AMS 10/10A, Homework 2 Solutions

Problem 1: Yes. The intersection is $x_{1}=3 / 2, x_{2}=7 / 4$.

Problem 2:

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
2 & 3 & -1 & 1 \\
4 & 7 & 1 & 3 \\
7 & 10 & -4 & 4
\end{array}\right] \sim\left[\begin{array}{rrr|r}
2 & 3 & -1 & 1 \\
0 & 1 & 3 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lll|r}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1
\end{array}\right] \Longrightarrow\left\{\begin{array}{l}
x_{1}=4 \\
x_{2}=-2 \\
x_{3}=1
\end{array}\right.} \\
& {\left[\begin{array}{rrr|r}
3 & 3 & 1 & -4.5 \\
1 & 1 & 1 & 0.5 \\
-2 & -2 & 0 & 5
\end{array}\right] \sim\left[\begin{array}{lll|r}
1 & 1 & 1 & 0.5 \\
0 & 0 & 2 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll|r}
1 & 1 & 0 & -2.5 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \Longrightarrow\left\{\begin{array}{lll}
x_{1}= & -x_{2}-2.5 \\
x_{3}= & 3 \\
x_{2} & : & \text { free }
\end{array}\right.} \\
& {\left[\begin{array}{rrr|r}
1 & 2 & -3 & 1 \\
3 & 6 & 1 & 13 \\
4 & 8 & -2 & 9
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 2 & -3 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & -5
\end{array}\right] \Longrightarrow \text { inconsistent, no solution }}
\end{aligned}
$$

Problem 3: $\quad B, C$ and D are not in echelon form.

Problem 4:

$$
\left[\begin{array}{rrr|r}
1 & 2 & 2 & 1 \\
0 & 1 & \alpha & 1 \\
-1 & 1 & \alpha & \alpha
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 2 & 2 & 1 \\
0 & 1 & \alpha & 1 \\
0 & 0 & 2-2 \alpha & \alpha-2
\end{array}\right]
$$

When $\alpha=1$, the linear system has no solution. For all $\alpha \neq 1$, the linear system has unique solution.

Problem 5: (Pivot positions are marked in red)

$$
\begin{gathered}
A \sim\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
B \sim\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
C \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
1
\end{gathered}
$$

Problem 6:

$$
\left.\begin{array}{c}
{\left[\begin{array}{rrr|r}
6 & -6 & 6 & 6 \\
2 & 4 & -6 & 12 \\
10 & -5 & 5 & 30
\end{array}\right] \sim\left[\begin{array}{lll|r}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 11 \\
0 & 0 & 1 & 7
\end{array}\right]}
\end{array}\right]\left\{\begin{array}{l}
x_{1}=5 \\
x_{2}=11 \\
x_{3}=7
\end{array} \left\lvert\, \begin{array}{rrr|r}
2 & -1 & 3 & 3 \\
4 & -1 & 1 & 3 \\
-2 & -2 & 5 & 1 \\
6 & 1 & -1 & 5
\end{array}\right.\right] \sim\left[\begin{array}{rrr|r}
2 & -1 & 3 & 3 \\
0 & 1 & -5 & -3 \\
0 & 0 & 13 & 7 \\
0 & 0 & 0 & 34 / 13
\end{array}\right] \Longrightarrow \text { no solution } \begin{aligned}
& \text { 2 }
\end{aligned}
$$

Problem 7:

$$
\begin{aligned}
& A \sim\left[\begin{array}{lll|r}
1 & 3 & 0 & -5 \\
0 & 0 & 1 & 3
\end{array}\right] \Longrightarrow\left\{\begin{array}{lll}
x_{1} & = & -3 x_{2}-5 \\
x_{3}= & 3 \\
x_{2} & : & \text { free }
\end{array}\right. \\
& B \sim\left[\begin{array}{lll|r}
1 & 0 & 0 & -15 / 22 \\
0 & 1 & 0 & 1 / 2 \\
0 & 0 & 1 & 3 / 11
\end{array}\right] \Longrightarrow \begin{cases}x_{1}=-15 / 22 \\
x_{2}=1 / 2 \\
x_{3}=3 / 11\end{cases}
\end{aligned}
$$

Problem 8:

$$
A \sim\left[\begin{array}{ccc|c}
1 & 1 & 1 & -1 \\
0 & 1 & \alpha-1 & 2 \alpha+1 \\
0 & 0 & \alpha^{2}-2 \alpha & 2 \alpha^{2}-\alpha
\end{array}\right]
$$

When $\alpha \neq 0$ and $\alpha \neq 2$, the linear system has three basic variables.
When $\alpha=0$, the linear system has two basic variable and one free variable.
When $\alpha=2$ the linear system is inconsistent.

Problem 9: Mark each statement True or False
9.1. If an augmented matrix has 8 columns and 6 rows, then the associated linear system has 8 equations and 6 unknown variables. F
9.2. Elementary row operations on an augmented matrix never change the solution set of the associated linear system of equations. T
9.3. An inconsistent linear system can have a solution. \mathbf{F}
9.4. A matrix may be row reduced to more than one matrix in echelon form, using different sequences of row operations. T
9.5. If one row in an echelon form of an augmented matrix is $[0,0,0,-3,0]$, then the associated linear system of equations is inconsistent. F

