
Cooperative Concurrency
for a Multicore World

Cormac Flanagan
Jaeheon Yi, Caitlin Sadowski
UCSC

Stephen Freund
Williams College

Cooperative Concurrency
for a Multicore World

Cormac Flanagan
Jaeheon Yi, Caitlin Sadowski
UCSC

Stephen Freund
Williams College

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

Single Thread

x++
Multiple Threads

x++
is a non-atomic

read-modify-write

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

Controlling Thread Interference #1: Manually

manually identify where
thread interference

does not occur

Programmer Productivity Heuristic:
assume no interference, use sequential reasoning

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

t1 = bal

bal = t1 + 10

t2 = bal

bal = t2 - 10

Thread 1 Thread 2

Controlling Thread Interference #2: Race Freedom

• Race condition: two concurrent
unsynchronized accesses, at
least one write

• Strongly correlated with defects

• Race-free programs exhibit
sequentially consistent
behavior, even when run on a
relaxed memory model

• Race freedom by itself is not
sufficient to prevent
concurrency bugs

acquire(m)

bal = t1 + 10

release(m)

acquire(m)

t1 = bal

release(m)

acquire(m)

bal = 0

release(m)

Thread 1 Thread 2

atomic copy(...) {
 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }
}

atomic copy(...) {
 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }
}

Controlling Thread Interference #3: Atomicity

• A method is atomic if it behaves as if it executes serially,
without interleaved operations of other thread

sequential reasoning ok
90% of methods atomic

void busyloop(...) {
 acquire(m);
thread interference?
 while (!test()) {
thread interference?
 release(m);
thread interference?
 acquire(m);
thread interference?
 x++;
thread interference?
 }
}

10% of methods non-atomic
local atomic blocks awkward
full complexity of threading

bimodal semantics
increment or

read-modify-write

Review of Cooperative Multitasking

• Cooperative scheduler performs context switches only
at yield statements

• Clean semantics
• Sequential reasoning valid by default ...
• ... except where yields highlight thread interference

• Limitation: Uses only a single processor

...

...

...

...
yield

...
yield

...
yield

...

...
yield

...

...
yield

^ Coop/preemptive
equivalence)

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield // interference
 ...

Cooperative Concurrency

Cooperative
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Preemptive
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Preemptive scheduler
 full performance
 no overhead

Yields mark all
thread interference

void busyloop(...) {
 acquire(m);
thread interference?
 while (!test()) {
thread interference?
 release(m);
thread interference?
 acquire(m);
thread interference?
 x++;
thread interference?
 }
}

void busyloop(...) {
 acquire(m);

 while (!test()) {

 release(m);
 yield;
 acquire(m);

 x++;

 }
}

atomic copy(...) {
 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }
}

Benefits of Yield over Atomic

atomic is an interface-level spec
(method contains no yields)

x++ always
an increment

operation

• Atomic methods are exactly those with no yields

yield is a code-level spec

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

Single Thread

x++
Multiple Threads

x++
is a non-atomic

read-modify-write

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

Single Thread

x++
Cooperative Concurrency

x++ is an increment

{ int t=x; yield; x=t+1; }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
 yield;
 tmp = a[x];
t yield;
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

Cooperability in the design space

atomic yield
traditional

synchronization
+ analysis

atomicity cooperability

new runtime
systems

transactional
memory

automatic
mutual

exclusion

non-interference specification

po
lic

y

Transactional Memory, Larus & Rajwar, 2007
Automatic mutual exclusion, Isard & Birrell, HOTOS ’07

(this talk)

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative
correctness ^ Coop/preemptive

equivalence
Preemptive
correctness)

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield
 ...

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Preemptive scheduler
 full performance
 no overhead

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Cooperative Concurrency

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative
correctness ^ Coop/preemptive

equivalence
Preemptive
correctness)

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield
 ...

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Preemptive scheduler
 full performance
 no overhead

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Cooperative Concurrency

2. User study:
 Do Yields help?

1. Examples of
 coding with Yields

3. Dynamic analysis for C-P equivalence
 (detecting missing yields)
4. Static type system
 for verifying C-P equivalence

synchronized StringBuffer append(StringBuffer sb){
 ...
 int len = sb.length();

 ... // allocate space for len chars
 sb.getChars(0, len, value, index);
 return this;
}

synchronized void getChars(int, int, char[], int) {...}

synchronized void expandCapacity(int) {...}

synchronized int length() {...}

Example: java.util.StringBuffer.append(...)

 yield;

void update_x() {

 x = slow_f(x);

}

version 1

 Not C-P equivalent:
 No yield between accesses to xCopper / Silver

Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)

x is volatile
concurrent calls to update_x

void update_x() {
 acquire(m);
 x = slow_f(x);
 release(m);
}

version 2

Not efficient!
high lock contention

= low performance

Copper / Silver

Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)

void update_x() {
 int fx = slow_f(x);

 acquire(m);
 x = fx;
 release(m);
}

version 3

 Not C-P equivalent:
 No yield between accesses to xCopper / Silver

Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)

void update_x() {
 int fx = slow_f(x);
 yield;
 acquire(m);
 x = fx;
 release(m);
}

version 4

Not correct:
Stale value at yieldCopper / Silver

Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)

void update_x() {
 int y = x;
 for (;;) {
 yield;
 int fy = slow_f(y);

 if (x == y) {
 x = fy;
 return;
 } else {
 y = x;
 }

 }
}

version 5

restructure:
test and retry pattern

Not C-P equivalent:
No yield between access to xCopper / Silver

Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)

void update_x() {
 int y = x;
 for (;;) {
 yield;
 int fy = slow_f(y);
 acquire(m);
 if (x == y) {
 x = fy;
 return;
 } else {
 y = x;
 }
 release(m);
 }
}

version 6 Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)

Copper / Silver

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative
correctness ^ Coop/preemptive

equivalence
Preemptive
correctness)

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield
 ...

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

1. Examples of
 coding with Yields Preemptive scheduler

 full performance
 no overhead

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Cooperative Concurrency

3. Dynamic analysis for C-P equivalence
 (detecting missing yields)
4. Static type system
 for verifying C-P equivalence

2. User study:
 Do Yields help?

A Preliminary User Study of Cooperability

•Hypothesis: Yields help code comprehension + defect
detection?

•Study structure
•Web-based survey, background check on threads
•Between-group design - code with or without yields
•Three code samples, based on real-world bugs
•Task: Identify all bugs

User Evaluation for Cooperability

User Evaluation of Correctness Conditions: A Case Study of Cooperability. Sadowski & Yi, PLATEAU 2010

StringBuffer Concurrency bug Some other bug Didn’t find bug Total

Yields 10 1 1 12
No Yields 1 5 9 15

All Samples Concurrency bug Some other bug Didn’t find bug Total

Yields 30 3 3 36

No Yields 17 6 21 44

- Difference is statistically significant (p < 0.001)

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative
correctness ^ Coop/preemptive

equivalence
Preemptive
correctness)

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield
 ...

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

1. Examples of
 coding with Yields Preemptive scheduler

 full performance
 no overhead

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Cooperative Concurrency

4. Static type system
 for verifying C-P equivalence

2. User study:
 Do Yields help?

3. Dynamic analysis for C-P equivalence
 (detecting missing yields)

RoadRunner Framework for Dyanamic Concurrency Analyses
[PASTE ’10, github]

Error: ...Java
Bytecode

T1: acq(m)
T1: read(x)
T2: write(y)
T1: rel(m)

Event
Stream Back-end

ToolInstrumented
Bytecode

Standard JVM

Abstract State

Instrumenter

Monitor

Others: Sofya [KDR 07], CalFuzzer JNPS 09]

RoadRunner

cooperative trace:
context switch at yields

t:=x

t:=t+1

x:=t

yield

x:=2

yield

preemptive trace:
context switch anywhere

program is C-P equivalent if any preemptive
trace is equivalent to some cooperative trace

t:=x

t:=t+1

x:=t

x:=2

yield

yield

Concurrency Control and Recover in Database Systems. Bernstein, Hadzilacos, Goodman, 1987

cooperative trace:
context switch at yields

t:=x

t:=t+1

x:=t

yield

x:=2

yield

preemptive trace:
context switch anywhere

program is C-P equivalent if any preemptive
trace is equivalent to some cooperative trace

t:=x

t:=t+1

x:=t

x:=2

yield

yield

Concurrency Control and Recover in Database Systems. Bernstein, Hadzilacos, Goodman, 1987

cooperative trace:
context switch at yields

t:=x

t:=t+1

x:=t

yield

x:=2

yield

COPPER detects coop/preemptive violations

Transaction is code
between two yields

yield;
acquire(m);
while(x>0){
 release(m);
 acquire(m);
}
assert x==0;
release(m);
yield;

 acq m
 wr x 1
 rel m
 ...
 yield

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.

 acq m
 rd x 2
 rel m

 acq m
 rd x 1
 rel m
 ...

COPPER detects cooperability violations

 acq m
 wr x 1
 rel m
 ...
 yield

Happens-before order
• program order
• synchronization order
• communication order

 acq m
 rd x 2
 rel m

 acq m
 rd x 1
 rel m
 ...

Copper / Silver

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.

COPPER detects cooperability violations

 acq m
 wr x 1
 rel m
 ...
 yield

 acq m
 rd x 2
 rel m

 acq m
 rd x 1
 rel m
 ...

Copper / Silver

yield;
acquire(m);
while(x>0){
 release(m);
 acquire(m);
}
assert x==0;
release(m);
yield;

Error: Cycle implies missing yield

 //missing yield!

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.

COPPER detects cooperability violations

 acq m
 wr x 1
 rel m
 ...
 yield

 acq m
 rd x 2
 rel m
 yield

Copper / Silver

yield;
acquire(m);
while(x>0){
 release(m);
 yield;
 acquire(m);
}
assert x==0;
release(m);
yield;

 acq m
 rd x 1
 rel m
 ...

Transactional HB order has no cycles if and only
if trace is cooperative-preemptive equivalent

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.

Experimental Results for Dynamic Analysis
In non-atomic methods, count
field accesses, lock acquires,
and atomic methods calls

program LLOC No Analysis Atomic Methods Yields
sparse 712 196 49 0

sor 721 134 49 3
series 811 90 31 0
crypt 1083 252 55 0

moldyn 1299 737 64 3
elevator 1447 247 54 3
lufact 1472 242 57 3

raytracer 1862 355 65 3
montecarlo 3557 377 41 1

hedc 6409 305 76 2
mtrt 6460 695 25 1
raja 6863 396 45 0
colt 25644 601 113 13

jigsaw 48674 3415 550 47

All field accesses
and lock acquires

Fewer interference points:
less to reason about!

100

101

102

103

104

 10 20 30 40 50 60 70 80 90 100

Ji
gs

aw
 In

te
rf

er
en

ce
 P

oi
nt

s

Number of Runs

Preemptive Interference
Atomic Interference

Yield Annotations

No Analysis
 Atomic Methods

Yield

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative
correctness ^ Coop/preemptive

equivalence
Preemptive
correctness)

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield
 ...

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

1. Examples of
 coding with Yields Preemptive scheduler

 full performance
 no overhead

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Cooperative Concurrency

2. User study:
 Do Yields help?

3. Dynamic analysis for C-P equivalence
 (detecting missing yields)
4. Static type system
 for verifying C-P equivalence

Type System for Cooperative-Preemptive Equivalence

•Type checker takes as input Java programs with
• traditional synchronization
•yield annotations
• racy variables (if any) are identified

• (other type systems/analyses identify races)

• Well-typed programs are cooperative-preemptive equivalent

Effect Language

• Approach: Compute an effect for each program expression/statement that
summarizes how that computation interact with other threads

• Effects:
• R right-mover lock acquire
• L left-mover lock release
• B both-mover race-free access
• N non-mover racy access
• Y yield

• Lipton’s theory of reduction: Code block is serializable if matches R* [N] L*
• Program is cooperative-preemptive equivalent

• if each thread matches: (R* [N] L* Y)* (R* [N] L*)
• (serializable transactions separated by yields)

Example: TSP algorithm

Object lock;
volatile int shortestPathLength; // lock held for writes

both-mover void searchFrom(Path path) {
 yield;
 if (path.length >= shortestPathLength) return;

 if (path.isComplete()) {
 yield;
 synchronized(lock) {
 if (path.length < shortestPathLength)
 shortestPathLength = path.length;
 }
 } else {
 for (Path c : path.children())
 searchFrom(c);
 }
}

B N

B
Y

R
B B

N B
L

B
B

Y

Match pattern (R* [N] L* Y)* (R* [N] L*)

Conditional Effects

class StringBuffer {

 int count;

 this ? both-mover : non-mover
 public synchronized int length() {
 return count;
 }

 ...
}

B
L

R
B
B

B

B N

CN

CR CL

AB

AN

AR AL

CY

CB

AF

Full Effect Lattice

Interference Points: by the numbers

program LOC No Analysis Method Atomic Yields
j.u.z.Inflater 317 38 0 0
j.u.z.Deflater 381 44 0 0

j.l.StringBuffer 1276 207 9 1
j.l.String 2307 154 5 1

j.i.PrintWriter 534 54 69 26
j.u.Vector 1019 183 19 1

j.u.z.ZipFile 490 81 69 30
sparse 868 231 41 8

tsp 706 358 365 19
elevator 1447 367 134 23

raytracer-fixed 1915 445 96 28
sor-fixed 958 200 137 13

moldyn-fixed 1352 922 651 25
TOTAL 13570 3284 1595 175

All field accesses
and lock acquires

Fewer interference points:
less to reason about!

In non-atomic methods, count
field accesses, lock acquires,
and atomic methods calls

A More Precise Yield Annotation

Object lock;
volatile int shortestPathLength;

compound both-mover void searchFrom(Path path) {
 yield;
 if (path.length >= shortestPathLength) return;

 if (path.isComplete()) {
 yield;
 synchronized(lock) {
 if (path.length < shortestPathLength)
 shortestPathLength = path.length;
 }
 } else {
 for (Path c : path.children())
 searchFrom(c);
 }
}

A More Precise Yield Annotation

Object lock;
volatile int shortestPathLength;

compound both-mover void searchFrom(Path path) {

 if (path.length >= ..shortestPathLength) return;

 if (path.isComplete()) {

 ..synchronized(lock) {
 if (path.length < shortestPathLength)
 shortestPathLength = path.length;
 }
 } else {
 for (Path c : path.children())
 searchFrom#(c);
 }

^ Coop/preemptive
equivalence)

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield // interference
 ...

Summary of Cooperative Concurrency

Cooperative
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative scheduler
 seq. reasoning ok...
 ...except where yields
 highlight interference
x++ an increment op

Preemptive
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Preemptive scheduler
 full performance
 no overhead

Yields mark all
thread interference

Summary

• Thread interference notoriously problematic in multithreaded code

• Ugly semantics, awkward to reason about correctness

• Destructive interference syntactically hidden, often ignored

• Proposed approach

• Document interference with yields (few required, 1-10/KLOC)

• Analysis tools verify cooperative-preemptive equivalence

• Preemptive scheduling for execution: full performance

• Cooperative scheduling for reasoning about correctness

• Sequential reasoning by default

• Yields highlight thread interference, helps detect concurrency bugs

slang.soe.ucsc.edu/cooperability

Figure 2.1: A Comparison of Yield vs. Atomic Specifications

void update_x() {

boolean done = false;
int y = x;

while (!done) {
yield;
int fy = f(y);
acquire(m);
if (x == y) {
x = fy;
done = true;

} else {
y = x;

}
release(m);

}
}

(a) Using yield
annotations

void update_x() {

boolean done = false;
int y = x;

while (!done) {
atomic {

int fy = f(y);
acquire(m);
if (x == y) {
x = fy;
done = true;

} else {
y = x;

}
release(m);

}
}

}

(b) Using one atomic
block annotation

void update_x() {

boolean done;
int y;
atomic {

done = false;
y = x;

}

while (atomic { !done }) {
atomic {

int fy = f(y);
acquire(m);
if (x == y) {

x = fy;
done = true;

} else {
y = x;

}
release(m);

}
}

}

(c) Using three atomic
block annotations

18

