AMS 10/10A, Homework 3 Solutions
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The third column of A is a linear combination of all columns of A with wrights 0, 0 and 1.
Therefore, it’s in the set W.
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A has only three pivots. Row 4 does not have a pivot. Az = b will be inconsistent for some
b in R*. Therefore, it is not true that Az = b has a solution for every b in R*.
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[v1, ve, vs] has 3 pivots, one pivot for each row. Therefore, each b in R3 can be expressed as
a linear combination of vy, vy and v3. It implies that span{v;, vy, vz} = R3.

Problem 10: A set of three vectors in R* cannot span R*. Reason: The matrix A
consisting of these three column vectors has four rows. To have a pivot in each row, A would
have to have at least four columns (one pivot column for each pivot). Therefore, a set of
three vectors in R* cannot span R*. In general, when n < m, a set of n vectors in R™ cannot
span R™.

Problem 11:
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If a matrix A has a row of all zeros, then its reduced echelon form also contains a row
of all zeros. T

If the reduced echelon form of matrix A has a row of all zeros, then matrix A contains
a row of all zeros. F

An example of a linear combination of vectors v; and vy is the vector %Ul. T

Any linear combination of vectors can always be written in the form Ax for a suitable
matrix A and vector xz. T

The equation Azx = b is consistent if the augmented matrix [A b] has a pivot position
in every row. F



