AMS 10: Review for the Final Exam (Part 2)

Chapter 2 (continued)

The inverse of a matrix:
Definition of inverse:
Suppose matrix A is $n \times n$.
If there exists C such that $C A=I$ and $A C=I$, then we say A is invertible.

Theorem 5 (of Chapter 2)

$$
A \vec{x}=\vec{b} \xrightarrow{\text { A is invertible }} \vec{x}=A^{-1} \vec{b}
$$

That is, invertibility of A implies existence and uniqueness of solution of $A \vec{x}=\vec{b}$.

If A and B are both invertible, then $A B$ is invertible and
$(\mathrm{AB})^{-1}=? \quad$ (Theorem 6 of Chapter 2)

Theorem 7: (of Chapter 2)
Part 1: \quad Matrix A is invertible if and only if A is row equivalent to I.
Part 2: Suppose $E_{p} \ldots E_{2} E_{1} A=I$.
Then we have $\quad A^{-1}=E_{p} \ldots E_{2} E_{1} I$

The algorithm for finding A^{-1} (and determining if A is invertible)
(Theorem 7 of Chapter 2)

Theorem 8 of Chapter 2 (The invertible matrix theorem)

In particular, to show an $n \times n$ matrix A is invertible, we only need to find a matrix C such that $\quad \mathrm{CA}=\mathrm{I}$

OR find a matrix C such that $\quad \mathrm{AC}=\mathrm{I}$

Subspaces
Definition: 3 conditions
$H=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a subspace.

Col A

Nul A
A basis for a subspace
Definition: 2 conditions
How to find a basis for Col A? (Theorem 13, chapter 2)
How to find a basis for the subspace spanned by a set of vectors?
How to find a basis for Nul A?
Dimension of a subspace
How to find $\operatorname{dim}(\operatorname{Col} A)$?
How to find $\operatorname{dim}(\mathrm{Nul} A)$?
Rank of a matrix
How to find rank A?

Theorem 13:
The pivot columns of A form a basis for Col A .

The rank theorem (Theorem 14):
Suppose A is $m \times n$. We have

- $\quad \operatorname{rank} \mathrm{A}^{\mathrm{T}}=\operatorname{rank} \mathrm{A}$
- $\operatorname{rank} \mathrm{A}+\operatorname{dim}(\mathrm{Nul} \mathrm{A})=n$

The basis theorem (Theorem 15):
If the number of vectors in the given set matches the dimension of the subspace, we only need to check one of the two conditions for a basis.

Chapter 3

Determinant of a matrix $(\operatorname{det} A)$
Co-factor expansion
Co-factor expansion along row i
Co-factor expansion along column j
Determinant of a 2×2 matrix
Determinant of a triangular matrix

Procedure of using ERO's to calculate det A

- Row reduce A to an echelon form
- Record and incorporate the effect of every ERO used

Properties of determinants:
A: $n \times n$

- $\operatorname{det} A \neq 0$ if and only if A is invertible (Theorem 4)
if and only if columns of A are independent (Theorem 8, chapter 2)
if and only if rows of A are independent (Theorem 8, chapter 2)
- $\quad \operatorname{det} A^{T}=\operatorname{det} A \quad$ (Theorem 5)
- $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B) \quad$ (Theorem 6)
- $\quad \operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$
- $\operatorname{det}\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ 0 & \ddots & \vdots \\ 0 & 0 & a_{n n}\end{array}\right]=a_{11} \cdots a_{n n}$
- $\operatorname{det}(\alpha \mathrm{A})=\alpha^{\mathrm{n}} \operatorname{det} \mathrm{A}$

Caution: in general, $\quad \operatorname{det}(A+B) \neq(\operatorname{det} A)+(\operatorname{det} B)$

Chapter 5

Eigenvalues and eigenvectors of A
Definition:
λ is an eigenvalue of A if and only if $\operatorname{det}(A-\lambda I)=0$.
Characteristic polynomial: $\operatorname{det}(\mathrm{A}-\lambda \mathrm{I})$
Characteristic equation: $\quad \operatorname{det}(A-\lambda I)=0$
Algebraic multiplicity of an eigenvalue
Eigenspace of eigenvalue λ : $\quad \operatorname{Nul}(A-\lambda I)$
A basis for the eigenspace
Dimension of the eigenspace
Geometric multiplicity of an eigenvalue

Eigenvalues of a triangular matrix
Row reduction is not a tool for calculating eigenvalues of matrix A .

Theorem 2:
Eigenvectors for distinct eigenvalues are linearly independent.

Matrices A and B are similar if there exists an invertible matrix P such that

$$
\mathrm{B}=\mathrm{P}^{-1} \mathrm{AP}
$$

Matrix A is diagonalizable if there exists an invertible matrix P such that $\mathrm{P}^{-1} \mathrm{AP}=\mathrm{D} \quad$ where D is a diagonal matrix

Theorem 4:
A and B are similar
==> They have the same characteristic polynomial
==> the same set of eigenvalues and algebraic multiplicities
They also have the same geometric multiplicities

$$
\operatorname{Nul}(A-\lambda I) \underset{\substack{\text { One-to-one } \\ \text { correspondence }}}{ } \operatorname{Nul}(B-\lambda I)
$$

Theorem 5 of chapter 5: (The diagonalization theorem)
An $n \times n$ matrix is diagonalizable if and only if A has n linearly independent eigenvectors.

Theorem 6 of chapter 5:
If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Chapter 6

Inner product of two vectors
norm of a vector
distance between two vectors
orthogonal vectors
a vector orthogonal to a subspace
orthogonal complement of a subspace
orthogonal set
orthogonal basis

Theorem 2 (Pythagorean theorem):

$$
\vec{u} \perp \vec{v} \quad \text { if and only if } \quad\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}
$$

Properties of $W^{\perp}=\{$ all \vec{z} satisfying $\vec{z} \perp W\}$:

- W^{\perp} is a subspace
- Let $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$.

$$
\vec{x} \perp W \quad \text { if and only if } \quad \vec{x} \perp \vec{v}_{1}, \vec{x} \perp \vec{v}_{2}, \ldots, \vec{x} \perp \vec{v}_{p} .
$$

Theorem 3 of chapter 6:
A is an $m \times n$ matrix. We have

$$
\begin{aligned}
& (\operatorname{Row} A)^{\perp}=\operatorname{Nul} A \\
& (\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}
\end{aligned}
$$

$\operatorname{dim} W$ and $\operatorname{dim} W^{\perp}$
Let W be a subspace in \mathbb{R}^{n}. We have

$$
\operatorname{dim} \mathrm{W}+\operatorname{dim} \mathrm{W}^{\perp}=n
$$

Theorem 4 (of Chapter 6)
An orthogonal set of non-zero vectors is linearly independent.

Orthogonal projection of a vector onto a subspace
Theorem 8 (the orthogonal decomposition theorem)
Let W be a subspace in \mathbb{R}^{n}. Let $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal basis for W.
Each \vec{y} in \mathbb{R}^{n} can be uniquely decomposed as

$$
\begin{aligned}
& \vec{y}=\overrightarrow{\hat{y}}+\vec{z} \quad \text { where } \overrightarrow{\hat{y}} \text { is in } \mathrm{W} \text { and } \vec{z} \text { is in } \mathrm{W}^{\perp} . \\
& \operatorname{proj}_{W} \vec{y} \equiv \overrightarrow{\hat{y}}=\left(\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}\right) \vec{u}_{1}+\cdots+\left(\frac{\vec{y} \cdot \vec{u}_{p}}{\vec{u}_{p} \cdot \vec{u}_{p}}\right) \vec{u}_{p}
\end{aligned}
$$

Theorem 9 (the best approximation theorem)
Let W be a subspace in \mathbb{R}^{n}. Let \vec{y} be a vector in \mathbb{R}^{n}.
We have

$$
\left\|\vec{y}-\operatorname{proj}_{W} \vec{y}\right\|<\|\vec{y}-\vec{v}\| \quad \text { for all } \vec{v} \neq \operatorname{proj}_{W} \vec{y} \text { in } \mathrm{W} .
$$

(Out of all vectors in $\mathrm{W}, \operatorname{proj}_{W} \vec{y}$ provides the unique best approximation to \vec{y})

Question 15:
Suppose A and B are both $n \times n$ and are both invertible.
Is $\left(A^{-1} B^{-1}\right)$ invertible? If so, what is $\left(A^{-1} B^{-1}\right)^{-1}$?
Is $\left(B A^{-1}\right)$ invertible? If so, what is $\left(B^{-1}\right)^{-1}$?

Question 16:

Suppose $A=\left[\vec{a}_{1} \cdots \vec{a}_{n}\right]$ is an $n \times n$ matrix and is invertible.
Does matrix A have n pivot positions?
Does $A \vec{x}=\overrightarrow{0}$ have a non-trivial solution?
Is $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ linearly independent?
Is $A \vec{x}=\vec{b}$ consistent for every \vec{b} in \mathbb{R}^{n} ?
$\operatorname{span}\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}=\mathbb{R}^{n} ?$
Hint: (Theorem 8 of Chapter 2)

Question 17:

Suppose A and B are both $n \times n$ and AB $=\mathrm{I}$.

Is A invertible? If so, what is A^{-1} ?
Is B invertible? If so, what is B^{-1} ?
Hint: (Theorem 8 of Chapter 2)
Question 17B:
Suppose A and B are both $n \times n$ and $A B=I$.
What is BA?
Hint: (Theorem 8 of Chapter 2)

Question 18:
Suppose A and B are both $n \times n$ and AB is invertible.
Is A invertible?
Is B invertible?
Is BA invertible?
Hint: (Theorem 8 of Chapter 2)

Question 19:
Let $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 1 & 3 \\ 4 & -3 & 6\end{array}\right]$
How do we determine whether or not matrix A is invertible (without carrying out the full algorithm of finding the inverse)?
Hint: Row reduction to an echelon form and check the number of pivot positions.
Question 19B:
Let $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 1 & 3 \\ 4 & -3 & 6\end{array}\right]$
How do we find the inverse of matrix A ?

Question 20:
How to check if a given vector \vec{b} is in $\operatorname{Col} \mathrm{A}$?
Hint: check if $A \vec{x}=\vec{b}$ is consistent for the given \vec{b}.

Question 20B:
A: $m \times n$ matrix.
How to check if $\operatorname{Col} A=\mathbb{R}^{\mathrm{m}}$?
Hint: check if $A \vec{x}=\vec{b}$ is consistent for every \vec{b} in \mathbb{R}^{m}.

Question 21:

How to check if \vec{u} is in Nul A?
Hint: check whether or not $A \vec{u}=\overrightarrow{0}$.

Question 22:

How to find a basis for Nul A?
Hint: find the solution set of $A \vec{x}=\overrightarrow{0}$ in parametric form.

Question 23:
How to find a basis for $\operatorname{Col} A$?
Hint: row reduction to echelon form to identify pivot columns. ...
Question 23B:
How to find a basis for $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$?
Hint: find a basis for Col A where $\mathrm{A}=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}\end{array}\right]$.

Question 24:
How to find $\operatorname{dim}(\operatorname{Col} A)$?
Hint: row reduction to echelon form to identify pivot columns ...

Question 25:
How to find $\operatorname{dim}(\operatorname{Nul} \mathrm{A})$?
Hint: find the number of free variables in $A \vec{X}=\overrightarrow{0}$.

Question 26:
Suppose A is $m \times n$.

Is it true that $\operatorname{rank} \mathrm{A}+\operatorname{dim}\left(\mathrm{Nul} \mathrm{A}^{\mathrm{T}}\right)=m$?
Is it true that $\operatorname{rank} A^{T}+\operatorname{dim}(\operatorname{Nul} A)=n$?
Hint: Use the rank theorem.
Question 26B:
Suppose A is $n \times n$ (square matrix).
Show that $\quad \operatorname{dim}(\operatorname{Nul} A)=\operatorname{dim}\left(\operatorname{Nul~A~}^{T}\right)$
Hint: Use the rank theorem.
Question 26C:
Suppose A is 7×5.
Calculate $\quad \operatorname{dim}(\operatorname{Nul} A)-\operatorname{dim}\left(\operatorname{Nul~A~}^{T}\right)$
Hint: Use the rank theorem.

Question 27:
Suppose an $n \times n$ matrix $A=\left[\begin{array}{llll}\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{n}\end{array}\right]$ is invertible.
Is $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ a basis for \mathbb{R}^{n} ?
$\operatorname{Col} \mathrm{A}=\mathbb{R}^{\mathrm{n}}$?
$\operatorname{dim} \operatorname{Col} \mathrm{A}=n$?
$\operatorname{rank} \mathrm{A}=n$?
$\operatorname{dim} \operatorname{Nul} A=0 ?$
$\operatorname{det} \mathrm{A}=0$?
Is 0 an eigenvalue of A ?
Hint: Use the invertible matrix theorem.

Question 28:
Find $\operatorname{det}\left[\begin{array}{cccccc}2 & 2 & 5 & 4 & 1 & 7 \\ 1 & 1 & 3 & 6 & 8 & 1 \\ 5 & 5 & 2 & 7 & 7 & 6 \\ 7 & 7 & 6 & 1 & 5 & 4 \\ 3 & 3 & 7 & 5 & 2 & 3 \\ 1 & 1 & 4 & 3 & 4 & 5\end{array}\right]$
Hint: Notice that column 1 and column 2 are the same.

Question 29:
Suppose matrix A is 5×5 and $\operatorname{det} A=3$. Find
$\operatorname{det} \mathrm{A}^{-1}$
$\operatorname{det} A^{T}$
$\operatorname{det} \mathrm{A}^{2}$
$\operatorname{det}\left(A^{T} A\right)$
$\operatorname{det}\left(\mathrm{A} \mathrm{A}^{\mathrm{T}}\right)$
$\operatorname{det}\left(A^{3} A^{T}\right)$
$\operatorname{det}\left(\frac{1}{3} A\right)$
$\operatorname{det}(\mathrm{A}+\mathrm{A})$
$\operatorname{det}\left(A^{T}+A^{T}\right)$
Hint: Use properties of determinants.

Question 30:
How to find eigenvalues of A?
Hint: \quad Solve the characteristic equation $\operatorname{det}(A-\lambda I)=0$.

Question 31:
Find the eigenvalues of $\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ 0 & \ddots & \vdots \\ 0 & 0 & a_{n n}\end{array}\right]$.

Question 32:
How to find a basis for the eigenspace of eigenvalue λ ?
Hint: Find a basis for Nul (A- λ I).
Question 32B:
How to find the geometric multiplicity of eigenvalue λ ?
Hint: find the number of free variable in $(A-\lambda I) \vec{X}=\overrightarrow{0}$.

Question 33:

How to find the algebraic multiplicity of eigenvalue λ ?
Hint: Factor the characteristic polynomial det (A- λ I).

Question 34:
How to read out eigenvalues and eigenvectors from the given diagonalization $\mathrm{P}^{-1} \mathrm{AP}=\mathrm{D} \quad$ where matrix D is diagonal?

Hint:

$$
\begin{aligned}
& D=\left[\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right], \quad \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \quad \text { are eigenvalues } \\
& \\
&
\end{aligned} \begin{array}{ll}
\left.\vec{v}_{1} \cdots \vec{v}_{n}\right], \quad \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \quad \text { are corresponding eigenvectors }
\end{array}
$$

Question 35: How to diagonalize A?
Hint:
Step 1: find eigenvalues
Step 2: find a basis for each eigenspace
Steps 3 and 4: construct D and P

Question 36:
How to find a basis for $(\operatorname{Col} A)^{\perp}$?
Hint: We use $(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$. We find a basis for $\operatorname{Nul} A^{T}$.

Question 37:
Let $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$.
How to find a basis for W^{\perp} ?
Hint:

Let $A=\left[\vec{v}_{1} \cdots \vec{v}_{p}\right]$. We have $W^{\perp}=(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T} \ldots$

Question 38:

Is $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ linearly independent?
Is $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ a basis for R^{n} ?
Is $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ an orthogonal basis for R^{n} ?
Is $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}=\mathbb{R}^{n}$?

Question 39:

Let W be a subspace in R^{n}. Let $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal basis for W .
Vector \vec{x} in W is a linear combination of $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$.
Write out the coefficients in the linear combination using inner products.

Question 40:
Let W be a subspace in R^{n}. Let $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal basis for W .
Write out the projection of vector \vec{y} in \mathbb{R}^{n} onto subspace W

$$
\underbrace{\operatorname{proj}_{W} \vec{y}}_{\substack{\text { Projection of } \\ \bar{y} \text { onto } W}}=\text { ? }
$$

