## AMS 10/10A, Homework 6 Solutions

Problem 1: $\quad w$ is in the subspace spanned by $\left\{v_{1}, v_{2}\right\}$ if $w$ is a linear combination of $v_{1}$ and $v_{2}$. By elementary row operations, we obtain

$$
\left[\begin{array}{ll|l}
v_{1} & v_{2} & \mid w]
\end{array} \sim\left[\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]\right.
$$

Therefore, $w=v_{1}+2 v_{2}$, which implies that $w$ is in the subspace spanned by $v_{1}$ and $v_{2}$.

Problem 2: $\quad w$ is in $\operatorname{Col} A$ if $A x=w$ has a solution. By elementary row operations, we obtain

$$
[A \mid w] \sim\left[\begin{array}{ccc|c}
1 & 1 & 0 & 3 \\
0 & 3 & -5 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The rightmost column is not a pivot column. Therefore, $w \in \operatorname{Col} A$.
Since $A w=\left[\begin{array}{c}10 \\ -82 \\ 52\end{array}\right] \neq 0, w$ is not in Nul $A$.

Problem 3: $\quad p=3$ and $q=5$.

Problem 4: The reduced echelon form of matrix $A$ is

$$
A \sim\left[\begin{array}{cccc}
1 & -2 & 0 & -6 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The pivot columns of $A$ are column 1 and column 3. Therefore, a basis for $\operatorname{Col} A$ is

$$
\left\{\left[\begin{array}{l}
3 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
9 \\
7 \\
6
\end{array}\right]\right\}
$$

The solution set of $A x=0$ in parametric vector form is

$$
x=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
6 \\
0 \\
-2 \\
1
\end{array}\right]
$$

Therefore, a basis for $N u l A$ is

$$
\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
6 \\
0 \\
-2 \\
1
\end{array}\right]\right\}
$$

Problem 5: Yes. This set of vectors form a basis for $\mathbb{R}^{2}$, since the set contains 2 linearly independent vectors.

Problem 6: Yes. This set of vectors form a basis for $\mathbb{R}^{3}$, since the set contains 3 linearly independent vectors.

Problem 7: No. Three linearly independent vectors are needed to form a basis for $\mathbb{R}^{3}$.

Problem 8: A bass for $\operatorname{Col} A$ is

$$
\left\{\left[\begin{array}{l}
1 \\
3 \\
2 \\
5
\end{array}\right],\left[\begin{array}{r}
2 \\
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
-6 \\
5 \\
9 \\
14
\end{array}\right]\right\}
$$

A bass for $N u l A$ is

$$
\left\{\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

$\operatorname{dim}(\operatorname{Col} A)=3, \operatorname{dim}($ Nul $A)=1$.

Problem 9: A bass for $\operatorname{Col} A$ is

$$
\left\{\left[\begin{array}{r}
2 \\
3 \\
0 \\
-3
\end{array}\right],\left[\begin{array}{r}
-5 \\
-8 \\
9 \\
-7
\end{array}\right]\right\}
$$

A bass for $N u l A$ is

$$
\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

$\operatorname{dim}(\operatorname{Col} A)=2, \operatorname{dim}(\operatorname{Nul} A)=3$.

Problem 10: $\quad \operatorname{dim}(\operatorname{Col} A)=\operatorname{rank}=5, \quad \operatorname{dim}($ Nul $A)=9-\operatorname{rank}=4$

Problem 11: Mark each statement True or False
11.1. The set of all solutions of a system of homogeneous equation with $m$ equations and $n$ unknowns is a subspace in $\mathbb{R}^{m} . \mathrm{F}$
11.2. The set of all linear combinations of columns of an $m \times n$ matrix is a subspace in $\mathbb{R}^{n}$. F
11.3. The columns of an invertible $n \times n$ matrix form a basis for $\mathbb{R}^{n}$. $\mathbf{T}$
11.4. Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]$, where $a_{1}, a_{2}$, and $a_{3}$, are vectors in $\mathbb{R}^{n}$. Then the column space of matrix $\left[a_{1} a_{2} a_{3}\right]$ is the same as the column space of matrix $\left[a_{3} a_{1} a_{2}\right]$. T
11.5. The columns of a singular (non-invertible) $n \times n$ matrix may still be a basis for $\mathbb{R}^{n} . \mathbf{F}$

Problem 12. Mark each statement True or False
12.1. The dimension of $\operatorname{Col} A$ is the number of pivot columns in $A$. T
12.2. Suppose $A$ is an invertible $n \times n$ matrix. Then $\operatorname{Col} A=\mathbb{R}^{n}$. T
12.3. Suppose $A$ is an invertible $n \times n$ matrix. Then $N u l A=\{0\}$. T
12.4. The dimension of $N u l A$ is the number of variables in the equation $A x=0 . \mathrm{F}$
12.5. The dimension of $N u l A$ is the number of basic variables in the equation $A x=0 . \mathbf{F}$
12.6. The dimension of $N u l A$ is the number of free variables in the equation $A x=0$. T

Problem 13. The reduced echelon form of matrix $A$ is

$$
A \sim\left[\begin{array}{cccc}
1 & 0 & 1.5 & 0 \\
0 & 1 & -0.5 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

A bass for $\operatorname{Col} A$ is

$$
\left\{\left[\begin{array}{r}
1 \\
-1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{r}
3 \\
-1 \\
-4 \\
0
\end{array}\right],\left[\begin{array}{r}
3 \\
1 \\
-8 \\
-1
\end{array}\right]\right\}
$$

A bass for $N u l A$ is

$$
\left\{\left[\begin{array}{c}
-1.5 \\
0.5 \\
1 \\
0
\end{array}\right]\right\}
$$

## Problem 14.

1. Yes. $\operatorname{Col} A=\operatorname{Col} B$.
2. No. Nul $A \neq N u l B$. Nul $A$ is a subspace in $\mathbb{R}^{4} ; N u l B$ is a subspace in $\mathbb{R}^{5}$.
