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Controlling Thread Interference #1: Manually

manually identify where 
thread interference

does not occur

Programmer Productivity Heuristic:
assume no interference, use sequential reasoning
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t1 = bal

bal = t1 + 10

t2 = bal

bal = t2 - 10

Thread 1 Thread 2

Controlling Thread Interference #2: Race Freedom

• Race condition: two concurrent 
unsynchronized accesses, at 
least one write

• Strongly correlated with defects

• Race-free programs exhibit 
sequentially consistent 
behavior, even when run on a 
relaxed memory model

• Race freedom by itself is not 
sufficient to prevent 
concurrency bugs

acquire(m)

bal = t1 + 10

release(m)

acquire(m)

t1 = bal

release(m)

acquire(m)

bal = 0

release(m)

Thread 1 Thread 2



atomic copy(...) {
    x = 0;
thread interference?
    while (x < len) {
thread interference?
        tmp = a[x];
thread interference?
        b[x] = tmp;
thread interference?
        x++;
thread interference?
    }
}

atomic copy(...) {
    x = 0;
thread interference?
    while (x < len) {
thread interference?
        tmp = a[x];
thread interference?
        b[x] = tmp;
thread interference?
        x++;
thread interference?
    }
}

Controlling Thread Interference #3: Atomicity

• A method is atomic if it behaves as if it executes serially, 
without interleaved operations of other thread

sequential reasoning ok 
90% of methods atomic

void busyloop(...) {
    acquire(m);
thread interference?
    while (!test()) {
thread interference?
       release(m);
thread interference?
       acquire(m);
thread interference?
       x++;
thread interference?
    }
}

10% of methods non-atomic
local atomic blocks awkward 
full complexity of threading

bimodal semantics
increment or

read-modify-write



Review of Cooperative Multitasking

• Cooperative scheduler performs context switches only 
at yield statements

• Clean semantics
• Sequential reasoning valid by default ...
• ... except where yields highlight thread interference

• Limitation: Uses only a single processor

...

...

...

...
yield

...
yield

...
yield

...

...
yield

...

...
yield



^ Coop/preemptive
equivalence )

≅

Code with sync & yields
   ...
   acquire(m)
   x++
   release(m)
   yield // interference  
   ...

Cooperative Concurrency

Cooperative
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Preemptive
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Preemptive scheduler
 full performance
 no overhead

Yields mark all 
thread interference



void busyloop(...) {
    acquire(m);
thread interference?
    while (!test()) {
thread interference?
       release(m);
thread interference?
       acquire(m);
thread interference?
       x++;
thread interference?
    }
}

void busyloop(...) {
    acquire(m);
 
    while (!test()) {
 
       release(m);
         yield;
       acquire(m);
 
       x++;
 
    }
}

atomic copy(...) {
    x = 0;
thread interference?
    while (x < len) {
thread interference?
        tmp = a[x];
thread interference?
        b[x] = tmp;
thread interference?
        x++;
thread interference?
    }
}

Benefits of Yield over Atomic

atomic is an interface-level spec
(method contains no yields)

x++ always 
an increment

operation 

• Atomic methods are exactly those with no yields

yield is a code-level spec
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    x = 0;
thread interference?
    while (x < len) {
thread interference?
        tmp = a[x];
thread interference?
        b[x] = tmp;
thread interference?
        x++;
thread interference?
    }

Single Thread

x++
Cooperative Concurrency

x++ is an increment

{ int t=x; yield; x=t+1; }
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thread interference?
        tmp = a[x];
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        b[x] = tmp;
thread interference?
        x++;
thread interference?
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    x = 0;
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    while (x < len) {
thread interference?
        tmp = a[x];
thread interference?
        b[x] = tmp;
thread interference?
        x++;
thread interference?
    }

    x = 0;
thread interference?
    while (x < len) {
          yield;
        tmp = a[x];
t         yield;
        b[x] = tmp;
thread interference?
        x++;
thread interference?
    }



Cooperability in the design space

atomic yield
traditional

synchronization
+ analysis

atomicity cooperability

new runtime
systems

transactional 
memory

automatic 
mutual 

exclusion

non-interference specification

po
lic

y

Transactional Memory, Larus & Rajwar, 2007
Automatic mutual exclusion, Isard & Birrell, HOTOS ’07

(this talk)
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Cooperative Concurrency
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Preemptive scheduler
 full performance
 no overhead
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 seq. reasoning ok
 except where yields
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Cooperative Concurrency

2. User study:
    Do Yields help?

1. Examples of
    coding with Yields 

3. Dynamic analysis for C-P equivalence 
    (detecting missing yields)
4. Static type system
    for verifying C-P equivalence



synchronized StringBuffer append(StringBuffer sb){
  ...
  int len = sb.length();

 
  ... // allocate space for len chars
  sb.getChars(0, len, value, index);  
  return this;
}

synchronized void getChars(int, int, char[], int) {...}

synchronized void expandCapacity(int) {...}

synchronized int length() {...}

Example: java.util.StringBuffer.append(...)

  yield;



void update_x() {

  x = slow_f(x);

}

version 1

 Not C-P equivalent:
 No yield between accesses to xCopper / Silver

Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)

x is volatile 
concurrent calls to update_x



void update_x() {
  acquire(m); 
  x = slow_f(x);
  release(m);
}

version 2

Not efficient!
high lock contention 

= low performance

Copper / Silver

Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)



void update_x() {
  int fx = slow_f(x);

  acquire(m); 
  x = fx;
  release(m);
}

version 3

 Not C-P equivalent: 
 No yield between accesses to xCopper / Silver

Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)



void update_x() {
  int fx = slow_f(x);
  yield;
  acquire(m); 
  x = fx;
  release(m);
}

version 4

Not correct: 
Stale value at yieldCopper / Silver

Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)



void update_x() {
  int y = x;
  for (;;) {
    yield;
    int fy = slow_f(y);

    if (x == y) {
      x = fy;
      return;
    } else {
      y = x;
    }

  }
}

version 5

restructure:
test and retry pattern

Not C-P equivalent:
No yield between access to xCopper / Silver

Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)



void update_x() {
  int y = x;
  for (;;) {
    yield;
    int fy = slow_f(y);
    acquire(m);
    if (x == y) {
      x = fy;
      return;
    } else {
      y = x;
    }
    release(m);
  }
}

version 6 Cooperative
correctness^Coop/preemptive

equivalence
Preemptive
correctness)

Copper / Silver
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 full performance
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 except where yields
 highlight interference

Cooperative Concurrency

3. Dynamic analysis for C-P equivalence 
    (detecting missing yields)
4. Static type system
    for verifying C-P equivalence

2. User study:
    Do Yields help?



A Preliminary User Study of Cooperability

•Hypothesis: Yields help code comprehension + defect 
detection?

•Study structure
•Web-based survey, background check on threads
•Between-group design - code with or without yields
•Three code samples, based on real-world bugs
•Task: Identify all bugs



User Evaluation for Cooperability

User Evaluation of Correctness Conditions: A Case Study of Cooperability. Sadowski & Yi, PLATEAU 2010

StringBuffer Concurrency bug Some other bug Didn’t find bug Total

Yields 10 1 1 12
No Yields 1 5 9 15

All Samples Concurrency bug Some other bug Didn’t find bug Total

Yields 30 3 3 36

No Yields 17 6 21 44

- Difference is statistically significant (p < 0.001)
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    coding with Yields Preemptive scheduler

 full performance
 no overhead

Cooperative scheduler
 seq. reasoning ok
 except where yields
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Cooperative Concurrency

4. Static type system
    for verifying C-P equivalence

2. User study:
    Do Yields help?

3. Dynamic analysis for C-P equivalence 
    (detecting missing yields)



RoadRunner Framework for Dyanamic Concurrency Analyses 
[PASTE ’10, github]

Error: ...Java 
Bytecode

T1: acq(m)
T1: read(x)
T2: write(y)
T1: rel(m)

Event 
Stream Back-end

ToolInstrumented 
Bytecode

Standard JVM

Abstract State

Instrumenter              

Monitor

Others: Sofya [KDR 07], CalFuzzer JNPS 09]

RoadRunner



cooperative trace: 
context switch at yields

t:=x

t:=t+1

x:=t

yield

x:=2

yield



preemptive trace: 
context switch anywhere

program is C-P equivalent if any preemptive 
trace is equivalent to some cooperative trace

t:=x

t:=t+1

x:=t

x:=2

yield

yield

Concurrency Control and Recover in Database Systems. Bernstein, Hadzilacos, Goodman, 1987

cooperative trace: 
context switch at yields
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x:=2
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preemptive trace: 
context switch anywhere

program is C-P equivalent if any preemptive 
trace is equivalent to some cooperative trace

t:=x

t:=t+1

x:=t

x:=2

yield

yield

Concurrency Control and Recover in Database Systems. Bernstein, Hadzilacos, Goodman, 1987

cooperative trace: 
context switch at yields

t:=x

t:=t+1

x:=t

yield

x:=2

yield



COPPER detects coop/preemptive violations

Transaction is code 
between two yields

yield;
acquire(m);
while(x>0){
  release(m);
  acquire(m);
}
assert x==0;
release(m);
yield;

 acq m
 wr x 1
 rel m
 ...
 yield

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.

 acq m
 rd x 2
 rel m

 acq m
 rd x 1
 rel m
 ...



COPPER detects cooperability violations

 acq m
 wr x 1
 rel m
 ...
 yield

Happens-before order
• program order
• synchronization order
• communication order

 acq m
 rd x 2
 rel m

 acq m
 rd x 1
 rel m
 ...

Copper / Silver

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.



COPPER detects cooperability violations

 acq m
 wr x 1
 rel m
 ...
 yield

 acq m
 rd x 2
 rel m

 acq m
 rd x 1
 rel m
 ...

Copper / Silver

yield;
acquire(m);
while(x>0){
  release(m);
  acquire(m);
}
assert x==0;
release(m);
yield;

Error: Cycle implies missing yield

 //missing yield!

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.



COPPER detects cooperability violations

 acq m
 wr x 1
 rel m
 ...
 yield

 acq m
 rd x 2
 rel m
 yield

Copper / Silver

yield;
acquire(m);
while(x>0){
  release(m);
  yield;
  acquire(m);
}
assert x==0;
release(m);
yield;

 acq m
 rd x 1
 rel m
 ...

Transactional HB order has no cycles if and only 
if trace is cooperative-preemptive equivalent

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.



Experimental Results for Dynamic Analysis 
In non-atomic methods, count 
field accesses, lock acquires, 
and atomic methods calls

program LLOC No Analysis Atomic Methods Yields
sparse 712 196 49 0

sor 721 134 49 3
series 811 90 31 0
crypt 1083 252 55 0

moldyn 1299 737 64 3
elevator 1447 247 54 3
lufact 1472 242 57 3

raytracer 1862 355 65 3
montecarlo 3557 377 41 1

hedc 6409 305 76 2
mtrt 6460 695 25 1
raja 6863 396 45 0
colt 25644 601 113 13

jigsaw 48674 3415 550 47

All field accesses 
and lock acquires

Fewer interference points: 
less to reason about!
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equivalence
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correctness)

≅

Code with sync & yields
   ...
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   x++
   release(m)
   yield
   ...
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yield
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x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
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1. Examples of
    coding with Yields Preemptive scheduler

 full performance
 no overhead

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Cooperative Concurrency

2. User study:
    Do Yields help?

3. Dynamic analysis for C-P equivalence 
    (detecting missing yields)
4. Static type system
    for verifying C-P equivalence



Type System for Cooperative-Preemptive Equivalence

•Type checker takes as input Java programs with 
• traditional synchronization 
•yield annotations
• racy variables (if any) are identified

• (other type systems/analyses identify races)

•  Well-typed programs are cooperative-preemptive equivalent



Effect Language

• Approach: Compute an effect for each program expression/statement that 
summarizes how that computation interact with other threads

• Effects:
• R       right-mover        lock acquire
• L       left-mover           lock release
• B       both-mover        race-free access
• N       non-mover         racy access
• Y       yield

• Lipton’s theory of reduction: Code block is serializable if matches  R* [N] L*
• Program is cooperative-preemptive equivalent 

• if each thread matches:    (R* [N] L* Y)*  (R* [N] L*)
• (serializable transactions separated by yields)



Example: TSP algorithm

Object lock;
volatile int shortestPathLength; // lock held for writes

both-mover void searchFrom(Path path) {
  yield;
  if (path.length   >= shortestPathLength) return;

  if (path.isComplete()) {
    yield;
    synchronized(lock) {
      if (path.length   < shortestPathLength)
        shortestPathLength  = path.length;
    }
  } else {
    for (Path c : path.children())
      searchFrom(c);
  }
}

B N

B
Y

R
B B

N B
L

B
B

Y

Match pattern   (R* [N] L* Y)*  (R* [N] L*)



Conditional Effects

class StringBuffer {

    int count;

    this ? both-mover : non-mover 
    public synchronized int length() {
        return count;
    }

    ...
}

B
L

R
B
B

B

B N



CN

CR CL
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AN

AR AL

CY

CB

AF

Full Effect Lattice



Interference Points: by the numbers

program LOC No Analysis Method Atomic Yields
j.u.z.Inflater 317 38 0 0
j.u.z.Deflater 381 44 0 0

j.l.StringBuffer 1276 207 9 1
j.l.String 2307 154 5 1

j.i.PrintWriter 534 54 69 26
j.u.Vector 1019 183 19 1

j.u.z.ZipFile 490 81 69 30
sparse 868 231 41 8

tsp 706 358 365 19
elevator 1447 367 134 23

raytracer-fixed 1915 445 96 28
sor-fixed 958 200 137 13

moldyn-fixed 1352 922 651 25
TOTAL 13570 3284 1595 175

All field accesses 
and lock acquires

Fewer interference points: 
less to reason about!

In non-atomic methods, count 
field accesses, lock acquires, 
and atomic methods calls



A More Precise Yield Annotation

Object lock;
volatile int shortestPathLength;

compound both-mover void searchFrom(Path path) {
  yield;
  if (path.length >= shortestPathLength) return;

  if (path.isComplete()) {
    yield;
    synchronized(lock) {
      if (path.length < shortestPathLength)
        shortestPathLength = path.length;
    }
  } else {
    for (Path c : path.children())
      searchFrom(c);
  }
}



A More Precise Yield Annotation

Object lock;
volatile int shortestPathLength;

compound both-mover void searchFrom(Path path) {

  if (path.length >= ..shortestPathLength) return;

  if (path.isComplete()) {

    ..synchronized(lock) {
      if (path.length < shortestPathLength)
        shortestPathLength = path.length;
    }
  } else {
    for (Path c : path.children())
      searchFrom#(c);
  }



^ Coop/preemptive
equivalence )

≅

Code with sync & yields
   ...
   acquire(m)
   x++
   release(m)
   yield   //  interference
   ...

Summary of Cooperative Concurrency

Cooperative
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative scheduler
 seq. reasoning ok...
 ...except where yields
 highlight interference
x++ an increment op

Preemptive
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Preemptive scheduler
 full performance
 no overhead

Yields mark all 
thread interference



Summary

• Thread interference notoriously problematic in multithreaded code

• Ugly semantics, awkward to reason about correctness

• Destructive interference syntactically hidden, often ignored

• Proposed approach

• Document interference with yields (few required, 1-10/KLOC)

• Analysis tools verify cooperative-preemptive equivalence

• Preemptive scheduling for execution: full performance

• Cooperative scheduling for reasoning about correctness

• Sequential reasoning by default

• Yields highlight thread interference, helps detect concurrency bugs



slang.soe.ucsc.edu/cooperability



Figure 2.1: A Comparison of Yield vs. Atomic Specifications

void update_x() {

boolean done = false;
int y = x;

while ( !done ) {
yield;
int fy = f(y);
acquire(m);
if (x == y) {
x = fy;
done = true;

} else {
y = x;

}
release(m);

}
}

(a) Using yield
annotations

void update_x() {

boolean done = false;
int y = x;

while ( !done ) {
atomic {

int fy = f(y);
acquire(m);
if (x == y) {
x = fy;
done = true;

} else {
y = x;

}
release(m);

}
}

}

(b) Using one atomic
block annotation

void update_x() {

boolean done;
int y;
atomic {

done = false;
y = x;

}

while ( atomic { !done } ) {
atomic {

int fy = f(y);
acquire(m);
if (x == y) {

x = fy;
done = true;

} else {
y = x;

}
release(m);

}
}

}

(c) Using three atomic
block annotations

18


