AMS 10/10A, Homework 10 Solutions

Problem 1.

$$
\begin{aligned}
\hat{y} & =\frac{y^{T} u_{1}}{u_{1}^{T} u_{1}} u_{1}+\frac{y^{T} u_{2}}{u_{2}^{T} u_{2}} u_{2} \\
& =\frac{1}{3} u_{1}+\frac{5}{7} u_{2} \\
& =\left[\begin{array}{r}
-8 / 21 \\
52 / 21 \\
-23 / 21
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
z & =y-\hat{y} \\
& =\left[\begin{array}{r}
2 \\
2 \\
-3
\end{array}\right]-\left[\begin{array}{r}
-8 / 21 \\
52 / 21 \\
-23 / 21
\end{array}\right] \\
& =\left[\begin{array}{r}
50 / 21 \\
-10 / 21 \\
-40 / 21
\end{array}\right]
\end{aligned}
$$

They satisfy that $y=\hat{y}+z$, where \hat{y} is a vector in H and z is a vector in H^{\perp}.

Problem 2. By Best Approximation Theorem the closest point in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$ to y is given by the projection of y onto $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Since v_{1} and v_{2} are orthogonal, this projection can be computed as

$$
\frac{y^{T} v_{1}}{v_{1}^{T} v_{1}} v_{1}+\frac{y^{T} v_{2}}{v_{2}^{T} v_{2}} v_{2}=\frac{1}{5} v_{1}+\frac{1}{13} v_{2}=\left[\begin{array}{r}
-7 / 65 \\
-21 / 65 \\
-1 / 5 \\
41 / 65
\end{array}\right]
$$

Problem 3-7.

- By applying elementary row operations on the augmented matrix $[A \mid b]$, we have

$$
[A \mid b] \sim\left[\begin{array}{rr|r}
1 & 5 & 1 \\
0 & -14 & -3 \\
0 & 0 & 4
\end{array}\right]
$$

Since the last column is a pivot column, the equation $A x=b$ is inconsistent.

- Since the columns of A are an orthogonal set of non-zero vectors, they are a linearly independent set. Consequently, they form an orthogonal basis for $\operatorname{Col}(A)$.
- The column of A are an orthogonal basis for $\operatorname{Col}(A)$. Hence, projection of b onto $\operatorname{Col}(A)$ is given by

$$
\hat{b}=\frac{b^{T} a_{1}}{a_{1}^{T} a_{1}} a_{1}+\frac{b^{T} a_{2}}{a_{2}^{T} a_{2}} a_{2}=\frac{1}{2} a_{1}-\frac{1}{6} a_{2}=\left[\begin{array}{r}
-1 / 3 \\
4 / 3 \\
5 / 3
\end{array}\right]
$$

- The least square solution, \hat{x}, of $A x=b$ is given by

$$
\begin{aligned}
\hat{x} & =\left(A^{T} A\right)^{-1} A^{T} b \\
& =\left[\begin{array}{rr}
14 & 0 \\
0 & 42
\end{array}\right]^{-1}\left[\begin{array}{r}
7 \\
-7
\end{array}\right]=\left[\begin{array}{r}
1 / 2 \\
-1 / 6
\end{array}\right]
\end{aligned}
$$

- $A \hat{x}=\left[\begin{array}{r}-1 / 3 \\ 4 / 3 \\ 5 / 3\end{array}\right]=\hat{b}$.

Problem 8-9. Let A be an $m \times n$ matrix. Use the steps below to show that a vector x in \mathbb{R}^{n} satisfies $A x=0$ if and only if $A^{T} A x=0$.

- Show that if $A x=0$, then $A^{T} A x=0$.

Proof: Let x be a vector such that $A x=0$. Multipling A^{T} on both sides of the equation leads to $A^{T} A x=A^{T} 0=0$.

- Suppose $A^{T} A x=0$. Show that $x^{T} A^{T} A x=0$, and use this to prove $A x=0$.

Proof: Let x be a vector such that $A^{T} A x=0$. Multipling x^{T} on both sides of the equation leads to $x^{T} A^{T} A x=x^{T} 0=0$. Therefore, $x^{T} A^{T} A x=(A x)^{T}(A x)=\|A x\|^{2}=$ 0 . Since the norm of a vector equals to zero if and only if the vector itself is the zero vector, we have $A x=0$.

Problem 10-11. Let A be an $m \times n$ matrix. Problem 8-9 implies that $\operatorname{Nul}(A)=\operatorname{Nul}\left(A^{T} A\right)$. Use this result to prove that

- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)$.

Proof: Matrix A is $m \times n$ and matrix $A^{T} A$ is $n \times n$. By the Rank Theorem, we have

$$
\begin{aligned}
& \operatorname{rank}(A)+\operatorname{dim}(N u l A)=n \\
& \operatorname{rank}\left(A^{T} A\right)+\operatorname{dim}\left(N u l A^{T} A\right)=n
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\operatorname{rank}(A) & =n-\operatorname{dim}(N u l A) \\
& =n-\operatorname{dim}\left(N u l\left(A^{T} A\right)\right) \quad\left(\text { since } \operatorname{Nul}(A)=\operatorname{Nul}\left(A^{T} A\right)\right) \\
& =\operatorname{rank}\left(A^{T} A\right) \quad(\text { By The Rank Theorem })
\end{aligned}
$$

- If $\operatorname{rank}(A)=n$, then $A^{T} A$ is invertible.

Proof: If $\operatorname{rank}(A)=n$, from the result in Problem 10, $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)=$ n. Since matrix $A^{T} A$ is a square matrix of $n \times n$, by Invertible Matrix Theorem, $\operatorname{rank}\left(A^{T} A\right)=n$ implies that $A^{T} A$ is invertible.

