Cooperative Concurrency
for a Multicore World

Cormac Flanagan Stephen Freund
Jaeheon Yi, Caitlin Sadowski Williams College

UCSC

Cooperative Concurrency
for a Multicore World

Cormac Flanagan Stephen Freund
Jaeheon Yi, Caitlin Sadowski Williams College

UCSC

Multiple Threads Single Thread

X++
IS a hon-atomic X + +

read-modify-write

x = 0; X = 0;
thread interference?
while (x < len) { while (x < len) {
thread interference?
tmp = a[x]; tmp = a[x];
thread interference?
b[x] = tmp; b[x] = tmp;
thread interference?
X++; X++;
thread interference?
} }

Controlling Thread Interference #1: Manually

X =0; manually identify where X =0;
thread interference? N d interf
while (x < len) { threaa interference while (x < len) {
thread interference? does not occur
tmp = a[x]; , tmp = a[x];
thread interference?
b[x] = tmp; b[x] = tmp;
thread interference?
X++, X++;
thread interference? }
}

Programmer Productivity Heuristic:
assume no interference, use sequential reasoning

Controlling Thread Interference #2: Race Freedom

¢ Race condition: two concurrent
unsynchronized accesses, at
least one write

e Strongly correlated with defects

e Race-free programs exhibit
sequentially consistent
behavior, even when run on a
relaxed memory model

e Race freedom by itself is not
sufficient to prevent
concurrency bugs

Thread 1

acquire (m)

tl = bal

release (m)

Thread 2

acquire (m)

bal =

release (m)

acquire (m)

bal = t1 + 10

release (m)

Controlling Thread Interference #3: Atomicity

* A method is atomic if it behaves as If it executes serially,
without interleaved operations of other thread

atomic copy(...) {
X = 0;

while (x < len) {
tmp = a[x];

b[x] = tmp;

bimodal semantics

}

}

increment or
read-modify-write

void busyloop(...) {
acquire(m);

while (Itest()) {
release(m);

acquire(m);

}
}

10% of methods non-atomic
local atomic blocks awkward
full complexity of threading

sequential reasoning ok
90% of methods atomic

Review of Cooperative Multitasking

e Cooperative scheduler performs context switches only
at yield statements

yield] e Clean semantics
yi.e.:'ld e Sequential reasoning valid by default ...
- e ... except where yields highlight thread interference
yield
—
Id e Limitation: Uses only a single processor
yie
<«

yi.e"Id

Cooperative Concurrency

Cooperative scheduler
seq. reasoning ok
except where yields
highlight interference

acquire(m)
x=0
release(m)
yield

yield

barrier(b)
yield

acquire(m)
X++
release(m)
yield

Cooperative
correctness

Code with sync & yields

acquire(m)
X++
release(m)

yield // interference

Yields mark all
thread interference

\ /

Coop/ prveemptive
equivalence

Preemptive scheduler
full performance
no overhead

acquire(m)
x=0
release(m)
yield

e barrier(b)
yield

acquire(m)
X++
release(m)
yield

Preemptive
correctness

Benefits of Yield over Atomic

e Atomic methods are exactly those with no yields

atomic copy(...) {

void busyloop(...) {
acquire(m);

while (Itest()) {

release(m);
yield;
acquire(m);

x =0;
while (x < len) {
tmp = a[x];
b[x] = tmp;
X++ always
an increment
operation

}

}

atomic is an interface-level spec
(method contains no yields)

}
)

yield is a code-level spec

Multiple Threads Single Thread

X++
IS a hon-atomic X + +

read-modify-write

x = 0; X = 0;
thread interference?
while (x < len) { while (x < len) {
thread interference?
tmp = a[x]; tmp = a[x];
thread interference?
b[x] = tmp; b[x] = tmp;
thread interference?
X++; X++;
thread interference?
} }

Cooperative Concurrency

X++ IS ah Increment

{int t=x; yield; x=t+1; }

x = 0;

while (x < len) {
yield;
tmp = a[x];
yield;
b[x] = tmp;

X++;

Single Thread

X++

X = 0;

while (x < len) {
tmp = a[x];
b[x] = tmp;

X++;

Cooperability in the design space

non-interference specification

atomic yield
traditional
_ | synchronization atomicity |cooperabllity
S| + analysis (this talk)
O
Q - . automatic
Nnew runtime | transactional utua
systems memory exclusion

Transactional Memory, Larus & Rajwar, 2007
Automatic mutual exclusion, Isard & Birrell, HOTOS ’07

Cooperative Concurrency

Cooperative scheduler
seq. reasoning ok
except where yields
highlight interference

acquire(m)
x=0
release(m)
yield

yield

barrier(b)
yield

acquire(m)
X++
release(m)
yield

Cooperative
correctness

Code with sync & yields

acquire(m)
X++
release(m)

Preemptive scheduler

yield

>

Coop/preemptive
equivalence

full performance
no overhead

acquire(m)
x=0
release(m)
yield

e barrier(b)
yield

acquire(m)
X++
release(m)
yield

Preemptive
correctness

Cooperative Concurrency

ode with svnc & vield

0 |1.Examples of &
Cooperative scheduler COdlﬂQ W|th YleldS Preemptive scheduler
Vield

seq. reasoning ok full performance
except where yields no overhead

3. Dynamic analysis for C-P equiva
(detecting missing yields)

Cooperati|4. Static type system Preemptive
correctnel for verifying C-P equivalencelorrectness

—xample: java.util.StringBuffer.append(...)

synchronized StringBuffer append(StringBuffer sb){

int len = sb.length();
yield;

. // allocate space for len chars
sb.getChars(@, len, value, index);
return this;

}

synchronized void getChars(int, int, charl[], int) {...

synchronized void expandCapacity(int) {...}

synchronized int length() {...}

void update x() A

x = slow _f(x);

version 1

Coop/preemptive
equivalence

X 1S volatile
concurrent calls to update_x

Not C-P equivalent:
No yield between accesses to X

A

Cooperative i Preemptive
correctness correctness

void update x() A
acquire(m);
x = slow _f(x);
release(m);

¥

Not efficient!

high lock contention
= low performance

ppppppppppppp

" Coop/preemptive /\ Cooperative Preemptive
VerSIOn 2 equivalence correctness i correctness

void update_x() {
int fx = slow_f(x);

acquire(m);
x = fx;
release(m);

}

Not C-P equivalent:
No yield between accesses to X

X

" Coop/preemptive /\ Cooperative Preemptive
VerSIOn 3 equivalence correctness i correctness

void update x() A
int fx = slow f(x);
yield;
acquire(m);
x = fx;
release(m);

}

Not correct:
Stale value at yield

QLN
P o

4 :_.-\ g
Vab . N
> W
» &
_opper / Silve \ - il

" Coop/preemptive /\ Cooperative Preemptive
VerSIOn 4 equivalence correctness i correctness

void update x() { restructure:

int y = x;
for (::) 1 test and retry pattern

yield;
int fy = slow_f(y);

if (x == y) {
x = Ty;
return;

L else {

y = %

~ Not C-P equivalent:

\ No yield between access to X

" Coop/preemptive /\ Cooperative Preemptive
VerSIOn 5 equivalence correctness i correctness

void update x() A
int y = x;
for (;;) {
yield;
int fy = slow_f(y);
acquire(m);
if (x == y) {
x = ty;
return;
} else {

y = %
}

release(m);

" Coop/preemptive Cooperative Preemptive
VerSIOn 6 equivalencelv /\ correctness i "

correctness

Cooperative Concurrency

ode with NC & vield

1. Eamples of
coding with Yields

Preemptive scheduler
full performance
no overhead

Cooperative scheduler
seq. reasoning ok
except where yields

3. Dynamic analysis for C-P equiva
(detecting missing yields)

Cooperatil4. Static type system reemptive
correctnel for verifying C-P equivalencelorrectness

A Preliminary User Study of Cooperability

* Hypothesis: Yields help code comprehension + defect
detection?

e Study structure
¢ \Web-based survey, background check on threads
e Between-group design - code with or without yields
® [hree code samples, based on real-world bugs
e Task: Identify all bugs

User Evaluation for Cooperability

All Samples| Concurrency bug | Some other bug | Didn’t find bug | Total

Yields 30 3 3 36
No Yields 17 6 27 44

- Difference is statistically significant (p < 0.001)

User Evaluation of Correctness Conditions: A Case Study of Cooperability. Sadowski & Yi, PLATEAU 2010

Cooperative Concurrency

ode with svnc & vielo

1. Examples of
coding with Yields

Preemptive scheduler
full performance
no overhead

Cooperative scheduler
seq. reasoning ok
except where yields

3. Dynamic analysis for C-P equiva
(detecting missing yields)

Cooperatil4. Static type system reemptive
correctnel for verifying C-P equivalencelorrectness

RoadRunner Framework for Dyanamic Concurrency Analyses
[PASTE 10, github]

4 N
Standard JVM
RoadRunner
[Tool API
I”STrumenTQd :l MoniT< abstract class Tool {
void create (NewThreadEvent e)
ByTecode void acquire (AcquireEvent e)
\/ f void release (ReleaseEvent e)
AbSTr'ac’r void access (AccessEvent e)
Tif Eg }
E class Copper extends Tool {
[Instrumenter] K - handlers for synchronization / access events
- data to store about program state
}

- Tif JI' J

Java El"r'or'l

Bytecode
AR

Others: Sofya [KDR 07], CalFuzzer JNPS Q9]

cooperative trace:

context switch at yields
T:=X
T:=t+1
yield

Xi=2

ylield

cooperative trace: preemptive trace:

context switch at yields context switch anywhere
T:=X T:=X
t:=t+1 X:=2
yield t:=t+1
X =2 yield
yield yield
X:=1 X:=1

orogram is C-P equivalent if any preemptive
trace Is equivalent to some cooperative trace

Concurrency Control and Recover in Database Systems. Bernstein, Hadzilacos, Goodman, 1987

cooperative trace: preemptive trace:

context switch at yields context switch anywhere
T:=X T:=X
t:=t+1 X:=2
yield t:=t+1
X =2 yield
yield yield
X:=1 X:=1

orogram is C-P equivalent if any preemptive
trace Is equivalent to some cooperative trace

Concurrency Control and Recover in Database Systems. Bernstein, Hadzilacos, Goodman, 1987

COPPER detects coop/preemptive violations

Transaction is code
between two vields

' acq m
yield;
acquire(m); Eglxmz
while(x>0){ —
release(m); o
\ acquire(m); o
assert X==@; va m e
release(m); rd x 1 yield
yield; rel m

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.

> %N
COPPER detects cooperability violations %

Happens-before order

e program order

® synchronizal

lon order

® communicas

lon order

acq m
rd x 2\
rel m—

acq m<
rd x 14
rel m

S
/

~acq m
“wr X 1
_rel m

yield

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.

S\
COPPER detects cooperability violations %

. acq m

yield;

acquire(m); Eglme\

while(x>0){ \\::*T:*acq m
release(m); //missing yield! Swro X 1

\ acquire(m); “rel m

assert x==0; acq mk/;77éi P

release(m); e X L L

! rel m

yield;

Error: Cycle implies missing yield

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.

R
COPPER detects cooperability violations %

Transactional HB order has no cycles if and only
if trace is cooperative-preemptive equivalent

| acq m
yleld; rd X 2~
acquire(m); ol [ilxt:
while(x>0){ | yield >acq m
release(m); S se 7
yleld; Crel m
acquire(m); - mk/;77zf e
’ rd x 1- yield

assert x==0;
release(m):
yield;

rel m

Cooperative Reasoning for Preemptive Execution. Yi Sadowski, Flanagan, PPOPP’11.

-

All field accesses
and lock acquires

3esults

(]

In non-atomic methods, count
field accesses, lock acquires,
\and atomic methods calls

N \ \' /
program LLOC No Analysis |Atomic Methods Yields
sparse 712 196 49 0
sor 721 134 49 3
series 311 90 31 0
Crypt 1083 252 55 0
moldyn 1299 737 64 3
elevator 1447 247 54 3
lufact 1472 242 57 3
raytracer 1862 355 65 3
montecarlo 3557 377 , N
hedc 8409 305 Fewer interference points:]
mtrt 6460 695 less to reason about!
raja 6863 396 #7 | ™, .45 T . 0

[E—
-
~

[a—
o
(V)

||||W|||

[—
-
\9]

Jigsaw Interference Points
>

[—
-
-

No Analysis
Atomic Methods

Yield ——
| | | | | | |

[
-
(\
-

30 40 50 60 70 80 90 100
Number of Runs

Cooperative Concurrency

ode with svnc & vielo

1. Examples of
coding with Yields

Preemptive scheduler
full performance
no overhead

Cooperative scheduler
seq. reasoning ok
except where yields

3. Dynamic analysis for C-P equiva
(detecting missing yields)

Cooperati|4. Static type system Preemptive
correctnel for verifying C-P equivalencelorrectness

Type System for Cooperative-Preemptive Equivalence

¢ Type checker takes as input Java programs with
e traditional synchronization
e yield annotations
e racy variables (if any) are identified
e (other type systems/analyses identify races)

e Well-typed programs are cooperative-preemptive equivalent

Effect Language

e Approach: Compute an effect for each program expression/statement that
summarizes how that computation interact with other threads

e Effects:

e R right-mover lock acquire

o | left-mover lock release

B both-mover race-free access
e N non-mover racy access

oY yield

e | ipton’s theory of reduction: Code block is serializable if matches R* [N] L*
e Program is cooperative-preemptive equivalent

e if each thread matches: (R* [N] L* Y)* (R* [N] L*)

¢ (serializable transactions separated by vields)

Example: TSP algorithm

Object lock;
volatile int shortestPathLength; // lock held for writes

both-mo void searchFrom(Path path) {
yielrﬁ
if (pa .lengtl. >= shortestPathLeng. return;
if (pat Complete
yield

synchronlzed
if (path.lengt
Match pattern (R* [N] L*Y)* (R* [N] L%

ortestPathL

i’

shortestPathLeng path. leng
¥
} else {
for (Path c : th.children().
searchFrom(ci

Conditional Effects

class StringBuffer {
int count;

this ? both—-mover : non—-mover

public synchronized int length() {
return count;
I3

} Bl N

S
Full Effect Lattice /\

//\

ATB/ &

AF

-

"

a ¢ :
| In non-atomic methods, count
Allield accesses | oints: field accesses, lock acquires,
and lock acquires " land atomic methods calls
~ \/
program LOC No Analysis |Method Atomic| Yields
j.u.z.Inflater 317 38 0 0
j.u.z.Deflater 381 44 0 0
j.l.StringBuffer 1276 207 9 1
j..String 2307 154 5 1
j.1.PrintWriter 534 54 69 20
J.u.Vector 1019 183 19 1
j.u.z.ZipFile 490 31 69 30
sparse 868 231 41 3
|t8pt 1740467 [Fewer interference points:]
elevalor
r n !
raytracer-fixed 1915 less to reason about
sor-fixed 9568 200 137 13

A More Precise Yield Annotation

Object lock;
volatile int shortestPathLength;

compound both-mover void searchFrom(Path path) {
yield;
if (path.length >= shortestPathLength) return;

if (path.isComplete()) A
yield;
synchronized(lock) {
if (path.length < shortestPathLength)
shortestPathLength = path. length;
I3

} else {
for (Path c : path.children())
searchFrom(c);

A More Precise Yield Annotation

Object lock;
volatile int shortestPathLength;

compound both-mover void searchFrom(Path path) {

if (path.length >= ..shortestPathLength) return;

Wiy

if (path.isComplete()) {

..synchronized(lock) {

"™ f (path.length < shortestPathLength)
shortestPathLength = path. length;

Iy

} else {
for (Path ¢ : path.children())
searchFrom#(c) ;

Summary of Cooperative Concurrency

>~

Cooperative scheduler

seq. reasoning ok...
...except where yields
highlight interference
X++ an increment op

acquire(m)
x=0
release(m)
yield

yield

barrier(b)
yield

acquire(m)
X++
release(m)
yield

Cooperative
correctness

Code with sync & yields

acquire(m)
X++
release(m)

yield // interference

™~

>

Yields mark all
thread interference/

\ /

Coop/prveemptive
equivalence

Preemptive scheduler

full performance
no overhead

acquire(m)
x=0
release(m)
yield

e barrier(b)
yield

acquire(m)
X++
release(m)
yield

Preemptive
correctness

Summary

e Thread interference notoriously problematic in multithreaded code
e Ugly semantics, awkward to reason about correctness

e Destructive interference syntactically hidden, often ignored

e Proposed approach
e Document interference with yields (few required, 1-10/KLOC)
e Analysis tools verify cooperative-preemptive equivalence
* Preemptive scheduling for execution: full performance
e Cooperative scheduling for reasoning about correctness
e Sequential reasoning by default

e Yields highlight thread interference, helps detect concurrency bugs

slang.soe.ucsc.edu/cooperability

void update_x() { void update_x() { void update_x() {
boolean done = false; boolean done = false; boolean done;
int y = x; int y = x; int y;
atomic {
done = false;
y = %5
+
while (!'done) { while (!'done) { while (atomic { 'done }) {
yield; atomic { atomic {
int fy = £(y); int fy = £(y); int fy = f(y);
acquire (m) ; acquire(m) ; acquire (m) ;
if (x == y) { if (x == y) { if (x == y) {
x = fy;, x = fy; x = fy;,
done = true; done = true; done = true;
} else { } else { } else {
y = %5 y = % y = %5
+ + +
release(m) ; release(m) ; release(m) ;
+ }
} + +
+ + }
(a) Using yield (b) Using one atomic (c¢) Using three atomic
annotations block annotation block annotations

