

evant to
b cur-
wing
d more
g the
ition
 of rel-

 con-

 the
 sys-
uments
 minor
ord to
 query
e got

e tra-
f these
escribes
owing

-gram
Performance and Scalability of a Large-Scale N-gram Based
Information Retrieval System

Ethan Miller, Dan Shen, Junli Liu, and Charles Nicholas
University of Maryland Baltimore County
{elm,dshen,jliu,nicholas}@csee.umbc.edu

ABSTRACT

Information retrieval has become more and more important due to the rapid growth of all
kinds of information. However, there are few suitable systems available. This paper pre-
sents a few approaches that enable large-scale information retrieval for the TELLTALE
system. TELLTALE is a dynamic hypertext information retrieval environment. It provides
full-text search for text corpora that may be garbled by OCR (Optical Character Recogni-
tion) or transmission errors, and that may contain multiple languages by using several
techniques based on n-grams (n character sequences of text). It can find similar documents
against a 1KB query from 1G text data in 45 seconds. This remarkable performance is
achieved by integrating new data structures and gamma compression into the TELLTALE
framework. This paper also compares several different types of query methods such as TF/
IDF and incremental similarity to the original technique of centroid subtraction. The new
similarity techniques give better performance but less accuracy.

1 Introduction

Scientists, researchers, reporters and the rest of humanity all need to find documents rel
their needs from a growing amount of textual information. For example, the World Wide We
rently has over 320 million indexable pages containing over 15 billion words [1], and is gro
at an astonishing rate. As a result, information retrieval (IR) systems have become more an
important. However, traditional IR systems for text suffer from several drawbacks, includin
inability to deal well with different languages, susceptibility to optical character recogn
errors and other minor mistakes common on the WWW, and reliance on queries composed
atively few keywords.

The TELLTALE system information retrieval system [2] was developed to address these
cerns. It uses n-grams (sequences of n consecutive Unicode characters) rather than words as
index terms across which retrieval is done. By using statistical IR techniques, the TELLTALE
tem can index text in any language; the current version has been used unmodified for doc
in English, French, Spanish, and Chinese. Additionally, n-grams provide resilience against
errors in the text by allowing matches on portions of words rather than requiring the entire w
match. A third advantage for TELLTALE is that users need not learn query languages and
optimization methods. Instead, they can simply ask for “more documents like the one I’v
know,” allowing for greater ease-of-use.

Previously, however, the TELLTALE system was unable to index large volumes of text. Whil
ditional word-based IR systems have a bevy of tricks and tools at their disposal, many o
methods must be modified or discarded when used in n-gram based systems. This paper d
our successful efforts to apply traditional techniques to an n-gram based IR system, sh
which methods work, which don’t, and describing new techniques we implemented for n
Page 1 of 24

Ethan L. Miller
This paper appeared in the Journal of Digital Information, an online refereed journal, January 2000.

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

 engine
nd the
n inex-

rpus size
d from
ext cor-

ional
me of the
ieval

tioning
and
tion

Uni-
 Baye-
ent, or
l model
ework
ument
s repre-
ticular
s repre-
is sat-
s of
resent a
tworks
h each

eir sys-
millions
s, the
based retrieval. By using our techniques, we were able to construct an n-gram based IR
that permitted full-document queries against a gigabyte of text. Both the size of the corpus a
speed with which our methods operate allow such a query to complete in a few seconds o
pensive PC-class hardware. These improvements represent a hundred-fold increase in co
over previous n-gram-based efforts. Moreover, the compression techniques we adapte
word-based IR systems reduced the size of the index file from seven times larger than the t
pus to approximately half the size of the original text, a fifteen-fold improvement.

2 Background

Our work builds on a large body of research in information retrieval covering both tradit
word-based IR systems and systems based around n-grams. In this section, we discuss so
most relevant previous work. Of course, a full treatment of prior work in information retr
would require a full book (if not more), and such texts exist [3,4].

2.1 Word-based information retrieval systems

There are many information retrieval systems in existence, but space prevents us from men
more than a small selection. We will only discuss four of them: INQUERY, MG, SMART
TELLTALE; the reader is referred to [3] and [4] for a more detailed treatment of informa
retrieval systems.

2.1.1 INQUERY

The INQUERY system is the product of the Center for Intelligent Information (CIIR) at the
versity of Massachusetts at Amherst. INQUERY [5] uses a probabilistic model based on a
sian network [6] that considers the probability that a term or concept appears in a docum
that a document satisfies the information need. Because a Bayesian network is a graphica
that encodes probabilistic relationships among variables of interest, it makes a good fram
for this style of model. INQUERY has two parts: a document net and a query net. The doc
net is static for a given collection. Nodes representing documents are connected to node
senting terms. Thus, INQUERY can calculate, given a document, the probability that a par
term is instantiated. The query net is constructed by connecting terms in the query to node
senting how those terms should be combined. For example, the probability an “AND” node
isfied given a number of terms would simply be the product of the individual probabilitie
appearance for each term. These combination terms could themselves be combined to rep
user's entire information need. To perform retrieval, the system connects these two ne
together, and can thus calculate the conditional probability that the information needed wit
given document. The system then ranks the documents by this probability.

The CIIR has some very useful web pages on their system (http://ciir.cs.umass.edu/
demonstrations/InQueryRetrievalEngine.shtml). They give an overview of the
features of the system, and a number of different domains to try it out. They have set up th
tem to search a WWW page database, but it only contains 100,000 URLs, as opposed to
for a system like Lycos. Also, while INQUERY has the capability to do sophisticated querie
interface in the demos requires the user to know the exact formulations.
Page 2 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

ollec-
 word-

 lookup
ectors of
s that

a com-
eractive
re con-
 also
 docu-
ar in a

query

rface
involving

 vector
g stop
 a pre-
 docu-
, and
ilarity

nts, and
erform

d on the

 of the
 and a
cludes
shortly,
ased

val
tween
ram-
 some
d others
2.1.2 MG (Managing Gigabytes)

MG (Managing Gigabytes) [7] is a full-text retrieval system that gives instant access to a c
tion of documents while requiring far less storage space than the original documents. It is a
based information retrieval system, using words as the basic terms on which matching and
are performed. MG uses a vector space model that represents documents and queries as v
term frequencies. This approach weights entries in the vectors to give emphasis to term
exemplify meaning and are useful in retrieval.

The MG system has two main parts: a program that turns a collection of documents into
pressed and indexed full-text database, and a program that services several types of int
queries for words that appear in the documents. By default, queries are Boolean and a
structed using a collection of terms linked by the Boolean operators AND, OR, and NOT. MG
supports ranked queries, which take a list of terms and use frequency statistics from the
ments to determine which of the terms should be given the most weight when they appe
document. Additionally, MG supports approximate-ranked query which is similar to ranked
but is only an approximation, providing higher speed at the cost of worse retrieval.

While the engine behind MG is quite powerful, it has only a rudimentary command-line inte
because it is only a research prototype. Its main use has been as a testbed for research
large-scale information retrieval.

2.1.3 SMART

SMART [8], developed by Gerard Salton and his students at Cornell University, also uses a
space model for representing documents. SMART performs automatic indexing by removin
words (words that are too common to be useful in distinguishing between documents) from
determined list, stemming (the process of removing prefixes and suffixes from words in a
ment or query in the formation of terms in the system’s internal model) via suffix deletion
term weighting. Given a new query, SMART converts it to a vector, and then uses a sim
measure to compare it to the documents in the vector space. SMART ranks the docume
returns the top n documents, where n is a number determined by the user. SMART can p
relevance feedback, a process of refining the results of retrieval using a given query, base
results of the retrieval process.

The disk space requirements for the indexed collection require roughly 0.8 times the space
text version. This space includes a dictionary, display information, and both an inverted file
sequential representation of the indexed documents. While this system is relatively old, it in
many modern techniques such as stemming and stop word removal. As will be described
TELLTALE mimics both stemming and stop word removal by using statistical techniques b
on n-grams.

2.2 N-gram based information retrieval using TELLTALE

TELLTALE [2,9] is a dynamic hypertext environment that provides full-text information retrie
from text corpora using a hypertext-style user interface. The most important difference be
TELLTALE and the systems described in the previous sections is that TELLTALE is n-g
based while the others are word-based. Because of its use of n-grams, TELLTALE has
unique features including language independence and garble tolerance. These features an
will be discussed in this section.
Page 3 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

enerate

id-
cters in
racter
e slid

pt of n-
ing, pre-

or word-
ller than

x for

emming
ing is the
tion of
oncept
 to
umber

or each
g to

, most
 thus not
2.2.1 N-gram basics

An n-gram [10] is a character sequence of length n extracted from a document. Typically, n is
fixed for a particular corpus of documents and the queries made against that corpus. To g
the n-gram vector for a document, a window n characters in length is moved through the text, sl
ing forward one character at a time. At each position of the window, the sequence of chara
the window is recorded. For example, the first four 5-grams in the sentence “ cha
sequences…” are “ char”, “chara”, “harac” and “aract”. In some schemes, the window may b
more than one character after each n-gram is recorded.

The concept of n-grams was first discussed in 1951 by Shannon [11]. Since then the conce
grams have been used in many areas, such as spelling-related applications, string search
diction and speech recognition.

Most information retrieval systems are word-based because there are several advantages f
based systems over n-gram based systems. First, the number of unique words is sma
unique n-grams (for n>3) in the same text corpus, as shown in Figure 1. As a result, the inde

an n-gram-based system will be much larger than that of a word-based system. Second, st
techniques can be used in word-based systems but not in n-gram-based systems. Stemm
process that removes prefixes and suffixes from words in a document or query in the forma
terms in the system’s internal model. This is done to group words that have the same c
meaning, such as “walk”, “walked”, “walker” and “walking,” freeing the user from needing
match the particular form of a word in a query and document. Stemming also reduces the n
of unique terms to be indexed. Third, in word-based system, a table can be established f
word to list all of its synonyms. By doing this, if in the query there is a word “home,” accordin
that table, the system will also retrieve the documents containing the word “house.” Finally
word-based systems use stop words. Since stop words appear in most documents, and are

Figure 1. Number of unique terms (words and n-grams) in corpora of varying sizes.

1x103

1x104

1x105

1x106

1x107

0 5 10 15 20 25 30 35 40

N
um

be
r

of
 u

ni
qu

e
te

rm
s

Corpus size (MB)

Words

8-grams

3-grams

4-grams

5-grams

6-grams

7-grams
Page 4 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

ent or

e garble
aracter
cter” is
se it is
aract”,
 tech-

ed infor-
guages,
tive char-
very dif-
 words.

 unique
t have
ior for

 query
 vector
 of the

 docu-
ount

 is

 The

cy over

ent

vector

ed

 vectors
helpful for retrieval, these words are usually removed from the internal model of a docum
query.

At the same time, there are several advantages for using n-grams. First, the system can b
tolerant by using n-gram as basic term. If a document is scanned using OCR (Optical Ch
Recognition), there may be some misread characters. For example, suppose “chara
scanned as “claracter”. The word-based system will not be able to match this word becau
misspelled, but an n-gram based system will still match the other n-grams such as “
“racte”… and take their frequency into account. From this we can see that by using n-gram
nology system can be garble tolerant.

Second, by using n-grams the system can achieve language independence. In a word-bas
mation retrieval systems there is language dependency. For example, in some Asian lan
different words are not separated by spaces, so a sentence is composed of many consecu
acters. Grammar knowledge is needed to separate those characters into words, which is a
ficult task to perform. Using n-grams, the system does not need to separate characters into

Additionally, n-gram based systems do not use stop words. This is because the number of
n-grams in a document is very big and distribution is very wide. There are few n-grams tha
high frequency. From Ekmekcioglu’s research [12], stop words and stemming are super
word-based system but are not significant for an n-gram based system.

2.2.2 Document similarity computation

Similarity is the measure of how alike two documents are, or how alike a document and a
are. In a vector space model, this is usually interpreted as how close their corresponding
representations are to each other. One way of determining this is to compute the cosine
angle between the vectors.

In TELLTALE, each document is represented by a vector of n-grams. That is, a particular
ment is identified by a collection of n-grams . For each n-gram, a c

 records how many times occurred in document . The frequency of

its count normalized by the total number of n-grams in document , or .

weight of each n-gram is the difference between and the average normalized frequen

all documents for . This provides a weight for each n-gram in a docum

relative to the average for the collection. A document is then represented as a

, where the individual elements have been normaliz

and the n-gram’s average value has been removed. The similarity between two document

 and is then calculated as the cosine of the two representation vectors,

.

i ngram1 ngram2 …, ,

cik ngramk i f ik ngramk

cik mi i cik mi⁄

f ik

ak f ik
i

∑= ngramk

di di1 di2 …, ,()= dik cik mi⁄() ak–=

di d j

SIMc di d j,()
dikd jk()

k
∑

dik
2

k
∑ djk

2

k
∑

-------------------------------------=
Page 5 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

hogo-
ent and

 algo-
2.2.1,
ot know
ividual

s with-
 break
LE,
charac-

alyzed.
ages
o attain

ard in
ny Asian
s. Thus,

e it may
ion is

his
 Rus-

 native

 easy
l main
indow

erface

s and
 docu-
ents

f the
. The

he doc-
w. Of
d doc-
Since when the vectors are colinear and when the vectors are ort
nal, the similarity measure can be taken as the cosine of the angle between the docum
query vector — the larger this cosine value, the greater the similarity.

2.2.3 Multilingual operation

The language independence of TELLTALE is achieved by its n-gram techniques, unique
rithms, Unicode [13] and display system based on Tcl/Tk [14]. As mentioned in Section
using n-grams can eliminate language-dependent features because the program need n
about grammar for stemming, stop words, or even matters as simple as where to break ind
words. In languages such as German, for example, words are often built from smaller word
out including spaces between them. A German IR system would thus have to know how to
up a long word, or risk missing similarities between long compound words. For TELLTA
however, this is not a problem because the text is broken into relatively short sequences of
ters without knowledge of where individual words begin or end.

Second, the algorithms used in TELLTALE are independent of the language texts to be an
We have found that our algorithms work well not only for English, but also for other langu
such as Spanish and Chinese. We do not rely upon particulars of the English language t
good retrieval accuracy.

Third, TELLTALE uses Unicode to represent a character. Unicode is a 16-bit encoding stand
which each character is represented in two bytes. This encoding is necessary because ma
languages require 16 bits for each character; one byte has no meaning in those language
the use of Unicode in the algorithms is necessary to achieve language independence. Whil
be necessary to convert a document from “native” format into Unicode, such convers
mechanical, and would be unnecessary if all documents were encoded in Unicode.

TELLTALE’s fourth advantage is the ability to easily include non-English fonts in Tcl/Tk. T
allows us to quickly build a system that has the ability to display a variety of fonts, such as
sian, Hebrew, and Chinese. Using this ability, the system can display documents in their
scripts.

2.2.4 TELLTALE interfaces

Because TELLTALE has a Tcl/Tk interface, implementing the user interface was relatively
and fast. A sample view of the interface is shown in Figure 2. The interface has severa
areas, as noted in Figure 2. These include the main document window (A), the query text w
(B), the document list (C), the status area (D), and various controls (E). Additionally, the int
supports the execution of any Tcl/Tk commands via a small floating window.

When TELLTALE is first started, a user can initiate a search either by listing all document
selecting the one she wants or by entering some text into the query window and finding
ments “similar” to the entered text. In response, TELLTALE shows a ranked list of all docum
that satisfy minimum similarity criteria specified by the controls. If the user clicks on one o
documents in the list, the full text of the document will be displayed in the document window
searching process can be continued by either looking for documents similar to the one in t
ument window or by cutting some of the document text and placing it into the query windo
course, other text can be used in the query in addition to or instead of text from the displaye

θ()cos 1= θ()cos 0=
Page 6 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

tch her
hresh-

. This
que n-
ticularly

 larger
r than
 a tech-
TELL-

ilicon
, and
 is cur-
ument. This method allows the user to incrementally approach the documents that ma
needs. The user may also limit the documents selected by changing minimum similarity t
olds.

The display also includes a good deal of status information about the TELLTALE system
information includes corpus statistics such as the amount of text indexed, number of uni
grams, and number of postings. It also includes memory usage statistics; these are par
useful when trying to ensure that TELLTALE fits into RAM for best performance.

3 Approaches to large-scale retrieval in TELLTALE

Because TELLTALE is n-gram based and the number of n-grams in a document is much
than the number of words in the same document, the index for TELLTALE is much large
that of a word-based system. Thus, building a large-scale n-gram based retrieval system is
nical challenge. In this section, we describe the way in which we increased the capacity of
TALE to handle gigabyte-sized queries in a reasonably short time.

All of the performance figures reported in this paper were measured by running on a S
Graphics Origin200 with two 180 MHz MIPS R10000 processors, 256 MB of main memory
32 KB each of instruction and data cache. While this may seem an impressive machine, it

Figure 2. TELLTALE’s graphical user interface.
Page 7 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

odity
afford

xperi-
ense
forma-
TER

 TREC
f-Davis
e use:

 1988,
WSJ to

es one
e sepa-
s of all
res for

rieval
at are
r work,
 allow
ity.

 used
n gath-
r doc-
ents.

rently possible to purchase a more powerful machine relatively inexpensively from comm
PC vendors. Thus, we expect that our techniques will be applicable to those who can’t
large-scale computers as well as those who can.

3.1 Textual data used in experiments

To allow practical comparison of various algorithms and techniques, we performed our e
ments on real-world collections of data obtained from TIPSTER [15], a DARPA (Def
Advanced Research Projects Agency)-funded program of research and development in in
tion retrieval and extraction. The TREC [16] (Text REtrieval Conference) is part of the TIPS
Text Program, and provides a very large text data collection. Three types of text data from
are used in this paper: a selection of computer magazines and journals published by Zif
(ZIFF), the Associated Press newswire (AP), and the Wall Street Journal (WSJ). Here w
ZIFF1 to represent the collection from 1989's ZIFF, ZIFF2 to represent the text data from
AP1 to represent the text data from 1989's AP, AP2 to represent the data from 1988 and
represent the data from 1989's Wall Street Journal.

Every corpus is composed of tens or hundreds of individual files, each of which averag
megabyte long and contains one or more documents. Individual documents within a file ar
rated by SGML (Standard Generalized Mark-Up Language) tags. The overall characteristic
of the corpora on which we ran experiments are summarized in Table 1. Note that the figu
unique and total n-grams are calculated for n = 5; we used this value for n in all of our experi-
ments. XXX - why did we choose 5?

3.2 Data structures

The data structures used in TELLTALE are similar to those used in other information ret
systems, but with modifications to make them efficient for managing tables of n-grams th
considerably larger than the word-based tables used elsewhere. Over the course of ou
structures evolved from relatively simple solutions to more advanced mechanisms that
TELLTALE to index gigabytes of textual data, a hundredfold increase over its original capac

3.2.1 In-memory data structures

The first set of data structures in TELLTALE are in-memory data structures similar to those
in traditional word-based IR systems. The three hash tables represent all of the informatio
ered from the raw text scanned into TELLTALE. There is one hash table for n-grams, one fo
ument information, and a third detailing information about the files that contain the docum

ZIFF1 (1989) ZIFF2 (1988) AP1 (1989) AP2 (1988) WSJ (1989)

Documents 75,029 56,903 83,719 78,789 12,046

Unique 5-grams 562,492 498,653 499,807 478,519 268,810

Total 5-grams 185,159,683 134,110,587 202,636,790 186,822,009 31,863,179

Size (MB) 257 180 260 240 40

Table 1. Statistics for the document collections.
Page 8 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

a struc-
me by

would
lts in a
s with
B file.

 and 4
 a file
e sav-
 don’t
 via the
 par-
The relationship between these three hash tables is shown in Figure 3. While all three dat
tures are crucial to TELLTALE, the n-gram hash table and associated postings lists consu
far the largest fraction of memory.

The file table provides a link between documents and the files that contain them. While it
be possible to fold this information into the document hash table, storing it separately resu
large memory savings at little cost because file names are long. For example, a corpu
500,000 documents at 2 KB apiece might pack an average of 500 documents into each 1 M
If file names average 60 bytes in length, the file table requires 60 + 4 = 64 bytes of data
bytes of overhead per file for a total of just 64 KB of storage. On the other hand, storing
name with each document requires over 3 MB. Thus, large corpora benefit greatly from th
ings provided by a separate file table. Additionally, this structure works well for systems that
use traditional file systems. For example, a system might optimize performance for access
WWW by consolidating references to a single URL together; pointing all documents from a
ticular URL to the same place would make retrieval and caching simpler.

Figure 3. Relationships between hash tables in TELLTALE.

NgramInfo1

Count

FreqSum

NumDocs

PostingsList

NgramInfo2

Count

FreqSum

NumDocs

PostingsList

NgramInfok

Count

FreqSum

NumDocs

PostingsList

...
N-gram
Hash
Table

Count1 DocPtr1

Count2 DocPtr2

DocumentInfo1

TotalNgrams

UniqueNgrams

Location

FilePtr

DocumentInfo2

TotalNgrams

UniqueNgrams

Location

FilePtr

DocumentInfoi

TotalNgrams

UniqueNgrams

Location

FilePtr

...
Document
Hash
Table

FileInfo1

FileName

FileSize

FileInfo2

FileName

FileSize

FileInfox

FileName

FileSize
... File

Hash
Table
Page 9 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

n addi-
ument
ted for
iven cor-
t in rapid
alues

raphic
 is no
nt ID

r bil-
onment
sed to
t, iden-
proxi-
ent ID.

ument

gs are
rdest to
ique n-

om the
m in

 reduc-
ams

for n-

ers and
ory for
t 65%-
rams,
ch a
of an

similar-
The document table contains a great deal of information about each individual document. I
tion to the usual information such as document length and location (file and offset), the doc
table contains a document serial number, which is allocated from a single integer incremen
each document scanned in. Thus, the document serial number is guaranteed unique in a g
pus. The document hash table also stores precomputed values for each document to assis
similarity calculations. As will be described in Section XXX, precomputed per-document v
greatly reduce similarity calculation times for some similarity measures.

Additionally, each document in the hash table contains an identifier generated by cryptog
hash. In the current version of TELLTALE, this hash is generated by MD5 [17], though there
reason that would prevent switching to a different algorithm such as SHA [18]. This docume

is probabilistically unique across all corpora, with a chance of collision below even fo
lions of documents. Thus, it can be used to uniquely refer to a document in a massive envir
that might contain tens or hundreds of TELLTALE engines. The document ID can also be u
remove duplicate documents from corpora; since the ID is based on the document’s conten
tical documents will have identical IDs. Memory usage for the document hash table is ap
mately 48 bytes per document, most of which is used to store the 128-bit (16 byte) docum

In a system with documents, this means that 48 MB will be required to store the doc
hash table.

The n-gram hashtable is the central data structure in TELLTALE and, when the postin
included, the one that requires the most memory. This data structure is the one that is ha
optimize for n-grams rather than documents because of the far greater number of both un
grams in the corpus and unique n-grams in a document. For example, a typical 1 MB file fr
WSJ corpus has XXX documents with XXX postings — one posting for each different n-gra
a document. When terms are words, however, the same file has just XXX word postings, a
tion of XXX. It is this difference that makes it more difficult to build IR systems using n-gr
rather than words as terms.

In this version of TELLTALE, each posting contains three things: a normalized frequency
gram k in document i, a pointer to document i, and a pointer to the next posting for n-gramk.
Thus, each posting requires 12 bytes on a machine that supports 32-bit floating point numb
32-bit pointers. It is the space required for postings that consumes the lion’s share of mem
corpora of almost any size. In typical documents, the number of unique 5-grams is abou
75% of the total number of 5-grams, so a 4 KB document will have 2500 - 3000 unique 5-g
resulting in bytes of storage. On the other hand, the word count for su
document will total perhaps 800 words with perhaps 400 different words — a reduction
order of magnitude. It is this difference that makes building n-gram based IR difficult.

To obtain good performance on cosine similarity using these data structures, we broke the
ity formula down as follows:

10
9–

10
6

12 3000× 36000=
Page 10 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

mera-
oth the
sions in
 the fly.
alcula-

MB for
ompute
TALE

he size
more

h data
us sizes
t. Even
ra, the
 1 GB,
se less
ams in
nique n-
t con-
) are

fine the
stings
t infor-

andle
e our
.

Note that, in the final equation, all of the terms with the exception of the first term in the nu
tor can be precalculated. The remaining term is non-zero only when a term appears in b
query and a document in the corpus. Thus, we can precompute all of the “constant” expres
the formula for each document, and only need compute the sum of the term frequencies on
Because there are relatively few n-grams in common between any pair of documents, this c
tion can be done quickly once the precomputation time has been invested.

Based on our experiments with sample data, scanning in 10 MB of text data requires 88.9
the resulting data structures. Using the data structures described above, TELLTALE can c
the similarity against a 1 KB document in two seconds. The performance is good, but TELL
consumes too much memory.

The problem of memory consumption becomes worse as the corpus grows. In particular, t
of the posting list grows dramatically while the other data structures grow considerably
slowly. This is shown in Figure 4, which displays both the total memory consumed by eac
structure and the percentage of memory consumed by each data structure for varying corp
using 5-grams. As Figure 4 shows, by far the largest consumer of space is the postings lis
for a small corpus of 1 MB, the postings list consumes 75% of the space. For larger corpo
contribution of all other data structures shrinks further. By the time the corpus has reached
the postings list consumes over 6 GB of memory, while all other data structures combined u
than 100 MB, or 1/60th the space. This is hardly unexpected — the number of unique n-gr
a corpus grows slowly after the corpus reaches a certain size because the number of u
grams in English (or any other language) grows rapidly for the first few megabytes of text bu
siderably more slowly for additional text. Moreover, some combinations (such as “zzyqv”
unlikely to occur in any documents in a corpus (though this sentence shows that any n-gram is
possible in any document in a given language...). In essence, the first few documents de
“vocabulary,” but later documents add few new n-grams to it. However, the number of po
grows linearly in the number of documents, and consumes far more space than documen
mation or file information, both of which also grow linearly.

Because the postings list was clearly the largest impediment to scaling TELLTALE to h
gigabytes, we spent most of our effort optimizing its usage. The following sections describ
efforts.

SIMc di d j,()
dikd jk()

k
∑

dik
2

k
∑ djk

2

k
∑

-------------------------------------=

""

f ik ak–() f jk ak–()()
k
∑

dik
2

k
∑ djk

2

k
∑

---=

""

f ik f jk()
k
∑ f ikak()

k
∑ f jkak()

k
∑ ak

2

k
∑+ + +

dik
2

k
∑ djk

2

k
∑

---=
Page 11 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

pace
 hash
rates
.

n-disk
ndicate
ange,
t also
 disk

tegers,
change
ifferent
hing the
 long

h docu-
k file.
 deal of
r files.
s rather
3.2.2 On-disk data structures

The on-disk version of TELLTALE was developed to cope with the limitations of memory s
by moving the postings list from memory to disk. Only the main data structures — n-gram
table, document table, file table — are kept in memory. To accomplish this, TELLTALE gene
an on-disk file to record all the information, including a posting list from the files scanned in

We made several modifications to the original in-memory data structures to handle the o
data structures. First, we added variables to each n-gram’s entry in the n-gram table to i
where a postings list is stored in the on-disk file and how long it is. This is only a minor ch
yet it increases the memory requirements by over 6 MB for a 1 GB corpus. However, i
allows TELLTALE to rapidly access postings lists on disk with the penalty of just a single
seek.

The other change we made was to convert pointers in the in-memory data structures into in
adding a table to translate from the integers into actual entries for files or documents. This
is necessary to allow the data structures to be stored to disk and retrieved, possibly with d
memory addresses. We considered using the document ID, which was generated by has
document text, for this purpose. However, this ID requires 16 bytes of memory, which is too
to include in every on-disk posting. Instead, we used the serial number assigned to eac
ment. While this number is not unique across corpora, it is unique within a single on-dis
While its use makes merging corpora together somewhat more complex, it saves a great
space; thus, we chose this option. A similar tactic was used to identify entries for particula
The resulting structures are identical to those shown earlier in Figure 3, except that integer
than pointers are used to link the tables together and the postings lists are stored on disk.

Figure 4. Space consumed by different data structures.

1 10 40 180 1000
0

1000

2000

3000

4000

5000

6000

7000
M

em
or

y
us

ed
 (

M
B

)

Corpus size (MB)

File table

Document table

N-gram table

Postings

1 10 40 180 1000
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
nt

ag
e

of
 m

em
or

y
us

ed

Corpus size (MB)
Page 12 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

E,
s on it.
 can
w que-

ashtable
 loaded

em-
n scan
cript to

B on-
disk
ram
t having

s files,
parts of
tings

tions of
 must
ment’s

porary
We chose to allow TELLTALE to operate in one of three modes: memory, update or ondisk .
The memory mode of this version is basically identical to the original version of TELLTAL
except that it can load a corpus into memory and subsequently conduct similarity searche
Update mode allows the system to create or update on-disk files. In this mode, TELLTALE
record information about documents that have been scanned in. However, it does not allo
ries in update mode.

The ondisk mode only allows the user to use the files generated in advance under update
mode. Under this mode the system loads the document hashtable, file table and n-gram h
header into memory. However, the posting list is kept on disk only, so each bucket must be
into memory before it is used. The format of the on-disk file is shown in Figure 5.

Because of memory limitations, we can only build an index for 10 MB of raw text data in m
ory. We then dump this corpus index file to disk and clear the memory. Now, the system ca
in another 10 MB of text data, and generate another on-disk file. Thus, we can use a Tcl s
generate a set of on-disk files. TELLTALE implements a function called mergecorpus to merge
this set of on-disk files into one big on-disk file. Using this method, we can generate a 1 G
disk file containing all the information for about 300 MB of raw text data. After the big on-
file is generated, the usecorpus command can load the file table, document table, and n-g
hashtable header into memory. We can then issue queries against this large corpus withou
the memory space to read it into memory in its entirety.

The file header records the general information for this file. It includes the number of corpu
documents and n-grams in this text data set. It also contains the start offset for the other
the corpus index — file information, document information, n-gram index and n-gram pos
lists. Additionally, several per-corpus summary values are stored here. The remaining sec
the on-disk file contain copies of the data stored in memory. However, the on-disk version
use integers rather than pointers for internal references such as a “pointer” from a docu
information to the structure describing the file that contains it. This conversion requires tem
tables on reading and writing the data, but does not require permanent data structures.

Figure 5. Format for an on-disk corpus index file.

Header
File Table

Document Info Table

N-gram Hash Table

N-gram Postings Lists
Page 13 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

er” for
ne so
are read
equires
quired

size of
he table
er, the
te the

 from
s the
rk-
er, we
gabyte

ulating
pared
 utili-

cket.

ument
nd the
r each
cy.

t of n-
mber of
 the n-
ression

tore the
sting.

the addi-

 based
words
s. For
The n-gram hash table is split into two pieces in the on-disk file, one that contains the “head
each n-gram bucket and the other listing all of the postings for the n-gram. This split is do
that the headers can be easily loaded in by a sequential read while the postings buckets
off disk on demand. At 32 bytes per header, even a 1 GB text corpus indexed by 5-grams r
only 32 MB for the n-gram header hash table. This contrasts with the several gigabytes re
for the postings list.

3.2.3 Performance

Using this naive strategy without compression, the on-disk file consumes 4.5-7 times the
the raw text data. When the size of raw text data is small, this rate is even larger because t
of unique n-grams dominates the size of the on-disk index. As the corpus grows, howev
number of unique n-grams grows much more slowly, allowing the postings lists to domina
space used for medium and large corpora.

We generated a 177 MB on-disk file representing the information from 40 MB of text data
the Wall Street Journal. Although the index requires a good amount of disk space, it increase
capability of TELLTALE from 10 MB to 40 MB of text data with the same memory in the wo
station. The performance of similarity is also acceptable, though somewhat slow. Howev
had to reduce the size of the on-disk index if we were to be able to perform retrieval on gi
corpora. The following section describes our compression techniques.

3.3 Compression

A large on-disk file not only takes up disk space, but also slows down the speed of calc
similarity due to the time it takes to read posting lists from disk. Since I/O is very slow com
to CPU instructions, compressing the posting list results in two benefits: lower disk storage
zation and faster similarity computations due to reductions in the time needed to read a bu

3.3.1 Strategy

The original on-disk file contained postings lists composed a pair of numbers for each doc
in which the n-gram occurred: an integer identifying the document containing the n-gram a
normalized frequency for the n-gram in the document. This strategy required 8 bytes fo
posting, 4 bytes each for the document number and a floating point number for the frequen

First, we converted all of the n-gram frequencies into integers by storing the actual coun
grams in a document rather than the normalized frequency. Since we already store the nu
n-grams in a document, it is a simple calculation to regenerate normalized frequency from
gram count and size of the document. This shift allows us to use standard integer comp
algorithms on our postings lists.

Second, we noted that, if we sorted the postings in a list by document number, we could s
difference between an individual posting’s document number and that of the previous po
These gaps are smaller in magnitude than the document numbers themselves, and have
tional desirable property that they are smallest for large postings lists with many entries.

These two strategies can be used to greatly reduce the size of an on-disk index for n-gram
information retrieval. Moreover, compression can be more effective for n-grams than for
because the distribution of term frequencies is more skewed for n-grams than for word
Page 14 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

 1 GB
bers in

 though
default

grams
s had
w that

er.

6. This
alls off
 were

n a sin-

. The
ts and

, yield-

al of
example, Figure 6 shows the distribution of term frequencies for 5-grams in the combined
corpus alongside the distribution of integers describing the “gap” between document num
postings.

The data in Figure 6 show that posting counts have the greatest potential for compression,
there is also some opportunity for compression of document number gaps as well. The

representation of integers in TELLTALE is 4 bytes long, allowing values up to 232-1. However,
the count of a particular n-gram in a single document is usually a very small number; few n-
have high frequency within a document. In the corpus we studied, 97.77% of all posting
counts of 5 or less, while over 77% had a count of exactly 1. Based on this finding, we kne
the vast majority of counts could be stored in far less than the standard 4 bytes of an integ

We also looked at the distribution of document serial number gaps, also shown in Figure
graph shows that most serial number gaps are also relatively small. However, the curve f
far more slowly than that for posting counts. Half of the gaps were 8 or smaller, and 92.6%
255 or less. This distribution means that over 92% of all gap values could each be stored i
gle byte rather than the 4 bytes required by the default representation.

Based on these findings, we implemented two different compression schemes in TELLTALE
first was simple to implement and provided reasonable compression for both n-gram coun
document serial number gaps. However, it was considerably below optimal; the gzip utility was
able to compress the indices by a factor of two. We then switched to gamma compression
ing files that were approximately the same size as the result of using gzip on the original files
that used the first compression scheme.

Figure 6. Distribution of 5-gram frequencies and document number gaps. There are a tot

 postings in this corpus, which contains close to 1 GB of text.

0%

20%

40%

60%

80%

100%

1x100 1x101 1x102 1x1036x103

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f a
ll

po
st

in
gs

5-gram count in document

0%

20%

40%

60%

80%

100%

1x100 1x101 1x102 1x103 1x104 1x105 1x106

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f a
ll

ga
ps

Gap between successive postings of a 5-gram

4.62
8×10
Page 15 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

on algo-
om 0 to

taining
. The

que n-
 a fac-
rfor-

, it can
 in the

 GB of
noticed
evise a
oing so
of data
ssary to

equire-
es. We
ression,
imple-

 coded

esents
esent-

e

nt for a
3.3.2 Simple compression algorithm

Based on the statistics discussed in Section 3.3.1, we first considered a simple compressi
rithm that saves space for small numbers. We used a single byte to represent numbers fr

27-1, two bytes for numbers 27 to 214-1, and four bytes for numbers in the range 214 to 230-1.
These numbers were stored in the format shown in Figure 7.

We got good compression results from this scheme. We generated a large on-disk file con
all of the documents in the ZIFF1, ZIFF2, AP1, and AP2 corpora using this compression
combined corpus has 960 MB of raw text, including 294,440 documents and 889,125 uni
grams, resulting in an on-disk file requiring 1.085 GB of storage. This provides better than
tor of four compression relative to the uncompressed on-disk file. Additionally, query pe
mance improves greatly. After the system loads the in-memory tables for the large corpus
compute, sort, and display the similarity at the rate of 5.5 minutes per 1000 characters
query.

This simple compression algorithm showed that we can process n-gram queries against 1
text data quite well. However, we did not achieve as much compression as we could. We
that gzip was able to compress our on-disk files by a factor of 2, suggesting that we could d
compression scheme that approached, or even surpassed, this level of compression. D
would reduce the size of on-disk indices and improve performance by reducing the amount
that must be read for each query. Balanced against this is the increased CPU time nece
encode and decode a more complex compression scheme.

3.3.3 Gamma compression

Our initial experiments showed that compression was very effective at reducing resource r
ments, but that we could achieve additional gains with more efficient compression schem
primarily considered several standard schemes for our corpus: unary code, gamma comp
and delta compression. All of these compression methods are relatively straightforward to
ment and could provide significant improvement over our initial scheme.

The first such code we considered was the unary code [7]. In this code, an integer is

as one bits followed by a zero bit. For example, the unary code for 4 is 1110. This repr
small integers such as n-gram counts within a document well, but is very inefficient at repr
ing larger integers such as document serial number gaps.

We next examined gamma compression, which represents an integer x as two parts: a unary cod
for an integer m followed by a k-bit binary value y. The value for k is determined by taking the mth
element of a vector of integers that is constant across all compressed values (i.e., consta

Figure 7. Number formats for the simple compression scheme.

10

11

0 1 byte (8 bits) represents 0 – 127

2 bytes (16 bits) represent 128 – 16383

4 bytes (32 bits) represent
16384 – 1 billion

XXXXXXX

XXXXXX XXXXXXXX

XXXXXXXXXXXXXXXXXXXXXX XXXXXXXX

x 1≥
x 1–
Page 16 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

on

o dif-

mited
ften
 which

simple.
d only

pressed.
y sub-
lue is
alue 18
oking
sed in

n index

ple,
p 2 (10)
hus 2 +

unary, to
 small
ed com-
s in this
to com-
particular compression scheme). For a vector , the value of a representatimy

can be calculated as . Table 2 shows examples of representations using tw

ferent vectors for values of k. Note that the largest number representable in each scheme is li
by the largest integer in the k-vector. For this reason, gamma compression implementations o
contain a large terminal value to handle the occasional integers larger than the range in
most values fall.

If this table is constructed in memory, both compression and decompression are relatively
For compression, the algorithm first subtracts 1 from the value being encoded. It then nee
search through the table and find the smallest entry greater than the number being com
The unary prefix may be read directly from the table, and the binary portion is obtained b
tracting the previous maximum value entry from the value to be compressed. This va
expressed in the number of bits found in the table entry. For example, compressing the v
using the scheme on the right would be done by first subtracting 1, yielding the value 17. Lo
in the table, this requires a unary prefix of 2 (110) and a binary portion of 17-10 = 7 expres
5 bits (00111). Thus, the final representation is 11000111.

The decoding process is also relatively simple. The unary prefix is extracted and used as a
into the table. The maximum value from the previous entry is then added to the k-bit value that
follows the unary prefix using the k found in the table, and the result is added to 1. For exam
decoding the compressed value 10110 using the scheme on the right is done by looking u
in the table, and finding that k=3 and the “base value” is 2. The uncompressed number is t
1 + 6 (110) = 9.

The delta code is a derivative of the gamma code that uses the gamma code, rather than
encode the prefix. However, the delta code is more complex, and not as efficient for very
numbers such as those found in n-gram frequency counts. There are other, more advanc
pression techniques, but these two are the most commonly used algorithms. Since integer
system are not big and the gamma code is easy to implement, we picked gamma coding
press the posting list.

Prefix

k Maximum value k Maximum value

0 (0) 0 20 = 1 1 21 = 2

1 (10) 1 1 + 21 = 3 3 2 + 23 = 10

2 (110) 2 3 + 22 = 7 5 10 + 25 = 42

3 (1110) 3 7 + 23 = 15 7 42 + 27 = 160

4 (11110) 20 15 + 220 15 160 + 215

Table 2. Sample gamma compression representations.

k0 k1 … kn, , ,〈 〉

2
ki

i 0=

m 1–

∑

y 1+ +

0 1 2 3 20, , , ,〈 〉 1 3 5 7 15, , , ,〈 〉
Page 17 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

 use to
Figure 6
 results
 for n-
enta-
ions of
e of a
ector

rated a
 was

 under
sary to
50 MB.

them as

at must
text,
of 50
al com-

ry at a
s small
c...).
Even after selecting gamma compression, however, we had to choose the best vector to
compress our integers. To do this, we ran several experiments against the data shown in
to compute the amount of space that would be required using several different vectors. The
of some of our experiments are shown in Table 3. As this table shows, optimal compression
gram counts and document gaps were achieved with different vectors. To simplify implem
tion, we chose the first vector in Table 3 as our compression scheme, though future vers
TELLTALE may use different vectors to compress different value sets. Even with our choic
single vector, however, we were within 5.5% of the space required by the optimal two-v
compression scheme.

Using our gamma compression scheme with the vector in the first line of Table 3, we gene
large on-disk index file covering ZIFF1, ZIFF2, AP1, and AP2. The raw text from these files
960 MB, but the on-disk index consumed only 647 MB. While the table entry suggests that
500 MB would be necessary, the table does not include additional data structures neces
store document info and the n-gram headers; these structures make up the additional 1
Since they are only read in at startup, however, we decided not to attempt to compress
well. Our experiment gave a compression ration of 0.67, which is nearly as good as gzip .

Gamma compression also improves query performance by reducing the amount of data th
be read for a single query. After loading the in-memory information for the 960 MB of
TELLTALE can compute and sort about 300,000 documents’ similarity result at the rate
seconds per thousand characters in the query. This is considerably faster than our origin
pression scheme, as can be seen in Figure 8.

3.4 Handling gamma compressed postings lists in memory

The dropping price of memory has made it possible to purchase large amounts of memo
reasonable price. With the help of gamma compression, the compressed postings list i
enough to be loaded into main memory if allocation is handled intelligently (i.e., not by mallo

Vector N-gram counts (MB) Document gap (MB) Total (MB)

<0,1,2,3,4,5,6,7,8,9,10,11,12,14,16,18,20,28> 87.7 409.1 496.8

<0,1,2,3,4,6,8,10,12,14,16,18,28> 87.7 409.2 496.9

<0,0,1,2,3,4,5,6,7,8,10,12,14,16,18,28> 83.2 435.0 518.2

<0,0,0,1,2,3,4,5,6,7,8,10,12,14,16,18,28> 82.3 460.2 542.5

<0,0,0,0,1,2,3,4,5,6,7,8,10,12,14,16,18,28> 82.1 484.7 566.8

<0,0,2,4,6,8,10,12,14,16,18,28> 86.4 412.0 498.4

<0,2,4,6,8,10,12,14,16,18,28> 96.6 388.1 484.7

<0,3,6,9,12,15,18,21,28> 106.9 395.2 502.1

<0,2,3,6,9,12,15,18,21,28> 96.0 398.5 494.5

<0,1,2,4,6,9,12,15,18,21,28> 88.2 408.2 496.4

Table 3. Index sizes for various gamma compression vectors.
Page 18 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

 of text
ng so

h the
ile oth-
ally as
ed size
all —
erhead
hunk is
s, total
nused
pt to

d post-
re per-

sed in
s lists,
z Pen-

ms an
 Thus,

TALE
ions of
 docu-
ween
ounts of
; this
Since about 1 GB of raw text data can be indexed in under 700 MB, we can handle 1 GB
data in less than 750 MB of main memory, allowing for a small amount of overhead. Doi
will improve the performance a great deal by eliminating disk I/O during a query.

The major difficulty with handling the compressed postings lists in memory is coping wit
many bucket capacities necessary — some postings lists will be only a few bytes long, wh
ers may require many thousands of bytes. Additionally, these buckets must grow dynamic
new documents are scanned in. These requirements are best met using lists built from fix
“chunks” of space connected in a linked list. The overhead for this scheme is relatively sm
fixed size chunks that can hold 32 bytes require only 4 bytes of pointer overhead for an ov
of 12.5%. In addition, fixed size chunks waste some space because part of the last c
unused. On average, this will waste half of a chunk per n-gram, 16 bytes in our system. Thu
overhead for a system that scanned in the 1 GB AP-ZIFF corpus would be 14 MB for u
chunk space and about 62.5 MB for pointers. In future versions of TELLTALE, we will attem
reduce this overhead by allowing 2-3 different chunk sizes for maximum efficiency.

Operation using in-memory compressed postings lists is similar to that using uncompresse
ings lists, but with the additional step that postings lists must be compressed before they a
manently stored. Additionally, postings lists must be uncompressed before they are u
similarity calculations. While this technique uses less memory than uncompressed posting
it is somewhat slower because of the time needed to uncompress a postings list. A 200 MH
tium laptop is capable of decompressing two million integers a second; while this see
impressive number, most similarity calculations must process ten million postings or more.
decompression time contributes significantly to similarity calculation time.

By using in-memory gamma compression rather than uncompressed postings lists, TELL
can reduce its memory usage by a factor of four or more, as Figure 9 shows. Both vers
TELLTALE keep the entire postings list as well as the other data structures, including the
ment information table and n-gram information table, in memory. The only difference bet
the two is that the gamma compressed version uses a great deal less memory for larger am
text. Note, however, that the original TELLTALE uses slightly less memory for small corpora

Figure 8. Retrieval time for different query sizes and compression methods.

•••••

+

+
+

+
+

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500

Q
ue

ry
 r

un
ni

ng
 ti

m
e

(s
ec

on
ds

)

Number of n-grams in query

• Gamma compression

+ Simple compression
Page 19 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

igher.
ses.

 on-disk
levant

ttention
ory. We
5,029
 to this
00, had
0 MB
emory
e is not

ssion.
occurs because the overhead for the gamma compression version of TELLTALE is slightly h
However, this higher overhead is more than recovered as the amount of indexed text increa

The in-memory gamma compressed version also provides increased speed relative to the
version. Comparisons with the original, uncompressed in-memory version are less re
because the original version can only handle very small corpora. Thus, we focused our a
on the relative performance of the gamma compressed postings lists on disk and in mem
ran queries against a collection containing the 257 MB of text in ZIFF1, which comprise 7
documents, 562,492 unique n-grams, and a total of 185,159,683 postings. We were limited
size because the machine on which the queries were run, a two processor SGI Origin 2
only 256 MB of memory. When the entire ZIFF1 corpus was loaded into memory, it used 21
of memory, leaving the rest for operating system use. As can be seen in Figure 10, in-m
gamma compression is twice as fast as on-disk gamma compression, though the differenc
as large as we had expected.

Figure 9. Memory usage for original and in-memory gamma compressed TELLTALE.

Figure 10. Performance comparison of in-memory and on-disk version with gamma compre

•
•

•
•

•
•

•
•

•
•

•
•

•

++++++++++++
+0

20

40

60

80

100

120

0 2 4 6 8 10 12 14

M
em

or
y

us
ag

e
(M

B
)

Number of 1 MB documents read in

• Gamma compressed

+ Uncompressed

•

••
•

•

+

+

+
+

+

0

10

20

30

40

50

1 1.5 2 2.5 3 3.5 4 4.5 5T
im

e
to

 c
om

pu
te

 s
im

ila
rit

y
(s

ec
s)

Size of query document (KB)

• In-memory

+ On-disk
Page 20 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

-based
ression
 and, par-
e tech-
hile

igabyte
ilarity
ments
nd the
ness of

 is not
t be a

n-grams
com-
 mod-
r
han

 impor-
d with
e. On
cy. The

sholds
f 50%,
l time.
occur in
 perfor-

. Since
 used
, lower
erfor-
be as
As the preceding experiments have shown, gamma compression performs well for n-gram
IR just as it does for word-based schemes. However, we had to adjust the gamma comp
vectors to best compress the postings lists generated for n-grams because document gaps
ticularly, occurrence count distributions are differ between words and n-grams. Using thes
niques, we expanded TELLTALE’s capability from around 10 MB to over 1 GB w
maintaining good query performance.

4 Exploring different similarity mechanisms

Because this is the first n-gram-based information retrieval system capable of handling a g
of text, we were able to perform several experiments on using different document sim
schemes that were previously done only on relatively small corpora [19]. While our experi
were not extensive, they showed the effects of eliminating common n-grams from queries a
resulting performance gains. We also conducted some basic experiments on the effective
TF/IDF similarity using n-grams rather than words.

4.1 Incremental similarity calculations

Incremental similarity is based on the idea that a n-gram which occurs in most documents
important for retrieving a similar documents. If every document contains this n-gram, it mus
common term and not a key term to distinguish those documents. At the same time, these
have a long posting list, requiring TELLTALE to spend a relatively long time reading and un
pressing the posting list for them. To test the effectiveness of ignoring common n-grams, we
ified TELLTALE to include a threshold t () above which an n-gram is ignored fo
similarity computations. TELLTALE then ignores all n-grams that occur in more t

 documents, where numDocs is the total number of documents in the corpus.

Because the n-grams that occur in a high percentage of all documents are not likely to be
tant, they should not affect the accuracy of a query. A TELLTALE user can set the threshol
a larger value resulting in better accuracy at the expense of longer similarity computation tim
the other hand, reducing the threshold speeds up similarity computation but reduces accura
speedup from reducing the threshold is illustrated in Figure 11. As expected, lower thre
require less computation time, but the improvement is not dramatic. Even for a threshold o
the maximum improvement time is from 33 seconds to 28 seconds, or 85% of the origina
Because there are many more unique n-grams than words, there are fewer n-grams that
most of the documents. Thus, omitting the most common ones does not result in very large
mance gains.

We next produced a simple precision-recall graph for reduced n-gram frequency thresholds
we did not have “official” relevance judgments for queries on our corpus, however, we
approximate judgments. Nonetheless, the graph in Figure 12 shows that, as expected
thresholds result in lower precision and recall. Given the relatively small improvement in p
mance, we believe that eliminating common terms from similarity computations may not
effective for n-grams as it is for words.

0 t 1≤ ≤

t numDocs×
Page 21 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

uency/
 log of
TALE
ecall
ments
TELL-
ea-
 little

d not
 com-
eries,
4.2 TF/IDF similarity

Another standard weighting system used in word-based systems is TF/IDF (Term Freq
Inverse Document Frequency) [19]. It uses the term frequency within a document times the
the total number of documents over the number of documents containing the term. TELL
includes support for TF/IDF weighting, but we found it very difficult to test precision and r
for a different weighting system without a corpus with scored queries. However, our experi
showed that TF/IDF similarity can be calculated at about the same speed as the original
TALE similarity. Thus, if future work shows that TF/IDF yields more accurate similarity m
sures when using n-grams, as suggested by [19], TELLTALE will be able to support it with
loss in performance

5 Conclusions and future work

Though we greatly expanded TELLTALE’s capacity and improved its performance, we di
affect its ability to handle multilingual or slightly garbled documents. It is these advantages,
bined with an ability to perform retrieval using full documents rather than relatively short qu

Figure 11. Performance for incremental similarity with different thresholds.

Figure 12. Recall-precision curve for different thresholds.

•

•
•

•

•

+

+
+

+

+

♦

♦
♦

♦
♦

0

10

20

30

0 1 2 3 4 5T
im

e
to

 c
om

pu
te

 s
im

ila
rit

y
(s

ec
)

Size of query (KB)

• Threshold = 1.0

+ Threshold = 0.7

♦ Threshold = 0.5

♦♦♦♦♦♦
♦♦♦♦♦♦

♦
♦♦

♦♦♦♦♦

+++++
+++

+++
+
++++

++++

•••••
••
•••••

•••
•

••••

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (

%
)

Recall (%)

♦ Threshold = 1

+ Threshold = 0.7

• Threshold = 0.5
Page 22 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

hope
ing n-

andle a
ords as
 col-
Spanish
ut more

grams
ngine
rmation
hibited
LTALE

gnitude
emon-
will be

ance and
ing.

dback
nse and

nt:

 pages

 with

SR-
that make TELLTALE a useful tool. However, there is still much work to be done with it. We
to perform a more complete study of the tradeoffs between different similarity measures us
grams rather than words. Because TELLTALE is the first system using n-grams that can h
gigabyte of text, we hope to be able to show that n-grams are equal to or better than w
indexing terms. We are also currently performing experiments in using TELLTALE to index
lections in non-English languages ranging from European languages such as French and
to ideogram-based languages such as Chinese. Our preliminary results are promising, b
investigation needs to be done.

We have demonstrated that it is possible to build a text information retrieval engine using n-
rather than words as terms that can handle gigabyte-sized corpora. The TELLTALE IR e
adapts techniques that have been used for word-based systems to n-gram-based info
retrieval, making adjustments as necessary to account for the different term distributions ex
by n-grams. Because there are many more unique n-grams than words in a document, TEL
must cope with 1-2 orders of magnitude more unique terms and at least an order of ma
more postings to allow indexing of a text corpus. By modifying standard techniques, we d
strated a system that provides good performance on the large corpora that computers
called upon to index. These techniques can also be used on other systems where perform
scalability are critical to better use of system resources and larger scale and faster process

Acknowledgments

The authors are grateful to the many people who contributed to this work by giving us fee
and suggestions. These include Claudia Pearce and Bill Rye at the Department of Defe
David Ebert at UMBC.

References

[1] Steve Lawrence and C. Lee Giles, “Searching the World Wide Web,” Science 280(3), 3
April 1998, pages 98 - 100.

[2] Claudia Pearce and Ethan Miller, “The TELLTALE Dynamic Hypertext Environme
Approaches to Scalability,” in Advances in Intelligent Hypertext, J. Mayfield and C.
Nicholas, eds. Lecture Notes in Computer Science, Springer-Verlag, October 1997,
109 - 130.

[3] Robert R. Korfhage, Information Storage and Retrieval, John Wiley & Sons, 1997.

[4] Ian H. Witten, Alistair Moffat, and Timothy C. Bell, Managing Gigabytes, Van Nostrand
Reinhold, 1994.

[5] James P. Callan, W.Bruce Croft, and John Broglio, “TREC and Tipster experiments
INQERY,” Information Processing and Management 31(3), 1995, pages 327 - 343.

[6] D. Heckerman, “A tutorial on learning with Bayesian networks,” Technical Report M
TR-95-06, Microsoft Research, March 1995 (revised November, 1996).

[7] Ian H. Witten, Alistair Moffat, and Timothy C. Bell, Managing Gigabytes, Van Nostrand
Reinhold, 1994.
Page 23 of 24

Miller, Shen, et. al. Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System

,” in
an

rtext
r

riza-

l

ram

ing

ies,

ble at
[8] G. Salton and M.J. McGill, “The SMART and SIRE Experimental Retrieval Systems
Readings in Information Retrieval, Karen Sparck Jones and Peter Willett, eds., Morg
Kaufmann, 1997, pages 381 - 399.

[9] Claudia Pearce and Charles Nicholas, “TELLTALE: Experiments in a Dynamic Hype
Environment for Degraded and Multilingual Data,” Journal of the American Society fo
Information Science, April 1996, pages 263 - 275.

[10] Marc Damashek, “Gauging Similarity with n-grams: Language-Independent Catego
tion of Text,” Science 267, 10 February 1995, pages 843 - 848.

[11] C. E. Shannon, “Prediction and entropy of printed English,” Bell System Technical Journa
30, pages 50 - 64.

[12] F. Cuna Ekmekcioglu, Michael F. Lynch, and Peter Willett, “Stemming and N-g
Matching For Term Conflation In Turkish Texts,” available at
http:// www.shef.ac.uk/uni/academic/I-M/is/lecturer/paper13.html#lovi68.

[13] The Unicode Consortium, The Unicode Standard: World Wide Character Encoding, Addi-
son-Wesley, Redwood City, CA, 1992.

[14] Brent B. Welch, Practical Programming in Tcl and Tk, 2nd edition, Prentice Hall, 1997.

[15] Donna Harman, “The DARPA TIPSTER project,” ACM SIGIR Forum 26(2), Fall 1992,
pages 26 - 28.

[16] The Text Retrieval Conference. Information available at http://trec.nist.gov .

[17] R. L. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321, Network Work
Group, April 1992.

[18] Secure Hash Standard, FIPS-180-1, National Institute of Standards and Technolog
U.S. Department of Commerce, April 1995.

[19] James Mayfield and Paul McName. “N-gram vs. Words as Indexing Terms,” availa
URL http://www.cs.umbc.edu/~mayfield/.
Page 24 of 24

	Performance and Scalability of a Large-Scale N-gram Based Information Retrieval System
	1 Introduction
	2 Background
	2.1 Word-based information retrieval systems
	2.1.1 INQUERY
	2.1.2 MG (Managing Gigabytes)
	2.1.3 SMART

	2.2 N-gram based information retrieval using TELLTALE
	2.2.1 N-gram basics
	Figure 1. Number of unique terms (words and n-grams) in corpora of varying sizes.

	2.2.2 Document similarity computation
	2.2.3 Multilingual operation
	2.2.4 TELLTALE interfaces
	Figure 2. TELLTALE’s graphical user interface.

	3 Approaches to large-scale retrieval in TELLTALE
	3.1 Textual data used in experiments
	Table 1. Statistics for the document collections.

	3.2 Data structures
	3.2.1 In-memory data structures
	Figure 3. Relationships between hash tables in TELLTALE.
	Figure 4. Space consumed by different data structures.

	3.2.2 On-disk data structures
	Figure 5. Format for an on-disk corpus index file.

	3.2.3 Performance

	3.3 Compression
	3.3.1 Strategy
	Figure 6. Distribution of 5-gram frequencies and document number gaps. There are a total of posti...

	3.3.2 Simple compression algorithm
	Figure 7. Number formats for the simple compression scheme.

	3.3.3 Gamma compression
	Table 2. Sample gamma compression representations.
	Table 3. Index sizes for various gamma compression vectors.
	Figure 8. Retrieval time for different query sizes and compression methods.

	3.4 Handling gamma compressed postings lists in memory
	Figure 9. Memory usage for original and in-memory gamma compressed TELLTALE.
	Figure 10. Performance comparison of in-memory and on-disk version with gamma compression.

	4 Exploring different similarity mechanisms
	4.1 Incremental similarity calculations
	Figure 11. Performance for incremental similarity with different thresholds.
	Figure 12. Recall-precision curve for different thresholds.

	4.2 TF/IDF similarity

	5 Conclusions and future work
	Acknowledgments
	References

