AMS 10 Midterm Exam

Winter 2018

Your Name: _____

Your Student ID #: _____

Exam Scores:

Problem 1 (10 points)	
Problem 2 (10 points)	
Problem 3 (10 points)	
Problem 4 (10 points)	
Problem 5 (10 points)	
Total (50 points)	

Values of the trigonometric functions:

θ	Cos(θ)	Sin(θ)
π/6	$\sqrt{3}/2$	1/2
π/4	$\sqrt{2}/2$	$\sqrt{2}/2$
π/3	1/2	$\sqrt{3}/2$
π/2	0	1

Problem 1 (10 points): Let $z = \frac{1 + \sqrt{3}i}{2}$.

a. Find the <u>real part</u> and the <u>imaginary part</u> of z^{35} . (4 points) (you may need the table on the cover page).

$$z = \frac{1 + \sqrt{3}i}{2} = \cos\frac{\pi}{3} + \sin\frac{\pi}{3}i = e^{i\frac{\pi}{3}}$$

==> $z^{35} = e^{i\frac{\pi}{3}\times35} = e^{i\left(10\pi - \frac{\pi}{3}\right)} = e^{-i\frac{\pi}{3}} = \cos\left(\frac{-\pi}{3}\right) + \sin\left(\frac{-\pi}{3}\right)i = \frac{1}{2} - \frac{\sqrt{3}}{2}i$
==> $\operatorname{Re}(z^{35}) = \frac{1}{2}, \quad \operatorname{Im}(z^{35}) = \frac{-\sqrt{3}}{2}$

b. Write out ALL 5-th roots of z in the exponential form. (6 points) z has the exponential form $z = e^{i\theta}$, $\theta = \frac{\pi}{3}$

The 5-th roots of z are

$$\begin{aligned} \zeta_{0} &= e^{i\left(\frac{\theta}{5}\right)} = e^{i\frac{\pi}{15}} \\ \zeta_{1} &= e^{i\left(\frac{\theta+2\pi}{5}\right)} = e^{i\frac{7\pi}{15}} \\ \zeta_{2} &= e^{i\left(\frac{\theta+4\pi}{5}\right)} = e^{i\frac{13\pi}{15}} \\ \zeta_{3} &= e^{i\left(\frac{\theta+6\pi}{5}\right)} = e^{i\frac{19\pi}{15}} \\ \zeta_{4} &= e^{i\left(\frac{\theta+8\pi}{5}\right)} = e^{i\frac{25\pi}{15}} \end{aligned}$$

Problem 2 (10 points): Let $A = \begin{bmatrix} 1 & -2 & 2 & 1 \\ 0 & 0 & -2 & 3 \\ 2 & -4 & 4 & 2 \end{bmatrix}$.

a. Solve $A\vec{x} = \vec{0}$ and write the solution set in parametric form. (6 points) $A = \begin{bmatrix} 1 & -2 & 2 & 1 \\ 0 & 0 & -2 & 3 \\ 2 & -4 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & 1 \\ 0 & 0 & -2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & 4 \\ 0 & 0 & 1 & -3/2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Pivot columns: Col 1 and Col 3

Basic variables: x_1 and x_3

Free variables: x_2 and x_4

Solution set in parametric form:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2x_2 - 4x_4 \\ x_2 \\ (3/2)x_4 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -4 \\ 0 \\ 3/2 \\ 1 \end{bmatrix}$$

b. Is $A\vec{x} = \vec{b}$ consistent for every \vec{b} in \mathbb{R}^3 ? <u>And why</u>? (4 points) $A\vec{x} = \vec{b}$ is not consistent for every \vec{b} in \mathbb{R}^3 because matrix A does not have a pivot position in every row. Problem 3 (10 points): Let $A = \begin{bmatrix} -7 & 5 & 1 & -4 & 2 & 6 \\ 2 & 1 & 3 & 5 & -7 & -2 \\ 4 & 3 & -5 & 3 & 1 & -3 \\ 3 & -2 & 7 & -2 & 4 & 5 \end{bmatrix}$

a. Are the columns of matrix A linearly independent? <u>And why</u>? (5 points)
There are 6 columns. There are 4 entries in each column.
of columns > # of entries in each column

==> The columns of A are not linearly independent. They are linearly dependent.

b. Does $A\vec{x} = \vec{0}$ have a non-trivial solution? <u>And why</u>? (5 points) The columns of A are linearly dependent.

==> $A\vec{x} = \vec{0}$ has a non-trivial solution.

Problem 4 (10 points): Let $A = \begin{bmatrix} 2 & 9 & 5 & 1 \\ 5 & -3 & 1 & 4 \\ 7 & 1 & 3 & -2 \\ 3 & 7 & 4 & 1 \\ 4 & 2 & 7 & 3 \end{bmatrix}$

a. Do the columns of A span \mathbb{R}^5 ? <u>And why</u>? (5 points) There are 4 columns.

Each column has at most one pivot position.

==> # of pivot positions \leq 4.

There are 5 rows.

- ==> Matrix does not have a pivot position in every row.
- ==> The columns of A does not span \mathbb{R}^5 .
- b. Compute the (3, 2) entry of A A^{T} (3 points) We use the row-vector rule to calculate the (3, 2) entry of A A^{T} .

c. How many rows and how many columns does A^T(A A^T) have? (2 points)

A: 5×4 $A A^{T}$: 5×5 A^{T} : 4×5 $A^{T}(A A^{T})$: 4×5 $A^{T}(A A^{T})$ has 4 rows and 5 columns.

Problem 5 (10 points): Let $A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & -2 & -6 \\ -4 & 5 & 9 \\ -1 & 1 & 3 \end{bmatrix}$. a. Is $A\vec{x} = \begin{bmatrix} 0 \\ 8 \\ -9 \\ -4 \end{bmatrix}$ consistent? If so, find a solution. (3 points) $\begin{bmatrix} 1 & -2 & 1 & 0 \\ 2 & -2 & -6 & 8 \\ -4 & 5 & 9 & -9 \\ -1 & 1 & 3 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & -3 & 13 & -9 \\ 0 & -1 & 4 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

The rightmost column of the augmented matrix is not a pivot column.

It is consistent and has a solution
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 29 \\ 16 \\ 3 \end{bmatrix}$$

b. Is $A\vec{x} = \vec{b}$ consistent for every \vec{b} in \mathbb{R}^4 ? And why? (3 points) Matrix A has 3 pivot positions and 4 rows.

==> Matrix A does not have a pivot column in every row.

==> $A\vec{x} = \vec{b}$ is not consistent for every \vec{b} in \mathbb{R}^4 .

- c. Does $A\vec{x} = \vec{0}$ have a non-trivial solution? <u>And why</u>? (2 points) All 3 columns of Matrix A are pivot columns.
 - ==> All variables are basic variables. There is no free variable.
 - ==> $A\vec{x} = \vec{0}$ does not have a non-trivial solution.
- d. Are the columns of matrix A linearly independent? <u>And why</u>? (2 points) $A\vec{x} = \vec{0}$ has only the trivial solution.
 - ==> The columns of matrix A are linearly independent.