AMS 10/10A, Homework 9 Solutions

Problem 1. Since A and B are similar, there is an invertible matrix P such that $A=$ $P^{-1} B P$.

$$
\begin{aligned}
A^{2} & =\left(P B P^{-1}\right)\left(P B P^{-1}\right)=P B\left(P^{-1} P\right) B P^{-1}=P B^{2} P^{-1} \\
A^{3} & =A^{2} A=\left(P B^{2} P^{-1}\right)\left(P B P^{-1}\right)=P B^{3} P^{-1} \\
& \vdots \\
A^{k} & =A^{k-1} A=\left(P B^{k-1} P^{-1}\right)\left(P B P^{-1}\right)=P B^{k} P^{-1}
\end{aligned}
$$

Problem 2.

$$
\begin{aligned}
& \lambda_{1}=3, \quad v_{1}=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right] \\
& \lambda_{2}=4, \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& \lambda_{3}=3,
\end{aligned} v_{3}=\left[\begin{array}{r}
-1 \\
-3 \\
0
\end{array}\right] .
$$

Problem 3.

Matrix A is not diagonalizable, since eigenvalue 3 has algebraic multiplicity 2 but geometric multiplicity 1 .

Eigenvalues and bases for the eigenspaces of matrix B are

$$
\begin{aligned}
& \lambda_{1}=-5, \\
& \lambda_{2}=1, \quad\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \\
& \lambda_{2}=\left[\begin{array}{l}
1 \\
3 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{r}
-1 \\
0 \\
6 \\
0
\end{array}\right] \\
& \lambda_{2}=3, \quad\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]
\end{aligned}
$$

Matrix B can be diagonalized as

$$
\left[\begin{array}{rrrr}
1 & 1 & -1 & 1 \\
0 & 3 & 0 & 2 \\
0 & 0 & 6 & 2 \\
0 & 0 & 0 & 2
\end{array}\right]^{-1} B\left[\begin{array}{rrrr}
1 & 1 & -1 & 1 \\
0 & 3 & 0 & 2 \\
0 & 0 & 6 & 2 \\
0 & 0 & 0 & 2
\end{array}\right]=\left[\begin{array}{rrrr}
-5 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

Problem 4. Matrix A is not diagonalizable. Matrix A needs 9 linearly independent eigenvectors for it to be diagonalizable. But there exist only $3+3+2=8$ linearly independent eigenvectors.

Problem 5. The matrix is diagonalizable, since all its eigenvalues are distinct.

Problem 6. Prove that if A is both diagonalizable and invertible, then A^{-1} is also diagonalizable and invertible.

Proof: If A is both diagonalizable and invertible, there exist invertible matrix P and diagonal matrix D, such that $A=P D P^{-1}$. Since $A^{-1}=\left(P D P^{-1}\right)^{-1}=P D^{-1} P^{-1}$ and D^{-1} is diagonal, A^{-1} is diagonalizable.

Problem 7. Prove that if A is diagonalizable, A^{k} is also diagonalizable for any positive integer k.
Proof: If A is diagonalizable, there exist invertible matrix P and diagonal matrix D, such that $A=P D P^{-1}$. Then

$$
A^{k}=\left(P D P^{-1}\right)\left(P D P^{-1}\right) \cdots\left(P D P^{-1}\right)=P D^{k} P^{-1}
$$

and D^{k} is always diagonal. Hence A^{k} is diagonalizable.

Problem 8.

$$
u^{T} v=-1, \quad v^{T} u=-1, \quad\left(\frac{u^{T} u}{v^{T} u}\right) u=\left[\begin{array}{r}
-14 \\
-42 \\
28
\end{array}\right], \quad\|u-v\|=\sqrt{33}
$$

Problem 9. The first pair of vectors are orthogonal. The second pair of vectors are not orthogonal. The third pair of vectors are orthogonal.

Problem 10. Prove the parallelogram law:

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2}
$$

where u and v are vectors in \mathbb{R}^{n}.
Proof:

$$
\begin{aligned}
\|u+v\|^{2}+\|u-v\|^{2} & =(u+v)^{T}(u+v)+(u-v)^{T}(u-v) \\
& =\left(u^{T} u+v^{T} v+u^{T} v+v^{T} u\right)+\left(u^{T} u+v^{T} v-u^{T} v-v^{T} u\right) \\
& =2 u^{T} u+2 v^{T} v \\
& =\|u\|^{2}+\|v\|^{2}
\end{aligned}
$$

Problem 11. Suppose a vector x is orthogonal to vectors y and z. Prove that x is orthogonal to any vector in $\operatorname{span}\{y, z\}$.
Proof: Any vector, v, in $\operatorname{span}\{y, z\}$ is a linear combination of y and z, i.e., there exist coefficients c_{1} and c_{2} such that $v=c_{1} y+c_{2} z$.

$$
\begin{aligned}
x^{T} v & =x^{T}\left(c_{1} y+c_{2} z\right) \\
& =c_{1} x^{T} y+c_{2} x^{T} z \\
& =0
\end{aligned}
$$

Problem 12.

$$
H^{\perp}=\operatorname{Nul}\left(A^{T}\right)=\operatorname{span}\left\{\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]\right\}
$$

Problem 13. Since H is a subspace in \mathbb{R}^{3} with dimension 1 , we have

$$
\operatorname{dim}\left(H^{\perp}\right)=3-\operatorname{dim}(H)=3-1=2
$$

Problem 14. $\operatorname{Col}(A)$ is a subspace in \mathbb{R}^{7}. It follows that

$$
\begin{array}{r}
\quad \operatorname{dim}[\operatorname{Col}(A)]^{\perp}+\operatorname{dim} \operatorname{Col}(A)=7 \\
\Rightarrow \quad \operatorname{dim}[\operatorname{Col}(A)]^{\perp}=7-\operatorname{dim} \operatorname{Col}(A)
\end{array}
$$

On the other hand, $\operatorname{dim} \operatorname{Col}(A) \leq \min \{5,7\}=5$. Therefore, we have

$$
\operatorname{dim}[\operatorname{Col}(A)]^{\perp} \geq 7-5=2
$$

The smallest possible dimension of $\operatorname{Col}(A)^{\perp}$ is 2 .

Problem 15. Set 1 is orthogonal. Set 2 is not.

Problem 16.

- Since $u_{1}^{T} u_{2}=u_{1}^{T} u_{3}=u_{2}^{T} u_{3}=0,\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal set of 3 non-zero vectors in \mathbb{R}^{3}. Therefore, it is an orthogonal basis for \mathbb{R}^{3}.
- The representation of x is

$$
\begin{aligned}
x & =\frac{x^{T} u_{1}}{u_{1}^{T} u_{1}} u_{1}+\frac{x^{T} u_{2}}{u_{2}^{T} u_{2}} u_{2}+\frac{x^{T} u_{2}}{u_{2}^{T} u_{2}} u_{2} \\
& =\frac{4}{3} u_{1}+\frac{2}{9} u_{2}+\frac{5}{9} u_{3}
\end{aligned}
$$

Problem 17.

$$
\begin{aligned}
v & =\left(\frac{v^{T} u_{1}}{u_{1}^{T} u_{1}} u_{1}+\frac{v^{T} u_{2}}{u_{2}^{T} u_{2}} u_{2}\right)+\left(\frac{v^{T} u_{3}}{u_{3}^{T} u_{3}} u_{3}+\frac{v^{T} u_{4}}{u_{4}^{T} u_{4}} u_{4}\right) \\
& =\left(u_{1}-\frac{5}{7} u_{2}\right)+\left(\frac{8}{7} u_{3}-\frac{3}{7} u_{4}\right) \\
& =\left[\begin{array}{r}
17 / 7 \\
9 / 7 \\
12 / 7 \\
2 / 7
\end{array}\right]+\left[\begin{array}{r}
11 / 7 \\
5 / 7 \\
-19 / 7 \\
-2 / 7
\end{array}\right]
\end{aligned}
$$

