Your Name:

\qquad

Your Student ID \#:

\qquad

Exam Scores:

Problem 1 (10 points)	
Problem 2 (10 points)	
Problem 3 (10 points)	
Problem 4 (10 points)	
Problem 5 (10 points)	
Total (50 points)	

Values of the trigonometric functions:

θ	$\operatorname{Cos}(\theta)$	$\operatorname{Sin}(\theta)$
$\pi / 6$	$\sqrt{3} / 2$	$1 / 2$
$\pi / 4$	$\sqrt{2} / 2$	$\sqrt{2} / 2$
$\pi / 3$	$1 / 2$	$\sqrt{3} / 2$
$\pi / 2$	0	1

Problem 1 (10 points): Let $z=\frac{1+\sqrt{3} i}{2}$.
a. Find the real part and the imaginary part of z^{35}. (4 points) (you may need the table on the cover page).

$$
\begin{aligned}
& z=\frac{1+\sqrt{3} i}{2}=\cos \frac{\pi}{3}+\sin \frac{\pi}{3} i=e^{i \frac{\pi}{3}} \\
= & z^{35}=e^{i \frac{\pi}{3} \times 35}=e^{i\left(10 \pi-\frac{\pi}{3}\right)}=e^{-i \frac{\pi}{3}}=\cos \left(\frac{-\pi}{3}\right)+\sin \left(\frac{-\pi}{3}\right) i=\frac{1}{2}-\frac{\sqrt{3}}{2} i \\
\Rightarrow & \quad \operatorname{Re}\left(z^{35}\right)=\frac{1}{2}, \quad \operatorname{Im}\left(z^{35}\right)=\frac{-\sqrt{3}}{2}
\end{aligned}
$$

b. Write out ALL 5-th roots of z in the exponential form.
z has the exponential form $z=e^{i \theta}, \quad \theta=\frac{\pi}{3}$
The 5-th roots of z are

$$
\begin{aligned}
& \zeta_{0}=e^{i\left(\frac{\theta}{5}\right)}=e^{i \frac{\pi}{15}} \\
& \zeta_{1}=e^{i\left(\frac{\theta+2 \pi}{5}\right)}=e^{i \frac{7 \pi}{15}} \\
& \zeta_{2}=e^{i\left(\frac{\theta+4 \pi}{5}\right)}=e^{i \frac{13 \pi}{15}} \\
& \zeta_{3}=e^{i\left(\frac{\theta+6 \pi}{5}\right)}=e^{i \frac{19 \pi}{15}} \\
& \zeta_{4}=e^{i\left(\frac{\theta+8 \pi}{5}\right)}=e^{i \frac{25 \pi}{15}}
\end{aligned}
$$

Problem 2 (10 points): Let $A=\left[\begin{array}{cccc}1 & -2 & 2 & 1 \\ 0 & 0 & -2 & 3 \\ 2 & -4 & 4 & 2\end{array}\right]$.
a. Solve $A \vec{X}=\overrightarrow{0}$ and write the solution set in parametric form. (6 points)

$$
A=\left[\begin{array}{cccc}
1 & -2 & 2 & 1 \\
0 & 0 & -2 & 3 \\
2 & -4 & 4 & 2
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 2 & 1 \\
0 & 0 & -2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 0 & 4 \\
0 & 0 & 1 & -3 / 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Pivot columns: Col 1 and Col 3
Basic variables: x_{1} and x_{3}
Free variables: $\quad x_{2}$ and x_{4}
Solution set in parametric form:
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}2 x_{2}-4 x_{4} \\ x_{2} \\ (3 / 2) x_{4} \\ x_{4}\end{array}\right]=x_{2}\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-4 \\ 0 \\ 3 / 2 \\ 1\end{array}\right]$
b. Is $A \vec{x}=\vec{b}$ consistent for every \vec{b} in \mathbb{R}^{3} ? And why? (4 points) $A \vec{x}=\vec{b}$ is not consistent for every \vec{b} in \mathbb{R}^{3} because matrix A does not have a pivot position in every row.

Problem 3 (10 points): Let $A=\left[\begin{array}{cccccc}-7 & 5 & 1 & -4 & 2 & 6 \\ 2 & 1 & 3 & 5 & -7 & -2 \\ 4 & 3 & -5 & 3 & 1 & -3 \\ 3 & -2 & 7 & -2 & 4 & 5\end{array}\right]$
a. Are the columns of matrix A linearly independent? And why?

There are 6 columns. There are 4 entries in each column.
\# of columns > \# of entries in each column
$==>\quad$ The columns of A are not linearly independent. They are linearly dependent.
b. Does $A \vec{x}=\overrightarrow{0}$ have a non-trivial solution? And why?
(5 points)
The columns of A are linearly dependent.
$==>\quad A \vec{x}=\overrightarrow{0}$ has a non-trivial solution.

Problem 4 (10 points): Let $A=\left[\begin{array}{cccc}2 & 9 & 5 & 1 \\ 5 & -3 & 1 & 4 \\ 7 & 1 & 3 & -2 \\ 3 & 7 & 4 & 1 \\ 4 & 2 & 7 & 3\end{array}\right]$
a. Do the columns of A span \mathbb{R}^{5} ? And why? (5 points)

There are 4 columns.
Each column has at most one pivot position.
$==>\quad \#$ of pivot positions ≤ 4.
There are 5 rows.
==> Matrix does not have a pivot position in every row.
$==>\quad$ The columns of A does not span \mathbb{R}^{5}.
b. Compute the $(3,2)$ entry of $\mathrm{A} \mathrm{A}^{\mathrm{T}} \quad$ (3 points)

We use the row-vector rule to calculate the $(3,2)$ entry of $A A^{T}$.

$$
\begin{aligned}
\left(A A^{T}\right)_{3,2} & =\operatorname{row}_{3}(A) \cdot \operatorname{col}_{2}\left(A^{T}\right)=\left[\begin{array}{llll}
7 & 1 & 3 & -2
\end{array}\right]\left[\begin{array}{c}
5 \\
-3 \\
1 \\
4
\end{array}\right] \\
& =7 \times 5+1 \times(-3)+3 \times 1+(-2) \times 4=27
\end{aligned}
$$

c. How many rows and how many columns does $A^{T}\left(\mathrm{~A} \mathrm{~A}^{T}\right)$ have?

A: $\quad 5 \times 4$
A A ${ }^{T}: \quad 5 \times 5$
$\mathrm{A}^{\mathrm{T}}: \quad 4 \times 5$
$\mathrm{A}^{\mathrm{T}}\left(\mathrm{A} \mathrm{A}^{\mathrm{T}}\right): \quad 4 \times 5$
$A^{T}\left(A^{T}\right)$ has 4 rows and 5 columns.

Problem 5 (10 points): Let $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & -2 & -6 \\ -4 & 5 & 9 \\ -1 & 1 & 3\end{array}\right]$.
a. Is $A \vec{x}=\left[\begin{array}{c}0 \\ 8 \\ -9 \\ -4\end{array}\right]$ consistent? If so, find a solution. \quad (3 points)
$\left[\begin{array}{ccc:c}1 & -2 & 1 & 0 \\ 2 & -2 & -6 & 8 \\ -4 & 5 & 9 & -9 \\ -1 & 1 & 3 & -4\end{array}\right] \sim\left[\begin{array}{ccc:c}1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & -3 & 13 & -9 \\ 0 & -1 & 4 & -4\end{array}\right] \sim\left[\begin{array}{ccc:c}1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{ccc:c}1 & 0 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$

The rightmost column of the augmented matrix is not a pivot column.
It is consistent and has a solution $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}29 \\ 16 \\ 3\end{array}\right]$.
b. Is $A \vec{x}=\vec{b}$ consistent for every \vec{b} in \mathbb{R}^{4} ? And why? (3 points)

Matrix A has 3 pivot positions and 4 rows.
==> Matrix A does not have a pivot column in every row.
==> $\quad A \vec{x}=\vec{b}$ is not consistent for every \vec{b} in \mathbb{R}^{4}.
c. Does $A \vec{X}=\overrightarrow{0}$ have a non-trivial solution? And why? (2 points)

All 3 columns of Matrix A are pivot columns.
==> All variables are basic variables. There is no free variable.
$==>\quad A \vec{x}=\overrightarrow{0}$ does not have a non-trivial solution.
d. Are the columns of matrix A linearly independent? And why? (2 points)
$A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
==> The columns of matrix A are linearly independent.

