AMS 10/10A, Homework 4 Solutions

Problem 1:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-1 \\
-1 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

Problem 2: $\quad A(c v)=c(A v)=0$.

Problem 3: Since v_{n} is a linear combination of $\left\{v_{1}, \cdots, v_{n-1}\right\}$, there exist scalars c_{1}, c_{2}, \cdots, c_{n-1} such that

$$
\begin{array}{r}
v_{n}=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n-1} v_{n-1} \\
\Longrightarrow c_{1} v_{1}+\cdots+c_{n-1} v_{n-1}-v_{n}=0 \\
\Longrightarrow\left[\begin{array}{lllll}
v_{1} & v_{2} & \cdots & v_{n-1} & v_{n}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n-1} \\
1
\end{array}\right]=0 \tag{1}
\end{array}
$$

Therefore homogeneous equation $A x=0$ has a nontrivial solution which is $\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n-1} \\ -1\end{array}\right]$. It implies that $A x=0$ has infinitely many solutions.

Problem 4: Yes, since A has a pivot position in every row.

Problem 5:

5.1. The equation $A x=b$ is homogeneous if the zero vector is a solution. T
5.2. The homogeneous equation $A x=0$ has the trivial solution if and only if the equation has at least one free variable. F
5.3. A homogeneous system of equations can be inconsistent. F
5.4. If v is a nontrivial solution of $A x=0$, then every entry in v is nonzero. \mathbf{F}
5.5. If homogeneous equation $A x=0$ has a unique solution, then $A x=b$ cannot have infinitely many solutions. T

Problem 6:

$$
\left[\begin{array}{llll}
2 & 6 & 1 & 5 \tag{2}\\
1 & 3 & 0 & 2 \\
3 & 9 & 0 & 6 \\
1 & 3 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 3 & 0 & 2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The set is linearly dependent.

Problem 7:

- Consider vector equation $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$. It is equivalent to matrix equation

$$
\left[\begin{array}{rrr}
2 & -1 & 8 \\
-3 & 4 & -2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=0
$$

This homogeneous equation has infinitely many solutions given by

$$
\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=c_{3}\left[\begin{array}{r}
-6 \\
-4 \\
1
\end{array}\right]
$$

Therefore, we have

$$
-6 v_{1}-4 v_{2}+v_{3}=0
$$

That is, $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent.

- $v_{2}=-\frac{3}{2} v_{1}+\frac{1}{4} v_{3}$

Problem 8:

$$
\left[\begin{array}{rrr}
1 & -5 & 3 \tag{3}\\
3 & -8 & -5 \\
-1 & 2 & k
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -5 & 3 \\
0 & 1 & -2 \\
0 & 0 & k-3
\end{array}\right]
$$

When $k=3$ the columns of the matrix are linearly dependent.

Problem 9: Consider vector equation

$$
c_{1}\left(v_{1}+v_{3}\right)+c_{2}\left(v_{1}-2 v_{2}\right)+c_{3}\left(-4 v_{1}+v_{2}+3 v_{3}\right)=0
$$

which can be rewritten as

$$
\left(c_{1}+c_{2}-4 c_{3}\right) v_{1}+\left(-2 c_{2}+c_{3}\right) v_{2}+\left(c_{1}+3 c_{3}\right) v_{3}=0
$$

Since $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent, $\left\{c_{1}, c_{2}, c_{3}\right\}$ must satisfy

$$
\begin{align*}
c_{1}+c_{2}-4 c_{3} & =0 \\
-2 c_{2}+c_{3} & =0 \\
c_{1}+3 c_{3} & =0 \tag{4}
\end{align*}
$$

We do row reduction on the coefficient matrix.

$$
\left[\begin{array}{rrr}
1 & 1 & -4 \tag{5}\\
0 & -2 & 1 \\
1 & 0 & 3
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 1 & -4 \\
0 & -2 & 1 \\
0 & 0 & 13 / 2
\end{array}\right]
$$

Every column is a pivot column. There is no free variable. Equation (4) has only the trivial solution. Therefore, by definition, $\left\{v_{1}+v_{3}, v_{1}-2 v_{2},-4 v_{1}+v_{2}+3 v_{3}\right\}$ is also linearly independent.

Problem 10: Mark each statement True or False
10.1. The set $\left\{0, v_{1}, v_{2}, \cdots, v_{k}\right\}$ is always linearly dependent. \mathbf{T}
10.2. Let v_{1}, v_{2}, v_{3} and v_{4} be vectors in \mathbb{R}^{n} such that $v_{1}-v_{2}=v_{3}-v_{4}$. Then the the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly dependent. T
10.3. If u and v are linearly independent, and if w is in $\operatorname{span}\{u, v\}$, then $\{u, v, w\}$ is linearly dependent. T
10.4. If a set in \mathbb{R}^{n} is linearly dependent, then the set contains more than n vectors. \mathbf{F}
10.5. If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a set of vectors in \mathbb{R}^{4} and $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent, then $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is also linearly dependent. T

Problem 11:

$$
\begin{aligned}
& A B=\left[\begin{array}{rr}
-3 & 9 \\
11 & -5 \\
-23 & 6
\end{array}\right], \quad A^{T} B=\left[\begin{array}{rr}
3 & 5 \\
36 & -3 \\
-14 & 0
\end{array}\right] \\
& B C=\left[\begin{array}{rrrr}
-1 & 4 & -2 & 5 \\
-9 & 1 & 3 & -4 \\
7 & 7 & -7 & 14
\end{array}\right] \quad C D=\left[\begin{array}{ll}
-1 & 5 \\
-1 & 2
\end{array}\right] \quad(C D)^{2}=\left[\begin{array}{rr}
-4 & 5 \\
-1 & -1
\end{array}\right]
\end{aligned}
$$

Problem 12: B has 6 rows.

Problem 13: The second column of $A B$ is a zero column.

Problem 14: When $k=-2, A B=B A$.

Problem 15: Let $b_{1}, b_{2}, \cdots, b_{n}$ be the columns of B. Since $\left\{b_{1}, \cdots, b_{n}\right\}$ are linearly dependent, there exist $c_{1}, c_{2}, \cdots, c_{n}$, not all zero, such that

$$
\begin{aligned}
c_{1} b_{1}+c_{2} b_{2}+\cdots+c_{n} b_{n} & =0 \\
\Longrightarrow A\left(c_{1} b_{1}+c_{2} b_{2}+\cdots+c_{n} b_{n}\right) & =0 \\
\Longrightarrow c_{1}\left(A b_{1}\right)+c_{2}\left(A b_{2}\right)+\cdots+c_{n}\left(A b_{n}\right) & =0
\end{aligned}
$$

Therefor, $\left\{A b_{1}, A b_{2}, \cdots, A b_{n}\right\}$ are linearly dependent.

Problem 16:

$$
\begin{aligned}
w_{2,1} & =\left[\begin{array}{llll}
2 & 1 & -2 & 3
\end{array}\right] \cdot\left[\begin{array}{rr}
-1 & 5 \\
3 & -4 \\
2 & 2 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{r}
-1 \\
3
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 2
\end{array}\right] \cdot\left[\begin{array}{r}
-1 \\
3
\end{array}\right] \\
& =6
\end{aligned}
$$

Problem 17:

$$
\begin{aligned}
A^{2}-3 A & =\left[\begin{array}{rr}
2 & 1 \\
-1 & 3
\end{array}\right]^{2}-\left[\begin{array}{rr}
6 & 3 \\
-3 & 9
\end{array}\right] \\
& =\left[\begin{array}{rr}
3 & 5 \\
-5 & 8
\end{array}\right]-\left[\begin{array}{rr}
6 & 3 \\
-3 & 9
\end{array}\right] \\
& =\left[\begin{array}{rr}
-3 & 2 \\
-2 & -1
\end{array}\right]
\end{aligned}
$$

Problem 18:

$$
\begin{aligned}
B^{3} & =B^{2} \cdot B=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore, for all $n \geq 3, B^{n}=B^{n-3} B^{3}=B^{n-3} \cdot 0=0$.

