AMS 10/10A, Homework 8 Solutions

Problem 1. v is an eigenvector since

$$
A v=\left[\begin{array}{r}
4 \\
-4 \\
16
\end{array}\right]=4 v
$$

Problem 2. $\lambda=1$ is an eigenvalue since $\operatorname{det}(A-I)=0$.

Problem 3:

- Eigenvalues of A are $\lambda_{1}=2$ and $\lambda_{2}=9$.

For $\lambda_{1}=2$ a corresponding eigenvector is $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$.
For $\lambda_{1}=9$ a corresponding eigenvector is $\left[\begin{array}{l}1 \\ 3\end{array}\right]$.

- Eigenvalues of B are $\lambda_{1}=1$ and $\lambda_{2}=9$.

For $\lambda_{1}=2$ a corresponding eigenvector is $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.
For $\lambda_{1}=9$ a corresponding eigenvector is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

- Eigenvalues of C are $\lambda_{1}=1, \lambda_{2}=-1$ and $\lambda_{3}=3$.

For $\lambda_{1}=1$ a corresponding eigenvector is $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
For $\lambda_{1}=-1$ a corresponding eigenvector is $\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$.
For $\lambda_{1}=3$ a corresponding eigenvector is $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.

Problem 4: The characteristic polynomial is

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-(a+c) \lambda+a c-b^{2}
$$

For the characteristic equation $\lambda^{2}-(a+c) \lambda+a c-b^{2}=0$, we have

$$
(a+c)^{2}-4\left(a c-b^{2}\right)=a^{2}+c^{2}-2 a c+4 b^{2}=(a-c)^{2}+4 b^{2} \geq 0
$$

Therefore, the eigenvalues cannot be complex.

Problem 5: The characteristic polynomial is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{rr}
\sin (\theta)-\lambda & \cos (\theta) \\
-\cos (\theta) & \sin (\theta)-\lambda
\end{array}\right] \\
& =\lambda^{2}-2 \sin (\theta) \lambda+1
\end{aligned}
$$

The characteristic equation $\lambda^{2}-2 \sin (\theta) \lambda+1=0$ has two solutions:

- $\lambda_{1}=\sin (\theta)+\cos (\theta) i$, a corresponding eigenvector $\left[\begin{array}{r}-i \\ 1\end{array}\right]$
- $\lambda_{2}=\sin (\theta)-\cos (\theta) i$, a corresponding eigenvector $\left[\begin{array}{l}i \\ 1\end{array}\right]$

Problem 6: \quad Since λ is an eigenvalue of A, there exists a nonzero vector v such that $A v=\lambda v$. Since

$$
\begin{aligned}
A^{k} v & =A^{k-1}(A v)=A^{k-1}(\lambda v)=\lambda\left(A^{k-1} v\right) \\
& =\lambda A^{k-2}(A v)=\lambda A^{k-2}(\lambda v)=\lambda^{2} A^{k-2} v \\
& =\cdots=\lambda^{k} v
\end{aligned}
$$

λ^{k} is an eigenvalue of A^{k}.

Problem 7. If λ is an eigenvalue of an invertible matrix A, λ must be nonzero.

$$
\begin{aligned}
& A v=\lambda v \\
\Longrightarrow \quad & v=A^{-1}(\lambda v) \\
\Longrightarrow \quad & \lambda^{-1} v=A^{-1} v
\end{aligned}
$$

Therefore, λ^{-1} is an eigenvalue of A^{-1}.

Problem 8. The characteristic polynomial of A^{T} is

$$
\operatorname{det}\left(A^{T}-\lambda I\right)=\operatorname{det}\left((A-\lambda I)^{T}\right)=\operatorname{det}(A-\lambda I)
$$

Therefore, A and A^{T} have the same eigenvalues.

Problem 9.

$$
A\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]=a_{1}+a_{2}+\cdots+a_{n}=\left[\begin{array}{c}
s \\
s \\
\vdots \\
s
\end{array}\right]=s\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

Therefore, s is an eigenvalue and $\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]$ is a corresponding eigenvector.

Problem 10. Since $c_{1} v_{1}+c_{2} v_{2}$ is not the zero vector and satisfies

$$
\begin{aligned}
A\left(c_{1} v_{1}+c_{2} v_{2}\right) & =c_{1} A v_{1}+c_{2} A v_{2}=c_{1} \lambda v_{1}+c_{2} \lambda v_{2} \\
& =\lambda\left(c_{1} v_{1}+c_{2} v_{2}\right)
\end{aligned}
$$

it is an eigenvector of A corresponding to λ.

Problem 11. The eigenvalues and their multiplicities are

- $\lambda_{1}=3$, with algebraic multiplicity 1 and geometric multiplicity 1 ;
- $\lambda_{2}=-2$, with algebraic multiplicity 1 and geometric multiplicity 1 ;
- $\lambda_{3}=1$, with algebraic multiplicity 2 and geometric multiplicity 1 ;

Problem 12.

$$
A-4 I=\left[\begin{array}{rrrr}
0 & 2 & 3 & 3 \\
0 & -2 & \alpha & 3 \\
0 & 0 & 0 & 14 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

The echelon form of $A-4 I$ is

$$
\left[\begin{array}{rrrr}
0 & 2 & 3 & 3 \\
0 & 0 & \alpha+3 & 6 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

When $\alpha=-3$, there are two free variables in homogeneous equation $(A-4 I) x=0$. Therefore, when $\alpha=-3$ the geometric multiplicity of $\lambda=4$ is 2 .

Problem 13.

$$
\begin{aligned}
& \lambda_{1}=3, \quad v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& \lambda_{2}=8+2 i, \quad v_{2}=\left[\begin{array}{r}
0 \\
i \\
1
\end{array}\right] \\
& \lambda_{3}=8-2 i, \quad v_{3}=\left[\begin{array}{r}
0 \\
-i \\
1
\end{array}\right]
\end{aligned}
$$

Problem 14. The characteristic polynomial is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{rr}
a-\lambda & b \\
c & d-\lambda
\end{array}\right] \\
& =\lambda^{2}-\lambda(a+d)+(a d-b c)
\end{aligned}
$$

Let λ_{1} and λ_{2} be the two solutions of the characteristic equation

$$
\lambda^{2}-\lambda(a+d)+(a d-b c)=0
$$

The characteristic equation can be written as

$$
\begin{array}{ll}
& \left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)=0 \\
\Longrightarrow \quad & \lambda^{2}-\lambda\left(\lambda_{1}+\lambda_{2}\right)+\lambda_{1} \cdot \lambda_{2}=0
\end{array}
$$

Comparing the two expressions for the characteristic polynomial, we conlcude

$$
\lambda_{1} \cdot \lambda_{2}=a d-b c=\operatorname{det}(A)
$$

Problem 15. Comparing the two expressions for the characteristic polynomial in Problem 14, we conlcude

$$
\lambda_{1}+\lambda_{2}=a+d
$$

