## AMS 10/10A, Homework 5 Solutions

## Problem 1:

$$
\begin{aligned}
A^{-1} & =\left[\begin{array}{rr}
-\frac{1}{11} & -\frac{3}{11} \\
\frac{3}{11} & -\frac{2}{11}
\end{array}\right] \\
B^{-1} & =\left[\begin{array}{ccc}
1 & -1 & -0.5 \\
2 & -1 & -1.5 \\
-0.5 & 0.5 & 0.5
\end{array}\right] \\
C & : \text { not invertible }
\end{aligned}
$$

Problem 2: When $k=0$, or $k=4$ or $k=-4$ the matrix is not invertible.

Problem 3: $\quad X=C B-A$.

## Problem 4:

$$
D^{-1}=\left[\begin{array}{ccccc}
1 / d_{11} & 0 & \cdots & 0 & 0 \\
0 & 1 / d_{22} & \cdots & 0 & 0 \\
0 & 0 & \ddots & 1 / d_{n-1, n-1} & 0 \\
0 & 0 & \cdots & 0 & 1 / d_{n n}
\end{array}\right]
$$

Problem 5: The second column of $A^{-1}$ is given by the solution of the equation

$$
A x=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Solving this equation we get the second column of $A^{-1}$, which is $\left[\begin{array}{c}0 \\ 0 \\ 0.5\end{array}\right]$.

Problem 6: By The Invertible Matrix Theorem, $A$ is invertible implies that $A^{T}$ is invertible, which implies that the columns of $A^{T}$ are linearly independent.

Problem 7: Since $A B$ is invertible, there is a square matrix $C$ such that $C(A B)=I$. We re-write it as $(C A) B=I$, which implies that matrix $B$ is invertible.

Similarly, since $A B$ is invertible, there is a square matrix $D$ such that $(A B) D=I$. We re-write it as $A(B D)=I$, which implies that matrix $A$ is invertible.

Problem 8: $\quad$ Since columns of $A_{n \times n}$ are linearly independent, matrix $A$ is invertible. Therefore, $A^{2}=A A$ is invertible. By The Invertible Matrix Theorem, the columns of $A^{2}$ are linearly independent.

Problem 9: $\quad A^{-1}=\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$. Therefore, $A^{-1}$ is symmetric.

Problem 10: Since $A, B$ and $(A+B)^{-1}$ are all invertible, matrix $\left(A(A+B)^{-1} B\right)$ is invertible and

$$
\begin{aligned}
\left(A(A+B)^{-1} B\right)^{-1} & =B^{-1}\left((A+B)^{-1}\right)^{-1} A^{-1} \\
& =B^{-1}(A+B) A^{-1} \\
& =\left(B^{-1} A+I\right) A^{-1} \\
& =B^{-1}+A^{-1}
\end{aligned}
$$

Therefore, matrix $B^{-1}+A^{-1}$ is invertible and

$$
\left(B^{-1}+A^{-1}\right)^{-1}=A(A+B)^{-1} B
$$

Problem 11: Mark each statement True or False
11.1. If $A$ and $B$ are invertible, then $A+B$ is invertible. $\mathbf{F}$
11.2. If $A$ is $n \times n$ and not invertible, then the linear system $A x=b$ is inconsistent. $\mathbf{F}$
11.3. If $(A-I)$ is invertible, then the linear system $A x=x$ has a nonzero solution for $x . \mathrm{F}$
11.4. If a square matrix has nonzero entries on the diagonal, then $A$ is invertible. F
11.5. If $A$ is $n \times n$, and the columns of $A$ are linearly independent, then the columns of $A$ $\operatorname{span} \mathbb{R}^{n}$. T

Problem 12: Mark each statement True or False
12.1. Let $A$ be a square matrix. If the equation $A x=0$ has a nontrivial solution, then A is not invertible. T
12.2. A square matrix with two identical rows cannot be invertible. T
12.3. A square matrix with two identical columns cannot be invertible. T
12.4. A product of invertible matrices is invertible. $\mathbf{T}$
12.5. If A and B are $n \times n$ invertible matrices, then $A^{-1} B^{-1}$ is the inverse of $A B . \mathrm{F}$

