
Using Content-Derived Names for Configuration Management*
Jeffrey K. Hollingsworth

University of Maryland College Park

hollings@cs.umd.edu

Abstract

Configuration marragement of compiled sojiware artt~acts
(programs, iibraries, icons, etc.) is a growing problem as sojt-
ware reuse becomes more prevalent. For an application com-
posed from reused libraries and modules to function correctly, ail
of the required jiles must be available and be the correct version.
In this paper, we present a simple scheme to address this prob-
lem: content-derived names (CDNS). Computing an object’s mme
automatically using digital signatures greatly eases the problem
of disambiguating multiple versions of an object. By using con-
tent-derived names, developers can ensure that only those soft-
ware components that have been tested together are permitted to
run together.

1. Introduction
As software modularity and code reuse have

evolved from academic concept to accepted practice, pro-
grams have changed from self-contained monolithic files to
a complex collection of interrelated files, A typical applica-
tion today might consist of a main executable file and sev-
eral configuration files, and require tens of libraries to be
installed. Although this evolution has many positive aspects
including software reuse and reduced disk storage, it has
greatly complicated the process of installing and configur-
ing software packages. Instead of loading a single file, an
application could require hundreds of files when all librar-
ies and icons are included. For example, Microsoft Office
Pro 95 consists four major applications (Word, Excel, Pow-
erpoint, and Access) plus several smaller applications and
totals over 1,200 files. Many of these files are shared by
several of the applications. To make matters worse, previ-
ously installed software may use incompatible versions of
shared files. As a result, installing one application can often
cause previously installed applications to fail.

This paper addresses many of these concerns with
a simple mechanism: providing a name for objects based

solely on their content. A content-derived name is the same

* This work support in part by DOE grant DE-FG02-
93ER25176, NASA grant NAG 2-1094, NIST CRA award 70-
NANB-5HO055,and a grant from the Department of Defense.

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial adven-
tage, the copyright notice, the title of the publication and ita date

appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republieh, to post on servera, or to

redistribute to lists, requirea prior specific permission and/or e fee.
SSR ’97 MA, USA
~ 1997 ACM 0-89791 -945 -919710005 ...$3.50

Ethan L. Miller

University of Maryland Baltimore County

elm@cs.umbc.edu

for any two objects with identical content, regardless of
their location or origin. However, it is different for different
versions of the same package or library. Since an object’s
name does not depend on a manually assigned identifier
such as a file name, a program requiring a specific version
of a library is guaranteed to get the correct version because
different versions have different contents and thus different
names.

We first describe previous work on object code
configuration management and some of the theory under-
lying digital signatures. We then describe how content-
derived names provide benefits for so fiware configuration
management. We conclude with a look at the implications
of using content-derived names, and some possible direc-
tions for future work,

2. Background

While the idea of using content-derived names
(CDNS) for configuration management of object code is a
new one, there has been previous work in the areas of using
explicitly managed version numbers to provide configura-
tion management. This paper builds on that work, as well as
previous work in digital signatures.

2.1 Contlguration Management
Most of the research in configuration management

has concentrated in the area of managing the building of
software objects from a source code repository. If a build
produces a single, monolithic object (i.e., an executable

program), then configuration management stops at this
point and the object can be distributed’. However, if instead
a family of related objects is produced (i.e., several com-
municating programs or a program plus separately stored
libraries), then configuration management needs to be con-
tinued through the installation of the software onto each
end-user’s computer. To date, little research has addressed
this second aspect of configuration management. One nota-
ble exception is van der Hock et al.[8]. They address the
related problem of “software release management” by pro-
posing a system to support software acquisition and to en-
sure that the correct versions of dependent packages are
acquired with the primary package. Their approach relies
on a centralized software repository and explicit admini-

‘ We might archive configurationinformationto document the
pedigreeof the releasedartifact.

104

Ethan L. Miller
Appeared in the 1997 Symposium on Software Reusability (SSR '97), Boston, MA, May 1997, pages 104–109.

stration of version numbers for all software packages. In
contrast, our approach is completely decentralized and

permits anyone to release a new software package.

Explicit specification of software components
based on filename and version number is also used in the
UNIX operating system for dynamically linking shared li-
braries. This scheme permits compatible and incompatible
changes to libraries by assigning a major and minor version
number to each file. Files with different major version
numbers are assumed to be incompatible. Files with the
same major version number and different minor version
numbers are assumed to be compatible. The decision of
whether a change to a library is a “compatible” or
“incompatible” is the responsibility of the library supplier.
No provision is made to let application developers specifi-
cally indicate if a particular library instance is compatible
with their application or not. As a result, a software vendor
can not ensure that their product is being used with a known
(and tested) configuration.

2.2 Seeure Hash Functions
A key feature of CDNS is the use of a secure hash

functions to assign a unique name to an object based on its
content. Digital signature algorithms such as MD5[6] and
SHA-1[1] are one-way functions that take an arbitrary se-
quence of bytes and produce a result that is likely to be dif-
ferent from that of any other (different) input sequence.
MD5 is well suited to generate content-derived names. The
MD5 algorithm produces a 128 bit signature, and Rivest[6]
claims that it is NP-hard to find another document with an
identical signature. Touch[7] has reported that it is possible
to compute MD5 in software at the rate of over 10
MB/second on current RISC workstations; we feel this rate
is more than adequate for our proposed use of MD5.

In order for a content-derived name system to
work, it must probabilistically guarantee that two different
objects will not share the same object name (i.e., the prob-
ability of a hash collision must be sufficiently small). To
trust a probabilistic guarantee, we must ensure that the
probability of failure is sufficiently small compared to other
probabilistic guarantees already built into computer systems
such as an undetected parity error in a disk read request.
The space of all compiled software artifacts is very large,
potentially billions of objects. Fortunately, even in this
large space, the probability of such a failure is small. The
probability that m numbers chosen randomly from a pool of
n will be unique is e‘m(m-’)n”[41, where n = 2’28 for MD5.
For 1015objects, the probability of success (no two objects

_2-m
with different content have the same name) is e as-
suming that object names (hash values) are uniformly dis-

tributed (which MD-5 ensures). Since 1– e-’ = x for small
x, the chance of failure is approximately 2-29,or 109. We
believe this chance of failure is sufilciently low because it is
below the probability that there would be an undetectable

failure in a disk or network link during that time, Thus, un-

detectable hardware failure is more likely to cause the use
of an “incomect” object than content-derived naming.

If a larger number of objects is required or lower
probability of failure is needed, secure hash functions can
still be used. There is no theoretical limit to the length of a
digital signature. While MD5 produces 128 bit signatures, a
similar algorithm could be constructed to produce a signa-
ture with 256 bits, allowing the creation of 1030unique ob-
jects with the chance of collision dropping to below 10-i’.
This is sufficient to allow each of ten billion computers to
create ten million unique objects per second for over three
hundred years.

3. Using CDNS for Contlguration Manage-
ment

The current trend in creating software is to reuse
components such as classes, dynamic libraries, icons, and
sound bites. For technical (size of the objects) or legal
(different component vendors) reasons, different objects are
stored as separate files. For a software product to work cor-
rectly, however, the different components must be compati-
ble with each other. A single package may involve hundreds
of individual files, each of which must be the right file, and
be installed in the right place in the directory structure. An
incorrect version of a particular library or configuration file,
or even the right file in the wrong place, can render the en-
tire package useless. This situation is complicated by the
evolution of software and the interdependence of software
packages. A single computer often has dozens of software
packages, some of which may require different versions of
the same software library. Maintaining such systems is dif-
ficult at best, and installing new software is often a chal-
lenge.

The popularity of personal computers and the
WWW has further complicated software configuration
management by facilitating the distribution of software over
the Internet. No longer is the installer a computer expert;
instead, complex systems must be “installed” by less-
experienced users. Automatic install programs provide
some assistance in this regard, but ensuring compatibility
with previously installed applications is not currently sup-

ported. Also, languages such as Java[2] allow users to pull
classes from many different locations, yet there is no guar-
antee that the files obtained in this way will actually work
together. Some tiles may not work with the latest version of
a Java class, instead requiring an older version. How can
the software publisher specify a particular version of a Java
class or similar object?

3.1 Ensuring Version Consistency
Currently, names, or names combined with a ver-

sion string, are used to identify external components (such
as dynamically linked library). However, using names as

105

the basis of compatibility is problematic. Software quality
assurance requires that product be tested with all compati-
ble components prior to shipping. As a result, many prod-
ucts include copies of the tested components as part of their
distribution. When the product is installed, the included
components are copied onto the target machine with a name
assigned by the developer. This ensures that the last in-
stalled product will have the correct components. However,
any previously installed software may now break because it
may rely on older (or newer) versions of components that
have been replaced by more recently installed software.

Using digital signatures provides a good solution

to finding consistent versions of objects. Each library, icon,

or sound bite will have an object identifier computed using
a digital signature. This signature uniquely identifies an
object solely based on its content. We term this digital sig-
nature a content-derived name (CDN) since it can be used
to fully specify a requested object. When an application (or
a library) wants to reference or load an external component,
it simply specifies the CDN for the desired object. A library
(or perhaps the file system) then locates the requested ob-
ject and loads it. Since different versions of the same soft-
ware component will have different CDNS, each application
will get the desired version.

At software installation, each component included
with the distribution is loaded only if its CDN is not already
installed. On the other hand, a new version of a software
package may leave unmodified many of the files that it
uses. These objects will retain the same object identifiers as
the older version of the software, allowing the user to load
only the files that have changed since the last version was
released. Likewise, objects shared by several applications
need only be installed once. Objects can refer to other ob-
jects by their CDNS forming a graph of object dependen-
cies. By recursively traversing this graph, it is possible to
ensure that all required components for an application are
installed.

Traditionally, shared objects have been distributed
in relatively large units (libraries) because maintaining con-
sistent versions was so diftlcult. However, the use of con-
tent-derived naming allows the sharing of objects at a much
finer granularity since the verification of consistent versions
can be automated. This will (hopefully) encourage fine
grained object code reuse.

Sometimes it is possible for an application to be
able to use more than one version of a library. For example,
an application might be compatible and have been tested
with either of two similar releases of an object library. This
case can easily be accommodated by lists of equivalent
CDNS. As long as one of the objects specified in the
equivalence list is present, the installation process does not
need to load an object.

It is also possible that an application could be
customized during installation or by the user at a latter time.
For example, users might add custom macros to their word
processing system. Customizations could be applied to ei-
ther the application or to individual objects. However, cus-
tomizations could potentially change the content of an ob-
ject (and thus its CDN). To accommodate this situation,
each object should contain a customization region contain-
ing fields that can be changed. This part of the object
would not be used in computing its CDN.

The overall structure of an object in our scheme is
shown in Figure 1. An object consists of the object body,
external object references, customization region, and its
CDN. The object body contains the majority of the object,
including its executable code. References to other objects
or customization data are represented as pointers to the ap-
propriate section of the object. Each object reference can be
a list of CDNS for equivalent objects. Although this infor-
mation is immutable, it needs to be in a designated section
of an object so that the object manipulation routines can
identify an object’s external object references. The customi-
zation region has two sections. One to store customized
references to other objects and the second to store free for-
mat data. The only requirement is that pointers from the
object body can’t be modified due to customization since
this would change the object’s CDN.

3.2 File Hierarchy Independence
A second benefit from content-derived naming is

file system location independence. Many packages require
extensive per-site customization to tell the software where
to find files it needs. With content-derived naming, there is
no need to explicitly enumerate the location of desired files.
A package that refers to an object using its CDN only needs
to look it up in a database of signatures and objects. Objects
can still be assigned human-usable names; however such
names are not required.

A file system to store objects based on their CDN
could be built. Such a file system would support efficient
storage and linkage of CDN-based objects. In addition to
objects referring to other objects, a user-visible namespace
could be provided similar to the way a UNIX directory
structure provides a user access to numbered files (inodes).
Objects would not be explicitly deleted from such a file-
system, but would be implicitly deallocated. Thus users
would not have to worry about deleting files used by old
versions of software, the filesystem can do this automati-
cally. To implement implicit deletion, each stored object
would have a reference count. When a reference count was
decreased to zero, the object would be deleted. Due to the
possibility of mutually referential objects creating unreach-
able cycles, a periodic garbage collection of the object
space will also be required.

106

.;/1
1 . /

Object #
References .
I

i-----------

f

CustmTIization
Area

1
I ●
!

Customized--f
1 aject -- -D —
1 References
1 --

*

Figure 1: Layout for an object using CDNS.

The ability to locate objects by an identifier based
solely on their content could simplify software distribution
via the Internet. Already, programs such as Netscape use a
single directory to cache retrieved network objects. Cur-
rently, the identifiers for these objects in the cache bear no
relation to the objects’ contents. Using content-derived
names instead would allow the “cache” to grow to the size
of the entire disk. At that point, hierarchical directory
structure could be used as an overlay, providing a user-
-friendly interface to a cache of objects fetched horn the
Internet. Any piece of sofiware could be distributed in this
way; the user could assign names to those pieces of soft-
ware that they wished to access directly, such as the main
executable for a word processing program. Other objects
would be fetched as necessary. To allow disconnected op-
eration (e.g., when a laptop computer is being used on the
road), a package might arrive with a self-installer that con-
tains all files necessary to run the program.

3.3 Example of Content-Derived Naming

In this section we provide a concrete example of
how content-derived naming can be used to manage multi-
ple versions of a library on a single machine. Consider three
applications a word processor (witeDown), a spreadsheet
(addUp), and a presentation tool (speakOut). Each of these
is a large package the contains many parts, and they all use
a common set of routines for creating illustrations (drawIt).
All three applications and the drawing library are supplied
by different software vendors. When a new version of
drawIt is released, the publishers of the applications test
their application with the new version (to ensure the two
packages still work together) and then as part of their next
software release distribute a copy of the new version of
drawIt.

WriteDown version 1.0 works with drawIt version
1.0, but writeDown 2.0 requires drawIt version 2.0. AddUp
versions before 3.0 require drawIt version 1.0. Also,
speakOut version 1.0 requires drawIt 1.0, but speakOut 2.0
can use drawIt 1.0 or 2.0. Figure 2 shows the content names
and objects for this example. In the currently shown state,
speakOut and writeDown have been upgraded to version
2.0. However, since addUp is still version 1.0, both ver-
sions of the drawIt library are installed. When addUp 3.0 is
installed, drawk 1.0 could be deleted because it is no longer
required to run any installed application.

3.4 Handling Software Updates

Distributing new versions of software that fixes
bugs in previous versions is currently a Herculean task,
requiring software authors to ship entire new releases to
users. This task has been shrunk somewhat by using patch
programs that only modify the “broken” pieces of code, but
updaters must still update every piece of software that
needs to be fixed. In modern systems, however, individual
programs share many libraries; when one is fixed, each
software supplier must provide a patch that checks to see if

a buggy library has been updated to the latest version.

Using CDNS, however, provides a simple solution
to the problem of proliferating patches to buggy libraries.
Rather than have each individual software provider patch
the necessary libraries, the provider can simply supply a
new “root” object that specifies the use of the updated li-
braries. Section 3.1 notes that each application has a single
object that serves as the root of an object reference graph in
which links are specified by CDNS, as shown Figure 3.
Merely changing the root can cause the creation of a whole
new graph because high-level objects don’t specify the
names of all of the objects in the graph - only those they

107

AddUp 1.0 SpeakOut 2,0 WriteDown 2,0

Hmm

Drawlt 1.0 Drawlt 2.0

The example shows three applications and two versions of the shared DrawIt

library. For each object, the last item (in gray) is its content-derived name.

Figure 2: Example of Using Content Naming.

access directly. Thus, an update to the root object may
cause it to reference the updated version of a library, which
in turn references updated objects, and so on through the
rest of the graph. Distribution of software updates is simple
because the process is started by distributing just a single
updated object with references to more recent objects. Once
this is done, the system automatically loads updated librar-
ies and code as specified by CDN references from higher in
the graph. As with code being loaded for the first time, the
new version of the application must know where to find
new version of objects it uses; however, this is no different
from finding them for a “brand new” object and can use the
same mechanism.

4. Related Work

Digital signatures combined with authentication
services have been proposed by Moore[3]. His approach
permits verifying the integrity and source of a particular
component. In contrast, our system permits verifying that a
reference to a software component is the desired one. Since
our scheme is based solely on a hash function, we do not

need to use an authentication server to obtain author, and
public key combinations. In addition, our approach requires
only a hash function rather than a hash function followed by
asymmetric encryption. However, we don’t provide verifi-
cation of the author’s identity, but rather verify that the
component is the one that the creator of the referring com-
ponent intended. Our two approaches are compatible and
complementary. Moore’s authentication could be used to
verify the top-level component (i.e., the based application),
and our scheme could then be used to verify version and
identity of the separate components (i.e., libraries, icons,
fonts, etc.). Moore’s approach would need to be applied
once when an object is loaded onto the system; CDN are
used every time the application is invoked to locate and
bind the correct component and version of that component.

h y)i[co& 1
CDt4=4927 C.xle 2 Code 1‘

CDN=5502 cDN=a90c

Note that when a library developer fixes a bug in code ob-

ject 1 in library 1, an application developer need only up-
date the reference to library 1 in the application; they need

not know which objects in library 1 were actually changed.

Figure 3: Object reference graph for CNDS.

In some ways, a CDN-based file system would be
similar to the PILOT file system used on the Altos [5]. In
the Pilot file system, all stored objects had a globally
unique object identifier, However, this object identifier was
created by concatenating the host identifier of the server
where the object was created and a server relative identifier.
The Pilot file system also supported linking files together
based on their object identifiers. However, a program using
the file system needed to explicitly mark an object immuta-
ble before its object identifier was frozen. With a CDN, no
explicit designation is required.

108

5. Future Directions

Mobile computing can also benefit from CDNS.
One of the problems in mobile computing is the ability to
operate a computer away from its “base,” since requests for
objects must eventually be sent through the network to the
mobile computer’s home file server. CDNS present an at-
tractive alternative: a mobile computer can merely ask the
local file servers for an object using its CDN. The mobile
computer need not follow the same file pathname conven-
tions as the local server, since the object is identified solely
by its content. Moreover, the mobile computer can check
that it received the object it requested by computing the
digital signature on the object, so it need not even trust the
local server.

Eventually, if network-based software distribution
replaces physical distribution, most of the disk space on
client computers could be turned into a cache for network
objects. When a commercial software package is purchased,
a request for an object would fetch it from the Internet.
There would be no need to explicitly delete old software or
for garbage collection; an object would simply be removed
from the cache to make room for new objects. If that dis-
carded object were needed again, it could be re-fetched. A
significant amount of research on caching strategies and
other issues is necessary before this goal can become a re-
ality, but its implementation would greatly simplify the op-
eration of computers in an environment where access to the
Internet is constant and omnipresent.

6. Conclusion
In this paper we have presented a new approach to

object code configuration and naming. Rather than using
user-assigned names to identify objects, we proposed to
derive object names automatically based on the content of
an object. Our scheme makes it possible to identify refer-
ences to the same object even if the objects have completely
different names and to differentiate variations of the same
object. Our approach is helpful for standalone systems with
physical media distribution, and for connected systems us-
ing network-based software distribution.

1.

2.

3.

4.

References

Secure Hash Standard, FIPS-180- 1, National Institute
of Standards and Technology, U.S. Department of
Commerce, April 1995.
J. Gosling, B. Joy, and G. Steele, The Java L.unguage
Specification. 1996: Addison-Wesley.
J. W. Moore, ‘The Use of Encryption to Ensure the
Integrity of Reusable Software Components”, inter-
national Conference on Sojlware Reuse. Nov. 1994,
Rio de Janeiro, pp. 118-123.
R. Motwani and P. Raghavan, Randomized Algorithms.
1995: Cambridge University Press.

5. D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer,
W. C. Lynch, P. R. McJones, H. G. Murray, and S. C.
Purcell, “Pilot: An Operating System for a Personal
Computer”, Communications of the ACM, Feb 1980.
23(2), pp. 81-92.

6. R. L. Rivest, The MD5 Message-Digest Algorithm,

RFC 1321, Network Working Group, April 1992.
7. J. D. Touch, “Performance Analysis of MD5”,

SIGCOMM. Aug 1995, Cambridge, MA, pp. 77-86.
8. A. van der Hock, R. S. Hall, D. Heimbiger, and A. L.

Wolf, Software Release Management, CU-CS-806-96,
University of Colorado, Aug. 1996.

109

