

orthogonal basis

Theorem 2 (Pythagorean theorem):

 $\vec{u} \perp \vec{v}$ if and only if $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2$

<u>Properties</u> of $W^{\perp} = \{ \text{all } \vec{z} \text{ satisfying } \vec{z} \perp W \}$:

■ W[⊥] is a subspace

• Let
$$W = span \{ \vec{v}_1, \dots, \vec{v}_p \}.$$

 $\vec{x} \perp W$ if and only if $\vec{x} \perp \vec{v}_1$, $\vec{x} \perp \vec{v}_2$, ..., $\vec{x} \perp \vec{v}_p$.

Theorem 3 of chapter 6:

A is an $m \times n$ matrix. We have

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$

 $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$

 $\underline{\dim W} \text{ and } \underline{\dim W^{\perp}}$

Let W be a subspace in \mathbb{R}^n . We have

 $\dim \mathbb{W} + \dim \mathbb{W}^{\perp} = n$

Theorem 4 (of Chapter 6)

An orthogonal set of non-zero vectors is linearly independent.

Orthogonal projection of a vector onto a subspace

<u>Theorem 8</u> (the orthogonal decomposition theorem)

Let W be a subspace in \mathbb{R}^n . Let $\left\{\vec{u}_1, \dots, \vec{u}_p\right\}$ be an orthogonal basis for W.

Each \vec{y} in \mathbb{R}^n can be uniquely decomposed as

 $\vec{y} = \vec{\hat{y}} + \vec{z}$ where $\vec{\hat{y}}$ is in W and \vec{z} is in W^{\perp}. proj_W $\vec{y} \equiv \vec{\hat{y}} = \left(\frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1}\right) \vec{u}_1 + \dots + \left(\frac{\vec{y} \cdot \vec{u}_p}{\vec{u}_p \cdot \vec{u}_p}\right) \vec{u}_p$

Theorem 9 (the best approximation theorem)

Let W be a subspace in \mathbb{R}^n . Let \vec{y} be a vector in \mathbb{R}^n .

We have

$$\left\| \vec{y} - \operatorname{proj}_{W} \vec{y} \right\| < \left\| \vec{y} - \vec{v} \right\|$$
 for all $\vec{v} \neq \operatorname{proj}_{W} \vec{y}$ in W.

(Out of all vectors in W, $\text{proj}_{W} \vec{y}$ provides the <u>unique best approximation</u> to \vec{y})

Question 15:

Suppose A and B are both $n \times n$ and are both invertible.

Is $(A^{-1}B^{-1})$ invertible? If so, what is $(A^{-1}B^{-1})^{-1}$?

Is $(B A^{-1})$ invertible? If so, what is $(B A^{-1})^{-1}$?

Question 16:

Suppose $A = \begin{bmatrix} \vec{a}_1 \cdots \vec{a}_n \end{bmatrix}$ is an $n \times n$ matrix and is invertible. Does matrix A have *n* pivot positions? Does $A\vec{x} = \vec{0}$ have a non-trivial solution? Is $\{\vec{a}_1, \dots, \vec{a}_n\}$ linearly independent?

Is $A\vec{x} = \vec{b}$ consistent for every \vec{b} in \mathbb{R}^n ?

 $span\{\vec{a}_1,\ldots,\vec{a}_n\}=\mathbb{R}^n$?

<u>Hint:</u> (Theorem 8 of Chapter 2)

Question 17:

Suppose A and B are both $n \times n$ and AB = I.

Is A invertible? If so, what is A⁻¹?

Is B invertible? If so, what is B⁻¹?

Hint: (Theorem 8 of Chapter 2)

Question 17B:

Suppose A and B are both $n \times n$ and AB = I.

What is BA?

Hint: (Theorem 8 of Chapter 2)

Question 18:

Suppose A and B are both $n \times n$ and AB is invertible.

Is A invertible?

Is B invertible?

Is BA invertible?

<u>Hint:</u> (Theorem 8 of Chapter 2)

Question 19:

Let $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 3 \\ 4 & -3 & 6 \end{bmatrix}$

How do we determine whether or not matrix A is invertible

(without carrying out the full algorithm of finding the inverse)?

<u>Hint:</u> Row reduction to an echelon form and check the number of pivot positions. <u>Question 19B:</u>

Let
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 3 \\ 4 & -3 & 6 \end{bmatrix}$$

How do we find the inverse of matrix A?

Question 20:

How to check if a given vector \vec{b} is in Col A?

<u>Hint:</u> check if $A\vec{x} = \vec{b}$ is consistent for the given \vec{b} .

Question 20B:

A: *m* × *n* matrix.

How to check if Col A = \mathbb{R}^{m} ?

<u>Hint:</u> check if $A\vec{x} = \vec{b}$ is consistent for every \vec{b} in \mathbb{R}^m .

Question 21:

How to check if \vec{u} is in Nul A?

<u>Hint:</u> check whether or not $A\vec{u} = \vec{0}$.

Question 22:

How to find a basis for Nul A?

<u>Hint:</u> find the solution set of $A\vec{x} = \vec{0}$ in parametric form.

Question 23:

How to find a basis for Col A?

Hint: row reduction to echelon form to identify pivot columns. ...

Question 23B:

How to find a basis for span $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$?

<u>Hint:</u> find a basis for Col A where A= $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix}$.

Question 24:

How to find dim (Col A)?

Hint: row reduction to echelon form to identify pivot columns ...

Question 25:

How to find dim (Nul A)?

<u>Hint:</u> find the number of free variables in $A\vec{x} = \vec{0}$.

Question 26:

Suppose A is $m \times n$.

Is it true that rank A + dim (Nul A^T) = m? Is it true that rank A^T + dim (Nul A) = n? <u>Hint:</u> Use the rank theorem. <u>Question 26B:</u> Suppose A is $n \times n$ (square matrix). Show that dim (Nul A) = dim (Nul A^T) <u>Hint:</u> Use the rank theorem. <u>Question 26C:</u> Suppose A is 7×5 . Calculate dim (Nul A) – dim (Nul A^T) <u>Hint:</u> Use the rank theorem.

Question 27:

Suppose an $n \times n$ matrix $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix}$ is invertible.

Is $\left\{ \vec{a}_1, \dots, \vec{a}_n \right\}$ a basis for \mathbb{R}^n ?

Col A = \mathbb{R}^n ?

dim Col A = *n* ? rank A = *n* ? dim Nul A = 0 ? det A = 0 ?

Is 0 an eigenvalue of A?

<u>Hint:</u> Use the invertible matrix theorem.

Question 28:

Find det	2	2	5	4	1	7 1 6 4 3 5	
		1	1	3	6	8	1
	det	5	5	2	7	7	6
	uct	7	7	6	1	5	4
		3	3	7	5	2	3
		_ 1	1	4	3	4	5

<u>Hint:</u> Notice that column 1 and column 2 are the same.

Question 29:

Suppose matrix A is 5×5 and det A = 3. Find

det A⁻¹ det A^T det A² det (A^TA) det (A A^T) det (A³A^T) det $\left(\frac{1}{3}A\right)$ det (A+A) det (A^T+A^T)

<u>Hint:</u> Use properties of determinants.

Question 30:

How to find eigenvalues of A?

<u>Hint</u>: Solve the characteristic equation det $(A - \lambda I) = 0$.

Question 31:

Find the eigenvalues of
$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ 0 & \ddots & \vdots \\ 0 & 0 & a_{nn} \end{bmatrix}$$
.

Question 32:

How to find a basis for the eigenspace of eigenvalue λ ? <u>Hint:</u> Find a basis for Nul (A– λ I). <u>Question 32B:</u>

How to find the geometric multiplicity of eigenvalue λ ?

<u>Hint</u>: find the number of free variable in $(A - \lambda I)\vec{x} = \vec{0}$.

Question 33:

How to find the algebraic multiplicity of eigenvalue λ ?

<u>Hint:</u> Factor the characteristic polynomial det (A– λ I).

Question 34:

How to read out eigenvalues and eigenvectors from the given diagonalization

 $P^{-1}AP = D$ where matrix D is diagonal?

Hint:

$$D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}, \qquad \lambda_1, \lambda_2, \dots, \lambda_n \quad \text{are eigenvalues}$$
$$P = \begin{bmatrix} \vec{v}_1 \cdots \vec{v}_n \end{bmatrix}, \qquad \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \quad \text{are corresponding eigenvectors}$$

Question 35:	How to diagonalize A?
<u>Question 55.</u>	now to utagonalize A:

Hint:

Step 1:	find eigenvalues
Step 2:	find a basis for each eigenspace
Steps 3 an	d 4: construct D and P

Question 36:

How to find a basis for $(\operatorname{Col} A)^{\perp}$?

<u>Hint:</u> We use $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$. We find a basis for Nul A^T.

Question 37:

Let $W = span\{\vec{v}_1, \dots, \vec{v}_p\}.$

How to find a basis for W^{\perp} ?

<u>Hint:</u>

Let
$$A = \left[\vec{v}_1 \cdots \vec{v}_p \right]$$
. We have $W^{\perp} = \left(\operatorname{Col} A \right)^{\perp} = \operatorname{Nul} A^T \dots$

Question 38:

Suppose $\{\vec{v}_1, ..., \vec{v}_n\}$ is an <u>orthogonal</u> set of *n* <u>non-zero</u> vectors in \mathbb{R}^n . Is $\{\vec{v}_1, ..., \vec{v}_n\}$ linearly independent? Is $\{\vec{v}_1, ..., \vec{v}_n\}$ a basis for \mathbb{R}^n ? Is $\{\vec{v}_1, ..., \vec{v}_n\}$ an orthogonal basis for \mathbb{R}^n ? Is $\mathrm{span}\{\vec{v}_1, ..., \vec{v}_n\} = \mathbb{R}^n$?

Question 39:

Let W be a subspace in Rⁿ. Let $\{\vec{u}_1, ..., \vec{u}_p\}$ be an orthogonal basis for W. Vector \vec{x} in W is a linear combination of $\{\vec{u}_1, ..., \vec{u}_p\}$.

Write out the coefficients in the linear combination using inner products.

Question 40:

5

Let W be a subspace in Rⁿ. Let $\{\vec{u}_1, ..., \vec{u}_p\}$ be an orthogonal basis for W.

Write out the projection of vector \vec{y} in \mathbb{R}^n onto subspace W

$$\frac{\operatorname{proj}_{W} \vec{y}}{\frac{\operatorname{Projection of}}{\vec{y} \text{ onto } W}} = ?$$