AMS 10/10A, Homework 6 Solutions

Problem 1: w is in the subspace spanned by $\{v_1, v_2\}$ if w is a linear combination of v_1 and v_2 . By elementary row operations, we obtain

		[1]	0	1]
$[v_1 \ v_2 \mid w]$	\sim	0	1	2
$[v_1 v_2 \mid w]$		0	0	0

Therefore, $w = v_1 + 2v_2$, which implies that w is in the subspace spanned by v_1 and v_2 .

Problem 2: w is in Col A if Ax = w has a solution. By elementary row operations, we obtain

$$[A \mid w] \sim \begin{bmatrix} 1 & 1 & 0 & | & 3 \\ 0 & 3 & -5 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

The rightmost column is not a pivot column. Therefore, $w \in Col A$.

Since $Aw = \begin{bmatrix} 10 \\ -82 \\ 52 \end{bmatrix} \neq 0, w$ is not in Nul A.

Problem 3: p = 3 and q = 5.

Problem 4: The reduced echelon form of matrix *A* is

$$A \sim \begin{bmatrix} 1 & -2 & 0 & -6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The pivot columns of A are column 1 and column 3. Therefore, a basis for Col A is

$$\left\{ \begin{bmatrix} 3\\2\\3 \end{bmatrix}, \begin{bmatrix} 9\\7\\6 \end{bmatrix} \right\}$$

The solution set of Ax = 0 in parametric vector form is

$$x = x_2 \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} 6\\0\\-2\\1 \end{bmatrix}$$

Therefore, a basis for Nul A is

ſ	2		6	
J	1		0	
Ì	0	,	-2	
l	0		1	J

Problem 5: Yes. This set of vectors form a basis for \mathbb{R}^2 , since the set contains 2 linearly independent vectors.

Problem 6: Yes. This set of vectors form a basis for \mathbb{R}^3 , since the set contains 3 linearly independent vectors.

Problem 7: No. Three linearly independent vectors are needed to form a basis for \mathbb{R}^3 .

Problem 8: A bass for *Col A* is

($\begin{bmatrix} 1 \end{bmatrix}$		$\begin{bmatrix} 2 \end{bmatrix}$		[-6])
	3		1		5	
Ì	2	,	-1	,	9	Ì
l	5		0		14	J

A bass for Nul A is

$$\left\{ \left[\begin{array}{c} -3\\1\\0\\0 \end{array} \right] \right\}$$

dim(Col A) = 3, dim(Nul A) = 1.

Problem 9: A bass for *Col A* is

$$\left\{ \begin{bmatrix} 2\\3\\0\\-3 \end{bmatrix}, \begin{bmatrix} -5\\-8\\9\\-7 \end{bmatrix} \right\}$$

A bass for Nul A is

$$\left\{ \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\-1\\0\\1 \end{bmatrix} \right\}$$

 $\dim(Col \ A) = 2, \dim(Nul \ A) = 3.$

Problem 10: dim(Col A) = rank = 5, dim(Nul A) = 9 - rank = 4

Problem 11: Mark each statement True or False

- 11.1. The set of all solutions of a system of homogeneous equation with m equations and n unknowns is a subspace in \mathbb{R}^m . **F**
- 11.2. The set of all linear combinations of columns of an $m \times n$ matrix is a subspace in \mathbb{R}^n . **F**
- 11.3. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^n . T
- 11.4. Let $A = [a_1 \ a_2 \ a_3]$, where a_1, a_2 , and a_3 , are vectors in \mathbb{R}^n . Then the column space of matrix $[a_1 \ a_2 \ a_3]$ is the same as the column space of matrix $[a_3 \ a_1 \ a_2]$. T
- 11.5. The columns of a singular (non-invertible) $n \times n$ matrix may still be a basis for \mathbb{R}^n . F

Problem 12. Mark each statement True or False

- 12.1. The dimension of Col A is the number of pivot columns in A. T
- 12.2. Suppose A is an invertible $n \times n$ matrix. Then $Col \ A = \mathbb{R}^n$. T
- 12.3. Suppose A is an invertible $n \times n$ matrix. Then $Nul A = \{0\}$. T
- 12.4. The dimension of Nul A is the number of variables in the equation Ax = 0. F
- 12.5. The dimension of Nul A is the number of basic variables in the equation Ax = 0. F
- 12.6. The dimension of Nul A is the number of free variables in the equation Ax = 0. T

Problem 13. The reduced echelon form of matrix A is

$$A \sim \begin{bmatrix} 1 & 0 & 1.5 & 0 \\ 0 & 1 & -0.5 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

A bass for Col A is

$$\left\{ \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 3\\-1\\-4\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\-8\\-1 \end{bmatrix} \right\}$$

A bass for Nul A is

$$\left\{ \left[\begin{array}{c} -1.5\\ 0.5\\ 1\\ 0 \end{array} \right] \right\}$$

Problem 14.

- 1. Yes. $Col \ A = Col \ B$.
- 2. No. Nul $A\neq Nul$ B. Nul A is a subspace in $\mathbb{R}^4;$ Nul B is a subspace in \mathbb{R}^5 .