AMS 10/10A, Homework 10 Solutions

Problem 1.

$$\hat{y} = \frac{y^{T}u_{1}}{u_{1}^{T}u_{1}}u_{1} + \frac{y^{T}u_{2}}{u_{2}^{T}u_{2}}u_{2}$$

$$= \frac{1}{3}u_{1} + \frac{5}{7}u_{2}$$

$$= \begin{bmatrix} -8/21\\52/21\\-23/21 \end{bmatrix}$$

and

$$= y - \hat{y}$$

$$= \begin{bmatrix} 2\\ 2\\ -3 \end{bmatrix} - \begin{bmatrix} -8/21\\ 52/21\\ -23/21 \end{bmatrix}$$

$$= \begin{bmatrix} 50/21\\ -10/21\\ -40/21 \end{bmatrix}$$

They satisfy that $y = \hat{y} + z$, where \hat{y} is a vector in H and z is a vector in H^{\perp} .

 \boldsymbol{z}

Problem 2. By Best Approximation Theorem the closest point in $span\{v_1, v_2\}$ to y is given by the projection of y onto $span\{v_1, v_2\}$. Since v_1 and v_2 are orthogonal, this projection can be computed as

$$\frac{y^T v_1}{v_1^T v_1} v_1 + \frac{y^T v_2}{v_2^T v_2} v_2 = \frac{1}{5} v_1 + \frac{1}{13} v_2 = \begin{bmatrix} -7/65\\ -21/65\\ -1/5\\ 41/65 \end{bmatrix}$$

Problem 3-7.

• By applying elementary row operations on the augmented matrix $[A \mid b]$, we have

$$\begin{bmatrix} A \, | \, b \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & | & 1 \\ 0 & -14 & | & -3 \\ 0 & 0 & | & 4 \end{bmatrix}$$

Since the last column is a pivot column, the equation Ax = b is inconsistent.

- Since the columns of A are an orthogonal set of non-zero vectors, they are a linearly independent set. Consequently, they form an orthogonal basis for Col(A).
- The column of A are an orthogonal basis for Col(A). Hence, projection of b onto Col(A) is given by

$$\hat{b} = \frac{b^T a_1}{a_1^T a_1} a_1 + \frac{b^T a_2}{a_2^T a_2} a_2 = \frac{1}{2} a_1 - \frac{1}{6} a_2 = \begin{bmatrix} -1/3 \\ 4/3 \\ 5/3 \end{bmatrix}$$

• The least square solution, \hat{x} , of Ax = b is given by

$$\hat{x} = (A^T A)^{-1} A^T b$$
$$= \begin{bmatrix} 14 & 0 \\ 0 & 42 \end{bmatrix}^{-1} \begin{bmatrix} 7 \\ -7 \end{bmatrix} = \begin{bmatrix} 1/2 \\ -1/6 \end{bmatrix}$$

•
$$A\hat{x} = \begin{bmatrix} -1/3 \\ 4/3 \\ 5/3 \end{bmatrix} = \hat{b}.$$

Problem 8-9. Let A be an $m \times n$ matrix. Use the steps below to show that a vector x in \mathbb{R}^n satisfies Ax = 0 if and only if $A^T A x = 0$.

• Show that if Ax = 0, then $A^T Ax = 0$.

Proof: Let x be a vector such that Ax = 0. Multipling A^T on both sides of the equation leads to $A^T Ax = A^T 0 = 0$.

• Suppose $A^T A x = 0$. Show that $x^T A^T A x = 0$, and use this to prove A x = 0.

Proof: Let x be a vector such that $A^T A x = 0$. Multipling x^T on both sides of the equation leads to $x^T A^T A x = x^T 0 = 0$. Therefore, $x^T A^T A x = (Ax)^T (Ax) = ||Ax||^2 = 0$. Since the norm of a vector equals to zero if and only if the vector itself is the zero vector, we have Ax = 0.

Problem 10-11. Let A be an $m \times n$ matrix. Problem 8-9 implies that $Nul(A) = Nul(A^TA)$. Use this result to prove that • $rank(A) = rank(A^T A)$.

Proof: Matrix A is $m \times n$ and matrix $A^T A$ is $n \times n$. By the Rank Theorem, we have

$$rank(A) + dim(Nul A) = n$$
$$rank(A^{T}A) + dim(Nul A^{T}A) = n$$

Hence,

$$rank(A) = n - dim(Nul A)$$

= $n - dim(Nul(A^T A))$ (since $Nul(A) = Nul(A^T A)$)
= $rank(A^T A)$ (By The Rank Theorem)

• If rank(A) = n, then $A^T A$ is invertible.

Proof: If rank(A) = n, from the result in Problem 10, $rank(A^T A) = rank(A) = n$. Since matrix $A^T A$ is a square matrix of $n \times n$, by Invertible Matrix Theorem, $rank(A^T A) = n$ implies that $A^T A$ is invertible.