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ABSTRACT

This paper studies the performance implications of using
cryptographic controls in performance-critical systems. Full
cryptographic controls beyond basic authentication are con-
sidered and experimentally validated in the concept of net-
work file systems. This paper demonstrates that processor
speeds have recently become fast enough to support crypto-
graphic controls in many performance-critical systems. Integ-
rity and authentication using keyed-hash and RSA as well as
confidentiality using RC5 are tested. This analysis demon-
strates that full cryptographic controls are feasible in a dis-
tributed network file system, by showing the performance
overhead for including signature, hash and encryption algo-
rithms on various embedded and workstation computers. The
results from these experiments are used to predict the perfor-
mance impact using three proposed network disk security
schemes.

1 INTRODUCTION

With the growing connectivity of the world, many systems
that were immune from remote attacks due to network isola-
tion are now vulnerable. Many embedded systems are now
connected to the Internet in some manner which gives rise to
the need for security on these devices. Many of these embed-
ded systems perform real-time or performance-critical func-
tions making system performance the most important
characteristic. Lack of computer power has prohibited crypto-
graphic controls from being used to secure these systems.
Cryptographic authentication via a kerberos system (if any-
thing at all) is the most that is implemented in the majority of
current performance-critical systems.

There is a strong movement towards transport layer secu-
rity for devices connected to the Internet. However, one study
has shown that implementing the secure sockets layer (SSL)
protocol on a web server has resulted in a two orders of mag-
nitude decrease in throughput [1]. This paper shows that
using an e-mail type security scheme on data transactions of
64 KBytes imposes an approximate overhead of 30 ms for
writing and 10 ms for reading. To put this in perspective,

modern disk drives take 8 ms to seek to a block and 5 ms to
read or write a 64 KByte block. Using a simpler keyed-hash
(MD4) with encryption (RC5) imposes an overhead of only
6.5 ms on the host computer and 1.6 ms on the network disk
for reads or writes.

To determine the amount of time needed to perform cryp-
tographic controls, several cryptographic algorithms were
tested on a variety of embedded and workstation computers.
The results from the performance timings of these algorithms
are combined with three proposed security schemes for secur-
ing a network file system to determine the overhead of cryp-
tographic controls on modern processors. This study also
quantifies current beliefs that cryptographic controls impose a
great penalty on systems with small data transactions. The
projected speed of computers over the next few years is pre-
dicted using growth numbers from the previous ten years.
This shows the time to perform cryptographic controls will
take less than 1/2 of the time in 2002 as was required in this
study.

Computer power has been growing at an exponential rate
for many years now. This paper demonstrates that computing
power has recently become fast enough to allow crypto-
graphic controls in performance-critical systems. Crypto-
graphic controls will be feasible in real-time systems with
more stringent time requirements in the near future.

This paper is organized as follows: Section two briefly
presents the fundamentals of data protection. Section three
describes the cryptographic design and presents three
schemes for providing cryptographic controls in a distributed
file system environment. Section four presents the results
from testing various encryption algorithms on five different
hardware platforms and quantifies the total cryptographic
overhead. This section also discusses historic processor per-
formance growth and expected future performance. Section
five presents the conclusions drawn from this study.

2 CRYPTOGRAPHIC CONTROL BASICS

Data security is defined by four attributes: confidentiality,
data integrity, authentication, and non-repudiation. Confiden-
tiality is the means to protect against disclosure of the data.
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Data integrity is the assurance that the data received was
exactly the data sent. Authentication is the mechanism for
verifying the identity of the requestor. Non-repudiation is the
ability to prove transmission and receipt of data. These
attributes and the cryptographic tools used to provide them
are briefly described below. For a more complete description
of basic cryptographic tools, see [13].

2.1 CONFIDENTIALITY

Confidentiality is needed whenever the data in transit or in
storage must be protected from unauthorized disclosure. This
is typically provided by some form of data encryption. There
are two main types of data encryption schemes: public-key
cryptography and secret-key cryptography. 

Secret-Key cryptography:
• Common algorithms: DES, TDES, IDEA and RC5.
• Secret key must be exchanged between users.
• Very fast to perform.
• Same key for encrypting and decrypting.

Public-Key cryptography:
• Common algorithm: RSA.
• Separate encrypt (public) and decrypt (private) keys.
• Very slow to perform.

This study will use the RC5 algorithm for the secret-key
encryption. This algorithm has a variable length key, with
lengths between 56 and 128 bits commonly used. The RSA
challenge to break a 56-bit RC5 code was completed in 1998
using tens of thousands of computers. For this system, RC5
will be used with a 128-bit key, which should be more than

sufficient. The 128-bit key is 272 times harder to break than a
56-bit key. RC5 was chosen because it is believed to be quite
strong and the algorithm is very fast to perform. 

Public-key cryptographic algorithms avoid this secret-key
exchange problem. RSA is the most common public-key
cryptographic algorithm, but is far too slow for encrypting
user data in a performance-critical system. RSA is used for
key exchange and digital signatures in this study. Each user of
RSA will have a public and private key forming a key-pair.
The public key is used to encrypt data and verify signatures.
The private key is used to decrypt data and create signatures.

2.2 AUTHENTICATION

User authentication is needed in any environment where
the system must restrict who may or may not have access to
system resources or information. User authentication is often
done by a simple password sent in the clear which can be
intercepted by an adversary. Some systems attempt to provide
authentication services based on a workstation IP address, but
this has been shown to be very weak [7]. Strong user authenti-
cation can be performed using a keyed-hash or digital signa-
ture. The keyed-hash works by combining a secret key with
the message before performing the hash. The recipient can
then take the transmitted message, combine their copy of the

secret key and rehash the message. If this hash matches the
hash the sender provided, then the message’s authenticity and
integrity are validated. HMAC is a common keyed-hash
scheme for message authentication, defined in RFC-2104 that
uses MD5 or SHA. Many schemes for keyed-hash authentica-
tion are believed to be strong, but the HMAC scheme has a
proof of its strength [2]. A digital signature can be applied to
the entire message or a hash of the message to prove the iden-
tity of the creator and the integrity of the data.

2.3 DATA INTEGRITY

Data integrity is the means of ensuring that the data
received was indeed the data transmitted. For a network file
system, it must detect modification in transit to the drive,
while on the drive, and in transit to the receiver. Using the
keyed-hash or digital signature over the data (or hash of the
data) for user authentication automatically guarantees the
data integrity, since any modification will cause the authenti-
cation to fail. Data integrity can be attacked by retransmitting
an older write command after the data has been updated. This
would result in the old data overwriting the new data. This
type attack is called a replay-attack and is prevented by
including a timestamp or one-up counter with each block to
write.

One of the first commonly used hashes is called MD4. It
was developed by Rivest, and is described in RFC 1320 [9].
This takes a message and performs a one-way function that
results in a 128 bit hash value. This hash algorithm suffers
from a serious collision problem that allows one to easily find
two messages that hash to the same value [4]. There still are
no known ways to produce a second message that hashes to
the same value as a given first message which is the most
important requirement for a hash to have in the keyed-hash
system. MD5 and SHA are basically variants of the MD4
hash algorithm. MD5 solves the collision problem of MD4,
and is fully described in RFC 1321 [10]. The only known
problem with MD5 is the 128 bit key length is not considered
sufficient for some systems [5]. The so-called birthday attack

means that you only need 264 messages to find two strings
that hash to the same value with a 128 bit hash. The secure
hash algorithm (SHA) is a very strong algorithm that pro-
duces a 160 bit hash value. For the purposes of user authenti-
cation and data integrity, MD5 is sufficient for the file-system
design this paper presents. In the opinion of the authors, MD4
is also sufficient. MD5 takes about 50% longer to computer
than MD4 and SHA is about 40% slower than MD5.

2.4 NON-REPUDIATION

Non-repudiation is needed when verification of both the
transmission and receipt of information is required. An exam-
ple of this is with electronic stock trading. The person initiat-
ing the trade may try to deny making the transaction if the
stock price plunges. The broker may attempt to deny the



transaction if they fail to perform the trade. Non-repudiation
is usually achieved by a two-way transaction. One user sends
some information protected by a digital signature. The
receiver then returns a signed receipt of that information. This
cannot be provided by the keyed-hash authentication scheme
described above since both the sender and receiver share the
same secret key, thus both could have generated the message.
Non-repudiation is typically provided via a cryptographic sig-
nature using the private key. The drawback of providing non-
repudiation is that public-key cryptographic algorithms are
very slow. Current implementations of RSA are over 1000
times slower than DES. The time needed to perform a RSA
operation is dependent on modulus length (M). The time to

encrypt or verify a signature is O(M2). The time to decrypt or

generate a signature is O(M3). It is currently believed that 512
bits is the minimum modulus length to provide sufficient
security.

3 CRYPTOGRAPHIC SYSTEM ARCHITEC-
TURE

An example of a performance-critical system is a network
file system. When a request to read or write a block of a file is
made, a response is expected very quickly. The system is only
acceptable if the information is delivered correctly and
quickly. Cryptographic security has not been widely imple-
mented in distributed file systems due to performance con-
cerns. The systems in use today clearly show performance is
more important than security.

The primary reason cryptography has not been used in file
systems and other performance-critical systems is that system
performance was limited by processor speed. With the rapid
increase in processing power recently, many of these systems
have become limited by other components. With file servers,
the primary performance limit is caused by the back-plane
and disk speed. This leaves the CPU idle much of the time;
time that could be used for cryptographic processing.

This study proposes three schemes for performing crypto-
graphic controls on a distributed file system that uses network
disks. A network disk is basically a hard drive coupled with a
board computer with a network interface. In a fully imple-
mented system, there would be many of these disks, with the
files spread across several in a RAID configuration [6]. The
file system discussed in this study provides a raw block read/
write/create service. Each of these schemes is analyzed to
determine what cryptographic functions are performed by the
host and network disk for a read and write operation. Com-
bining this information with the performance analysis that
follows will show the cryptographic overhead for this system.

3.1 FILE SYSTEM CHARACTERISTICS

Modern file systems must be fast, robust, and secure. The
requirement for speed means that file systems must provide
megabytes of data per second, potentially to many different
clients simultaneously. However, most of the time spent in
servicing a particular distributed file system request is spent
in hardware delays: network transmission and (if the data is
not found in cache) reading the file from disk. A file system
CPU typically needs fewer than 40,000 instructions to service
a file request. This allows a modern file server to handle 2500
- 5000 requests per second if the network protocol stack is
offloaded to a different processor. Since file service is embar-
rassingly parallel, though, file servers often include multiple
processors to speed up the rate of file delivery.

Robustness, on the other hand, is not affected greatly by
CPU speed. The main problem that file systems must deal
with is preventing data loss. Data loss can be avoided by
intelligently designing the on-disk data structures and the
sequence of operations in disk requests. Avoiding data loss
does not typically cause a large increase in the number of
instructions required to execute a single request.

Even though current file system security is very weak,
security of a user’s files is important in many commercial and
government installations. In NFS, the most popular distrib-
uted file system, the main security function was not designed
for security, but is a technique for preventing two clients from
simultaneously accessing different versions of the file [8].
Some more advanced systems use a centralized authentica-
tion scheme such as Kerberos, but still store and transmit data
in the clear.

Secure architectures should be designed so one component
failure does not compromise the entire system [3]. For exam-
ple, if one user’s private key is compromised, data that user
did not have access to should still be protected. For systems
using a Kerberos authentication system, all of the security lies
in the authentication server. If this is compromised, the entire
system is compromised.

3.2 CRYPTOGRAPHIC INITIALIZATION

All of the security schemes that follow require the network
drives to store each user’s public key or hash key. This key is
used for signature verification and writer-authentication key
exchange. Each user of the system is assigned a user identifi-
cation number (UID) that has an associated public and private
key. For group access, each group is assigned a group identi-
fication number (GID). Each member of the group needs a
copy of the group’s private key. The means of generating
these key-pairs and the means of securing the private keys
and other data on the local workstation is beyond the scope of
this study.

When a new drive is added to this system, a certificate
object is written to the disk. All future writes to this disk are
checked using the public keys stored in these certificates. The



certificate object then can be added to by the owner of that
file (the system administrator.) This process is illustrated in
Figure 1.

3.3 CRYPTOGRAPHIC SCHEMES TO SUPPORT 
PERFORMANCE-CRITICAL FILE SYSTEM ACCESS

This section presents three methods for providing data
security in a network file system. The first scheme is very
similar to cryptographic support in e-mail systems such as
PGP. Each block is independently encrypted, hashed and
signed before it is written. The symmetric key used to encrypt
the block is encrypted with each private key whose holder
needs access to the block. A large number of blocks and per-
haps files will share the same symmetric encryption key. The
second scheme removes the burden of calculating a signature
verification on the network drive at the cost of adding a hash
function to the host computer for each write operation. This
would be used in a situation where the workstation computers
are significantly faster than the drive computers. The third
scheme replaces the public-key support for proof-of-origin
with a keyed-hash scheme.

3.3.1 SCHEME 1: BEST SECURITY / WORST PER-
FORMANCE (DIGITAL SIGNATURE)

This scheme provides security on each block of data simi-
lar to e-mail security schemes. To perform a write operation,
each block is encrypted, hashed and signed. The network disk
verifies the signature and hash of the block before it is writ-
ten. A timestamp must be present on each block to prevent an
old block being retransmitted to the drive to overwrite a new
block (replay.) Writing a block with this scheme is illustrated
in Figure 2.

There is no cryptographic security utilized by the network
disk to service a read request. The drive simply provides the
data block requested as shown in Figure 3. The data block is
protected by the writer in such a way that it is useless without
proper private keys. An important characteristic of this sys-
tem is no sensitive data is stored on the network disk or trans-
mitted over the network. This comes at the cost of the
computationally expensive signature generation and verifica-
tion. The signature verification is much simpler to compute,
but this is done on the network disk which will have a low-

cost processor. The signature generation is only performed on
the more powerful workstations.

The cryptographic controls provide the following services:
• Confidentiality - Each file is written in 64KB blocks; 

the last block may be smaller. Each of these blocks is 
encrypted with a fast encryption algorithm. This analysis 
uses the RC5 encryption algorithm [11] with a 128-bit 
key. This ensures the data can not be read without the 
accompanying RC5 key. This key is used to encrypt each 
block in a file or group of files. The key is generated by 
the user upon the creation of a file or file group. This key 
must be provided to the other users that need access to 
this file (if any); this is done by encrypting this RC5 key 
with the public key of each user (UID) or group of users 
(GID.) These encrypted keys are stored in a key file asso-
ciated with the data file. Both the data and key files are 
stored on the network disk.

• Data Integrity - Each file has a cryptographic hash cal-
culated over the data. For the purpose of this analysis, 
MD4 [9] and MD5 [10] were investigated. This ensures 
that if the data was modified in any way, the hash will not 
match the one provided. The provided hash is protected 
by the authentication / non-repudiation mechanism 
described below.

Figure 1. System Initialization

Administrator (UID)
1. Obtain user keys.
2. Obtain group keys.
3. Update disk.

Network Disk
1. Initialize certificate object.
2. Add user & group certificates.

Certificate Object

UID certificate
UID certificate
GID certificate

Group key

FID UID

Figure 2. Writing a File - Scheme 1

Figure 3. Reading a File - Scheme 1 & 2
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• Non-repudiation - A cryptographic signature is calcu-
lated over the hash using the user’s private key. By using 
an individual key, non-repudiation can be provided since 
only that user could have signed the data. For this ser-
vice, the reader of the information would need to store a 
signed copy of the hash on the drive, and provide a 
signed-receipt to the originator.

• Authentication - User authentication is provided by 
encrypting the RC5 key with only authorized user’s pub-
lic keys. Any user not possessing the proper private key 
will not be able to decrypt the RC5 key or the data. 
Authentication for the write operation is provided by the 
signature of the hash.

The data is provided confidentiality protection before it
leaves the host computer by encrypting all of the sensitive
data using the RC5 algorithm. This protection is only as
strong as the RC5 key used and the RC5 algorithm. It is
believed that the 128 bit strength of this algorithm is very
strong, so only the key security needs to be looked at.

There are two problems that need to be dealt with. First,
how hard the key is to guess without direct access to the key
data? Computers are inherently bad at making random num-
bers because they are largely deterministic devices. Zimmer-
man overcame this problem by injecting some non-
deterministic information into the key generation process.
The period of time between a user’s key strokes was mea-
sured to increase the entropy of the key. A similar process
could be used to create the “random” number for the RC5 key
in this scheme. Hardware key generation using techniques
such as a noisy diode or multiple free-running oscillators
could also be used.

The second problem with the RC5 key is that the key
needs to be given to each and every reader of the data. This is
true of any symmetric cryptographic algorithm, and this class
of algorithm is the only one fast enough for this type of sys-
tem. The key is exchanged using public-key cryptography, in
particular RSA. Each user of this system has access to the
other user’s public keys using some certificate scheme. This
allows each user to send data to another that is encrypted in
such a way that only the holder of the private key can read it.
This encryption algorithm is not acceptable for general use
because it is very slow. It can be used however, for sharing
small amounts of secret information. This leads to its most
common use - secret key exchange. In this system, the RC5
key is exchanged between users using this public key cryp-
tography. The key is encrypted with each user’s public key
that needs access to the file, and these encrypted keys are
stored on the network storage system. Many files can be
encrypted with the same RC5 key if desired, but they must
have the same access list. 

The next service that is provided is data integrity. Since
the data in transit is encrypted, an adversary would have a
very difficult time creating useful modified plain-text at the
receiver. Since RC5 is a block cipher, modifying the cipher-

text would result in gibberish in the corresponding plain-text
block. Nevertheless, for many systems, data integrity must be
ensured. This system provides data integrity using a digital
signature and a hash function.

The digital signature uses the same public key cryptogra-
phy as the RC5 key exchange, but uses the user’s private key.
The entire block could be protected using a digital signature,
but RSA is simply too slow. A way to speed this process up is
to reduce the size of the block using a cryptographic hash
function. This produces some fixed-size block of information
that can be recalculated quickly. The integrity is provided by
performing a digital signature on the hash of the data block.
The digital signature not only ensures that the appended hash
value is authentic, but verifies the originator of the hash sig-
nature. Only the holder of the private key whose public key
verifies the signature could have generated the appended sig-
nature. This approach is not as strong as signing the entire
block since the security is no stronger than the weaker of the
signature algorithm and the hash algorithm. A failure in either
one will compromise this scheme.

The primary concern with this scheme is the performance.
The slowest operations in this system are the public key oper-
ations (key-exchange and signature.) The cryptographic over-
head is needed for each operation is shown in Figure 4.

3.3.2 SCHEME 2: GOOD PERFORMANCE / GOOD 
SECURITY (KEYED-HASH / DIGITAL SIGNATURE)

The problem with the first scheme is network disk must
perform a hash and a signature verification on each block
before writing. These are fairly slow operations to perform on
lower performance disk processors, and both may not be nec-
essary for many systems. This scheme replaces the signature
verification at the drive by the following algorithm:
1. Initially (and perhaps at some regular interval) each user 

generates a random number (KEYUID.) This number is 
encrypted with the network disk’s public key (multiple 
network disks would share the same public key), signed 
by the user’s private key and sent to the network disk. A 
timestamp is appended before the signature to prevent a 
replay attack. Upon receipt of this key, each disk updates 
it’s key object for that UID with this KEYUID, see 

Figure 4. Number of Cryptographic Operations - Scheme 1

*note: A key-exchange operation is needed upon file creation for each
user that needs access. Since this is only done once for each file (or
group of files) regardless of the number of blocks, it is omitted.

Operation Host NAS
En/Decrypt: 1 0
Hash: 1 1
Signature: 1 0
Verification: 0 1

Operation Host NAS
En/Decrypt: 1 0
Hash: 1 0
Signature: 0 0
Verification: 1 0

Block ReadBlock Write



Figure 5.
2. The data block is prepared as in the first scheme, 

encrypting, hashing, and signing the data.
3. The KEYUID is then combined with the hash of this 

block, and a new hash is computed (perhaps an HMAC.) 
The block from step 2 along with this new hash is sent to 
the drive. Since this only speeds up the writing at the 
disk, the potential weakness may not be justified for 
some systems. Which scheme to use depends on the level 
of assurance needed. The analysis of this method used 
just one hash function in the cryptographic overhead cal-
culations. This is a reasonable estimation because the 
second hash is only over two 128 bit words - the original 
hash and the key, so the real performance will be slightly 
slower. If HMAC is used, there is an additional 2 word 
hash.

4. Upon receipt of this block, the drive can calculate the 
keyed-hash using the UID’s key to authenticate the 
sender and verify the integrity of the block. If this passes, 
and the timestamp is newer than the block being replaced 
(for rewrite), the block is written See Figure 6.

The read operation is the same as scheme 1, illustrated in
Figure 3. This scheme loses the property that no sensitive
data is stored on the drives since a write-authentication key
needs to be protected. There is still no sensitive data transmit-
ted over the network. If this writer-authentication key is com-
promised, an adversary can only write blocks to the drive, but
the reader of the blocks would be able to easily determine that
they are bogus since the hash or signature would fail.

This scheme provides the following services:
• Confidentiality - Provided via RC5 encryption just as 

scheme 1.
• Data Integrity -For the reader of the data, integrity is 

provided via a signed cryptographic hash just as scheme 
1. Integrity for writing the data is provided by having the 

drives recalculate the appended keyed-hash over the file. 
If this matches, that data integrity is ensured.

• Non-repudiation - Can be provided via a signature of 
the data hash just as scheme 1.

• Authentication - Reader authentication is provided by 
encrypting the RC5 key just as in scheme 1. Authentica-
tion for the write operation is provided by the keyed-
hash.

As seen in Figure 7 the signature verification performed
by the network disk for a write operation is removed at the
cost of adding another hash operation on the host computer.
This will improve system performance when the host com-
puter is more powerful than the processor on the network
disks. The read operation is the same as scheme 1.

3.3.3 SCHEME 3: GOOD SECURITY / FAST PER-
FORMANCE (FULL KEYED-HASH)

The previous two schemes use a private-key signature to
identify the originator of a data block. This scheme uses a
keyed-hash approach to authenticate a writer of a data block.
This has the disadvantage that the network disk contains suf-
ficient information to forge a data block. The keyed-hash
function has the property that the verifier of the keyed-hash
can also create the keyed-hash since it is a symmetric func-

Figure 5. Writer Authentication Key Initialization
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Figure 6. Writing a File - Scheme 2

Figure 7. Number of Cryptographic Operations - Scheme 2
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tion. If a network disk is compromised with this scheme, it is
possible that the adversary could write information to the
drive. This would require that they were able to obtain the
writer-authentication keys from the drive. These keys could
be stored encrypted for greater security. The system still pre-
vents an adversary from accessing any encrypted data stored
on the drive or any data in transit.

This scheme is the fastest presented thus far. It works by
including a keyed-hash with each encrypted block and simply
leaving the signature out. The drive is able to determine that
the user or group that created the block has write access to the
drive by using the writer-authentication key stored in the cer-
tificate object. Only someone with access to this key would
be able to create keyed-hash on the block. 

Performing a keyed-hash is substantially faster than a sig-
nature generation. The main weakness is the loss of end-to-
end integrity assurances. There is no guarantee that the drive
did not corrupt the data, since the ability to verify a keyed-
hash implies the ability to generate a new one. The corrupted
data could almost certainly be detected since it is encrypted.
A hash of the plaintext could be appended to each block
before it is encrypted to farther ensure data integrity.

Just as in the other schemes, the write operation starts with
encrypting the block. Then a keyed-hash value is appended to
the timestamped encrypted block. This block is sent to the
network disk as shown in Figure 8. The read operation is
more complex for the network disk. The disk needs to append
a keyed-hash for the user requesting the block as well as a
timestamp newer than the one last received from that user.
For group access, the keyed-hash calculated by the writer
could be used. For individual access, the new keyed-hash
must be calculated because the reader does not have access to
the writer’s writer-authentication key. This exchange is
shown in Figure 9.

This system provides the following cryptographic ser-
vices:
• Confidentiality - Provided via RC5 encryption just as 

scheme 1.

• Data Integrity - Provided by the keyed-hash over the 
data. The key used for this hash can be exchanged with 
the drive using RSA.

• Non-repudiation - True non-repudiation can not be pro-
vided with this scheme.

• Authentication - Just as in the other schemes, no user 
authentication is necessary for the read operation on this 
system since all of the data is encrypted. Authentication 
for the write operation is provided by the signature of the 
hash.

The number of cryptographic functions performed is
clearly reduced as shown in Figure 10. Most noteworthy is
the removal of public-key operations for reading and writing
a block. Note that public-key operations are still used upon
creation of a file or file group, as the RC5 key used needs to
be encrypted with the key for each user and group that needs
file access

4 EXPERIMENTAL RESULTS

The performance of some popular cryptographic algo-
rithms on current host and drive hardware needed to be ana-
lyzed to determine the performance impact of implementing
security described in the above schemes. For the crypto-
graphic hash algorithm, MD4 and MD5 were tested. RC5 was
tested for the secret-key cryptographic algorithm. The public-
key cryptographic algorithm analyzed was RSA with a 512
bit modulus.

The hardware analyzed for possible host architectures
starts with a Sun Sparc Ultra/60 with a 360 MHz U2 proces-

Figure 8. Writing a File - Scheme 3

User (UID)
1. Generate RC5 key. 
2. Encrypt this key.
3. Send to drive.
4. Break file into 64 KB 

blocks (B0-BN.)

5. Encrypt each block 
a to obtain Ba’.

6. Append timestamp.
7. Append keyed-hash.
8. Send blocks to disk.

Network Disk
1. Verify Keyed-hash.
2. Verify timestamp.
3. Store new timestamp.
4. Verify write permissions.
5. Write block.

FID UID
Block Number

Timestamp
Keyed-Hash

Ba’

Figure 9. Reading a File - Scheme 3

Figure 10. Number of Cryptographic Operations - Scheme 3

Network Disk
1. Calculate keyed-

hash.
2. Send keyed-hash 

& block.

User (UID)
1. Verify keyed-hash of Ba’.

2. Decrypt to obtain Ba.

FID UID
Block Number

Timestamp
Keyed-Hash

Ba’

*note: A key-exchange operation is needed upon file creation for
each user that needs access. Since this is only done once for each file
(or group of files) regardless of the number of blocks, it is omitted.

Operation Host NAS
En/Decrypt: 1 0
Hash: 1 1
Signature: 0 0
Verification: 0 0

Operation Host NAS
En/Decrypt: 1 0
Hash: 1 1
Signature: 0 0
Verification: 0 0

Block ReadBlock Write



sor. This is the fastest available Sun workstation as of the time
of this report. A Pentium-II 266 MHz Gateway Solo-9100
laptop and AMD K6-300 were the selected Intel-type plat-
forms.

For the embedded computers, a Motorola MVME-147
with a 16 MHz 68030 was tested, as an outdated platform for
a baseline. The new Motorola MVME-2600 with a 333 MHz
PowerPC (604) was the high-end embedded system. Note that
the AMD K6 used in the desktop is a viable embedded pro-
cessor, and only costs $33 retail in May 1999.

The Sparc was running Solaris 2.6, and had the crypto-
graphic programs compiled with gcc. As seen in the table
below, this processor was quite fast, but only marginally
faster than the $33 AMD chip computer.

The MVME boards were running the VxWorks real-time
operating system. The cryptographic programs for these sys-
tems were compiled with the Wind River version of gcc. Both
of the Intel-type platforms were running the Linux operation
system. The cryptographic programs were compiled with gcc.

Overall, the PowerPC was the fastest of the lot. Only the
Pentium-II was faster with MD5, which resulted from an opti-
mized implementation. The MD5 speeds for the un-optimized
program run on the other systems was twice as slow on the P-
II.

The RSA Laboratories claims RSA private-key operations
of 21.6 Kbits/second on a 90 MHz Pentium [12]. This would
result in a 128 byte block being signed in 47.4 ms. A Pen-
tium-II/266 should be at least 3 times as fast (although for this
C implementation it is the same speed), which suggests a
heavily optimized implementation of the RSA algorithms
would result in a 3x speed up from the numbers shown below.
The amount of time the cryptographic routines take for the
read and write operation for the proposed security schemes
can now be analyzed. The increase in time for RSA opera-
tions as key length increases can be seen in Figure 11.

The overhead for the first scheme is calculated by simply
multiplying the times each operation is performed by the time
that operation took in the experiment. These results are shown
in Table 2. The older 68030 is clearly inadequate for this type

of system, with writing a block taking 2.4 seconds on the
host. The fastest hardware tested was the 333 MHz 604 PPC
in the Motorola MVME-2600 VME board. If this PPC was
used for the host computer the block write takes 31.5 ms. This
would limit the system to 31.7 blocks writes per seconds. For
these 64 KB blocks the throughput is limited to 2.0 MBps.
This is the limit due to the cryptography, the actual limit is
certainly lower. This may be acceptable for systems on slower
(10 Mbit/second) networks, or systems where reading perfor-
mance is much more important than writing performance.
The time to read a block with the a cryptographic overhead of
8.8 ms (PPC) would allow a maximum throughput of 113.6
blocks per second. For the 64 KB blocks, this yields 7.2
MBps. This is approaching the maximum throughput of a cur-
rent hard disk, so this speed may be acceptable.

The goal of the second scheme was to off-load some of the
processing overhead of the complex signature verification
function from the network disk. This is particularly suitable
for environments where the processors in the workstations are

Opera-
tion

MVME-147
16 MHz 
68030
VxWorks

MVME-2600
333 MHz 604
VxWorks

Pentium 
II
266 MHz
Linux

AMD K6
300 MHz
Linux

Sun Sparc 
Ultra/60 - 
360 Mhz
Solaris 

MD4 128 ms 1.6 ms 2.2 ms 2.0 ms 1.8 ms

MD5 196 ms 3.2 ms 2.0 ms 3.2 ms 3.2 ms

RC5 426 ms 4.9 ms 9.1 ms 8.0 ms 5.3 ms

Sign
Verify

1878 ms
172 ms

25 ms
2.3 ms

40 ms
3.5ms

34 ms
3.1 ms

57 ms
5.3 ms

Table 1. Cryptographic Algorithm Performance

Figure 11. RSA Operation Time

Processor Read - Host Read - Disk Write - Host Write - Disk

68030 726 ms 0 ms 2432 ms 300 ms

Pentium II 14.8 ms 0 ms 51.3 ms 5.7 ms

AMD K6 13.1 ms 0 ms 44.0 ms 5.1 ms

Sun Ultra 2 12.4 ms 0 ms 64.1 ms 7.1 ms

PPC - 604 8.8 ms 0 ms 31.5 ms 3.9 ms

Table 2. Cryptographic Overhead for 64 KB block - Scheme 1

RSA Operation Time vs. Modulus Length
Pentium-II 266 MHz - Linux
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significantly faster than the processors in the disk drives.
With this scheme, the cryptographic overhead required for the
disk is reduced by one signature verification at the cost of
greater complexity and an additional two-word hash. This
reduces time the PowerPC takes to perform the cryptographic
functions for a write to 1.6 ms at the network disk as shown in
Table 3. There is still no cryptographic overhead for a read
operation on the disk. The theoretical maximum throughput
(cryptographic performance limited) is now 555.5 blocks per
second for each disk. With the 64KB blocks, this equates to
35.5 MBps. A modern 100 Mbps LAN has an upper bound of
12.5 MBps. This scheme is certainly reasonable with respect
to the network disks.

This scheme’s bottleneck is likely with the host systems.
Even with the PowerPC, a write operation has 31.5 ms of
cryptographic processing overhead. This limits the system to
31.75 blocks per second. Again with the 64 KB block, this
equates to only 2 MBps. This assumes that the processor is
idle, and can devote 100% of its time to cryptographic func-
tions. The read performance is still sufficient for most sys-
tems. Read speed is limited to 113.6 blocks per second (7.2
MBps.)

The third scheme was designed for maximum performance
while maintaining cryptographic protection of the data. With
modern hardware such as the PowerPC, this scheme is quite
fast. The slowest operation is reads or writes at the host com-
puter. With the PowerPC, this took a mere 6.5 ms. See
Table 4. This limits host read and write speed to 153.8 blocks
per second. With the 64 KB blocks this equals 9.8 MBps.
This is over 78 Mbps, around the speed of today’s high speed
networks. As networks get faster, so will computer hardware.
The network disks are only limited to 625 blocks per second,
or 40 MBps. This is significantly faster than any disk drive
today, so should not pose a bottleneck.

As Figure 12 shows, processor speed is increasing at a
rapid rate, allowing inexpensive processors to handle the
cryptographic chores for individual disk drives. While today’s
processors are barely able to handle the task, future proces-
sors will be much better equipped to do so. Disk bandwidths
are not increasing as rapidly as processor speeds — processor
speed more than doubles every two years, while disk band-

width takes longer than two years to double. Thus, an inex-
pensive processor on each disk drive will be able to handle
the encryption chores necessary to protect the data on that
drive.

5 CONCLUSIONS

Past studies have shown that cryptographic controls are
too costly for performance-critical and real-time systems.
This study showed that modern processors have recently
become fast enough to allow full cryptographic controls in
systems that perform large network data transfers (64 KBytes
or more.) This study also showed that the time for performing
cryptographic processing is too great to use with small data
transfers if these transfers are made hundreds of times a sec-
ond. The demonstrated exponential growth of computer
power showed the time to perform cryptographic routines is
decreasing at an exponential rate. Current system designs that
can not implement cryptographic controls due to performance
issues will be able to include them in the near future. The
amount of time to perform cryptographic controls clearly
depends on the security scheme chosen. This paper showed
that a keyed-hash authentication scheme coupled with RC5
encryption provides sufficient security for most systems and
has a low overhead. This scheme is particularly suited for sys-
tems that need a fast write capability. For systems that can not
trust the storage device to maintain data integrity, a signature

Processor Read - Host Read - Disk Write - Host Write - Disk

68030 726 ms 0 ms 2560 ms 128 ms

Pentium II 14.8 ms 0 ms 53.5 ms 2.2 ms

AMD K6 13.1 ms 0 ms 46.0 ms 2.0 ms

Sun Ultra 2 12.4 ms 0 ms 65.9 ms 1.8 ms

PPC - 604 8.8 ms 0 ms 31.5 ms 1.6 ms

Table 3. Cryptographic Overhead for 64 KB block - Scheme 2

Processor Read - Host Read - Disk Write - Host Write - Disk

68030 554 ms 128 ms 554 ms 128 ms

Pentium II 11.3 ms 2.2 ms 11.3 ms 2.2 ms

AMD K6 10.0 ms 2.0 ms 10.0 ms 2.0 ms

Sun Ultra 2 7.1 ms 1.8 ms 7.1 ms 1.8 ms

PPC - 604 6.5 ms 1.6 ms 6.5 ms 1.6 ms

Table 4. Cryptographic Overhead for 64 KB block - Scheme 3

Figure 12. Processor speeds over time.
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based security scheme was presented. This scheme was sig-
nificantly slower for the write operation, but allowed the stor-
age device to hold no sensitive data.

The obvious next step is to build various embedded sys-
tems that utilize full cryptographic controls. The actual per-
formance of these systems can then be measured and
compared to systems with weak or no security.
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