AMS 10/10A, Homework 3 Solutions

Problem 1:

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
3 & -1 & -1 \\
0 & 9 & 2 \\
1 & 0 & 7 \\
-5 & 5 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
5 \\
6 \\
0 \\
-5
\end{array}\right]} \\
& {\left[\begin{array}{rrrr}
0 & 2 & -1 & 7 \\
1 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]}
\end{aligned}
$$

Problem 2:

$$
\begin{aligned}
x_{1}\left[\begin{array}{l}
2 \\
4 \\
7
\end{array}\right]+x_{2}\left[\begin{array}{r}
3 \\
7 \\
10
\end{array}\right]+x_{3}\left[\begin{array}{r}
-1 \\
1 \\
-4
\end{array}\right] & =\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right] \\
x_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
6
\end{array}\right]+x_{3}\left[\begin{array}{r}
-3 \\
1
\end{array}\right] & =\left[\begin{array}{r}
1 \\
13
\end{array}\right]
\end{aligned}
$$

Problem 3:

$$
\left[\begin{array}{rrr|r}
0 & 1 & 0 & 3 \\
-4 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll|r}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -15
\end{array}\right] \Longrightarrow b=-3 v_{1}+3 v_{2}-15 v_{3}
$$

Problem 4:

$$
\left[\begin{array}{rr|r}
1 & -5 & 3 \\
3 & -8 & -5 \\
2 & 1 & h
\end{array}\right] \sim\left[\begin{array}{rr|r}
1 & -5 & 3 \\
0 & 7 & -14 \\
0 & 0 & h+16
\end{array}\right] \Longrightarrow h=-16
$$

Problem 5:

$\left[\begin{array}{rrr|r}1 & 3 & 1 & 2 \\ 0 & 2 & 4 & 1 \\ 1 & 5 & -3 & -1\end{array}\right] \sim\left[\begin{array}{rrr|r}1 & 3 & 1 & 2 \\ 0 & 2 & 4 & 1 \\ 0 & 0 & -8 & -4\end{array}\right] \Longrightarrow$ The linear system has a solution. $\Longrightarrow b$ is in W.

The third column of A is a linear combination of all columns of A with wrights 0,0 and 1 . Therefore, it's in the set W.

Problem 6:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 3 & 4 & 7 \\
3 & 9 & 7 & 6
\end{array}\right]\left[\begin{array}{r}
0 \\
3 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
19 \\
32
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
2 & -1 & 0 \\
2 & 1 & -1
\end{array}\right]\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{r}
3 \\
-1
\end{array}\right]} \\
& {\left[\begin{array}{rrrr}
-5 & 2 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{r}
9 \\
1 \\
-1 \\
5
\end{array}\right]=\left[\begin{array}{r}
-59 \\
0
\end{array}\right]}
\end{aligned}
$$

Problem 7:

$$
\begin{gathered}
x_{1}\left[\begin{array}{r}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
4 \\
9
\end{array}\right]+x_{3}\left[\begin{array}{r}
7 \\
-6
\end{array}\right]+x_{4}\left[\begin{array}{r}
-3 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
4
\end{array}\right] \\
{\left[\begin{array}{rrrr}
0 & 2 & 1 & 2 \\
1 & 4 & 1 & 0 \\
5 & 3 & -5 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]}
\end{gathered}
$$

Problem 8:

$$
A \sim\left[\begin{array}{cccc}
1 & 3 & 0 & 3 \\
0 & 2 & -1 & 4 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

A has only three pivots. Row 4 does not have a pivot. $A x=b$ will be inconsistent for some b in \mathbb{R}^{4}. Therefore, it is not true that $A x=b$ has a solution for every b in \mathbb{R}^{4}.

Problem 9:

$$
\left[v_{1}, v_{2}, v_{3}\right]=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-4 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\left[v_{1}, v_{2}, v_{3}\right]$ has 3 pivots, one pivot for each row. Therefore, each b in \mathbb{R}^{3} can be expressed as a linear combination of v_{1}, v_{2} and v_{3}. It implies that $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\mathbb{R}^{3}$.

Problem 10: A set of three vectors in R^{4} cannot span R^{4}. Reason: The matrix A consisting of these three column vectors has four rows. To have a pivot in each row, A would have to have at least four columns (one pivot column for each pivot). Therefore, a set of three vectors in R^{4} cannot span R^{4}. In general, when $n<m$, a set of n vectors in R^{m} cannot $\operatorname{span} R^{m}$.

Problem 11:

11.1. If a matrix A has a row of all zeros, then its reduced echelon form also contains a row of all zeros. T
11.2. If the reduced echelon form of matrix A has a row of all zeros, then matrix A contains a row of all zeros. \mathbf{F}
11.3. An example of a linear combination of vectors v_{1} and v_{2} is the vector $\frac{1}{3} v_{1}$. T
11.4. Any linear combination of vectors can always be written in the form $A x$ for a suitable matrix A and vector x. T
11.5. The equation $A x=b$ is consistent if the augmented matrix $[A b]$ has a pivot position in every row. \mathbf{F}

