AMS 10/10A, Homework 7 Solutions

Problem 1. Suppose A is $m \times n$. Prove the following equality

$$
\operatorname{dim} \operatorname{Col}(A)+\operatorname{dim} \operatorname{Nul}\left(A^{T}\right)=m
$$

Proof: Matrix A^{T} is $n \times m$. By the Rank Theorem,

$$
\operatorname{rank} A^{T}+\operatorname{dim} \operatorname{Nul}\left(A^{T}\right)=m
$$

Also, $\operatorname{rank} A^{T}=\operatorname{rank} A=\operatorname{dim} \operatorname{Col}(A)$. Therefore, we conclude

$$
\operatorname{dim} \operatorname{Col}(A)+\operatorname{dim} N u l\left(A^{T}\right)=m
$$

Problem 2. Suppose A is $m \times n$ and b is in R^{m}. Prove that if the equation $A x=b$ is consistent, then $\operatorname{rank}[A, b]=\operatorname{rank} A$.
Proof: If the equation $A x=b$ is consistent, then b is a linear combination of the columns of A. That is, b is a linear combination $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ where $a_{1}, a_{2}, \cdots, a_{n}$ are columns of A. Therefore, we have

$$
\operatorname{Col}[A, b]=\operatorname{span}\left\{a_{1}, a_{2}, \cdots, a_{n}, b\right\}=\operatorname{span}\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}=\operatorname{Col} A
$$

It follows that

$$
\operatorname{rank}[A, b]=\operatorname{dim} \operatorname{Col}[A, b]=\operatorname{dim} \operatorname{Col} A=\operatorname{rank} A
$$

Problem 3:

- Yes. $A x=0$ has non-trivial solutions. $\operatorname{rank} A=5$ means that matrix A has 5 pivot columns. $A x=0$ has 8 variables. So $A x=0$ has 5 basic variables and 3 free variables.
- No. $A^{T} x=0$ does not have a non-trivial solution. rank $A=5$ means that rank $A^{T}=5$ and matrix A^{T} has 5 pivot columns. $A^{T} x=0$ has 5 variables. So $A^{T} x=0$ has 5 basic variables and no free variable.

Problem 4: $\quad \operatorname{det}(A)=0, \operatorname{det}(B)=107, \operatorname{det}(C)=-48, \operatorname{det}(D)=48$.

Problem 5:

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{rrrr}
a & 0 & d & c \\
b & 0 & -c & d \\
0 & c & -b & a \\
0 & d & a & b
\end{array}\right]= & a \cdot \operatorname{det}\left[\begin{array}{rrr}
0 & -c & d \\
c & -b & a \\
d & a & b
\end{array}\right]-b \cdot \operatorname{det}\left[\begin{array}{rrr}
0 & d & c \\
c & -b & a \\
d & a & b
\end{array}\right] \\
= & a\left(-c \cdot \operatorname{det}\left[\begin{array}{rr}
-c & d \\
a & b
\end{array}\right]+d \cdot\left[\begin{array}{rr}
-c & d \\
-b & a
\end{array}\right]\right) \\
& -b\left(-c \cdot \operatorname{det}\left[\begin{array}{rr}
d & c \\
a & b
\end{array}\right]+d \cdot\left[\begin{array}{rr}
d & c \\
-b & a
\end{array}\right]\right) \\
= & a(-c(-c b-a d)+d(-c a+b d)) \\
& -b(-c(d b-a c)+d(d a+b c)) \\
= & a c^{2} b+a^{2} c d-a^{2} c d+a b d^{2}+b^{2} c d-a c^{2} b-a b d^{2}-b^{2} c d \\
= & 0
\end{aligned}
$$

Problem 6:

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{rrr}
a & \sqrt{2} & 0 \\
\sqrt{2} & a & \sqrt{2} \\
0 & \sqrt{2} & a
\end{array}\right] & =a \cdot \operatorname{det}\left[\begin{array}{rr}
a & \sqrt{2} \\
\sqrt{2} & a
\end{array}\right]-\sqrt{2} \cdot \operatorname{det}\left[\begin{array}{cc}
\sqrt{2} & 0 \\
\sqrt{2} & a
\end{array}\right] \\
& =a\left(a^{2}-2\right)-\sqrt{2}(\sqrt{2} a) \\
& =a\left(a^{2}-4\right)
\end{aligned}
$$

Therefore, the determinant of this matrix is zero if $a=0, a=2$ or $a=-2$.

Problem 7:

$$
\begin{aligned}
\operatorname{det}(2 A) & =2^{4} \operatorname{det}(A)=48 \\
\operatorname{det}\left(A^{3}\right) & =(\operatorname{det}(A))^{3}=27 \\
\operatorname{det}\left(A^{-1}\right) & =(\operatorname{det}(A))^{-1}=\frac{1}{3} \\
\operatorname{det}\left(A^{2} B^{3}\right) & =(\operatorname{det}(A))^{2}(\operatorname{det}(B))^{3}=3^{2}(-2)^{3}=-72 \\
\operatorname{det}\left(A^{3} B^{-2}\right) & =(\operatorname{det}(A))^{3}(\operatorname{det}(B))^{-2}=\frac{27}{4}
\end{aligned}
$$

Problem 8. Prove that $\operatorname{det}\left(A A^{T}\right)$ is nonnegative for any $n \times n$ matrix A.
Proof: $\operatorname{det}\left(A A^{T}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A) \operatorname{det}(A)=(\operatorname{det}(A))^{2} \geq 0$.

Problem 9. Let A be an $n \times n$ matrix and let P be an $n \times n$ invertible matrix. Prove that $\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}(A)$.
Proof: $\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A) \operatorname{det}(P)=\operatorname{det}(A)(\operatorname{det}(P))^{-1} \operatorname{det}(P)=\operatorname{det}(A)$.

Problem 10. Let A be a $n \times n$ matrix such that $A^{T}=-A$. Prove that A is not invertible if n is odd.
Proof: $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)=\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)$. If n is odd, $(-1)^{n}=-1$. We have, $\operatorname{det}(A)=-\operatorname{det}(A)$, which leads to $\operatorname{det}(A)=0$. Therefore, A is not invertible.

Problem 11. Let

$$
A=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Show that i) $A^{T}=-A$ and ii) A is invertible.
Does this result contradict the conclusion in Problem 10 above?
Proof:

$$
\begin{gathered}
A^{T}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]=-A \\
\operatorname{det} A=0-(-1)=1 \neq 0
\end{gathered}
$$

So matrix A is invertible.
This does not contradict the conclusion in Problem 10. In Problem 10, n is odd and here $n=2$ is even.

Problem 12. We use elementary row operations to calculate these determinants.

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{rrr}
a & b & c \\
d+2 a & e+2 b & f+2 c \\
g & h & i
\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=5 \\
& \operatorname{det}\left[\begin{array}{lll}
d & e & f \\
g & h & i \\
a & b & c
\end{array}\right]=-\operatorname{det}\left[\begin{array}{lll}
d & e & f \\
a & b & c \\
g & h & i
\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=5 \\
& \operatorname{det}\left(3\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\right)=3^{3} \cdot \operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=3^{3} \cdot 5=135 \\
& \operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
a & b & c
\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 0
\end{array}\right]=0
\end{aligned}
$$

