Cartesian Partial-Order Reduction

Guy Guetd, Cormac Flanag&nEran Yahav, and Mooly SagiV

! Tel Aviv University, {guyguet a, msagi v}@ost . tau. ac. i |
2 University of California at Santa Cruzor mac @oe. ucsc. edu
3 IBM T.J. Watson Research Centeyahav@s. i bm com

Abstract. Verifying concurrent programs is challenging since the hamof
thread interleavings that need to be explored can be huge fevemoderate
programs. We present @artesian semanticthat reduces the amount of non-
determinism in concurrent programs by delaying unnecgssantext switches.
Using this semantics, we construct a novel dynamic paotidér reduction al-
gorithm. We have implemented our algorithm and evaluate inemall set of
benchmarks. Our preliminary experimental results showgaifitant potential
saving in the number of explored states and transitions.

1 Introduction

This paper addresses the problem of proving the correctifessoncurrent program,
i.e,, of showing that all possible program traces satisfy certairrectness properties.
We define acartesianpartial order reduction technique that allows to safelysider
only a subset of these program traces. Our technique canrhbied with existing
finite state model checkers to yield new algorithms for fisii@te systems. It can also
be combined with abstract interpretation [4] to yield newservative algorithms for
infinite systems. In both cases we expect to obtain speeditipsuvsacrificing sound-
ness or completeness. We have implemented a model chedast ba cartesian partial
order reduction, and provide preliminary experimentalltssthat show a significant
reduction in the number of states and transitions explddenl.experiments also com-
pare the performance of our algorithm to the partial ordéuction techniques of SPIN
[12], and the recent technique of [6]. Compared to thesenigdles, cartesian partial
order reduction saves more states and transitions on most @xample programs.

1.1 Partial Order Reduction

Partial order reduction techniques [8, 13, 16] combat stgpdosion by only exploring a
representative subset of all possible program tracesnargé however, verifying that a
subset of all traces is representative may be as hard aagtié underlying verification
problem. Therefore, existing partial order reduction teghes mostly focus on two
special cases: “sleep sets” [8, pp. 75] and “persistent §&tpp. 41]. In particular,
a transition is established as persistent by checking $guatential collisions with an
infinite future of another thread. Such collisions are tiadally detected via static
analysis (e.g., [5]), which may yield coarse results for ptoated or pointer-rich code.
Alternatively, dynamic partial order reduction [6] infgusrsistent sets dynamically as

part of a stateless search, but is applicable only to cyelesystems. The algorithm of
[5] also infers persistent sets dynamically, but only foetd-local and lock-protected
data.

1.2 Main Results

In this paper, we present a new approach for partial ordaratézh. This approach
identifies and exploits a different kind of redundancy thitimez sleep sets or persistent
sets. The strength of our approach stems from the fact thékeuin persistent sets,
where a transition must be checked for conflicts witlirdimite future of another thread,
we only inspect a finite future for collisions, and guarargatety by exploring both
possible extensions at any collision point. In Sec. 4.1, kgs\sthat, on some examples,
this approach yields improvements even over optimal pergisets. This result is also
supported by our preliminary empirical study in Sec. 7.

Our technique is presented as new
operational (or execution) semantics that
can be applied to both finite and infinite
systems. In particular, it can be combinedN=12;
with abstract interpretation in order to bool ean A[N, N ;
conservatively handle infinite traces andRoPot (int x,int y)

int dirX =1, dirY = 1;
infinite state systems. whi | e(true)

R Al x, y] =f al se;
A motivating example The concurrent X += dirX. y += diry;

program of Fig. 1 simulates an arenawith ;¢ (x=N-1 or x=0) dirXe=(-1):
two robots wr_uch move in different paths. f(y=N-1 or y=0) dirYs=(-1):
Each robot is represented by a thread assert (A[x,y] =(x=9 or x=2));
that calculates and updates its position Al x, y] =true;

in an infinite loop. The program verifies Mai n()

that the robots can meet only at the 9th newt hread Robot (0, 0);

and the 2nd rows by using an assert in- newt hr ead Robot (4, 0);

struction (identical to the Java assert). Al-

though this program is quite simple, ItSFig.l.Two threads implementing robots.
state space is relatively large. An attempt
to reduce the state space by existing par-
tial order reduction methods is problem-
atic because:

1. Most partial order reduction methods (e.g., persistetg)sare based on a static
dependence analysis. Such analyses will fail to estaltishrnidependence of the
transitions in this program, and therefore yield a poor oida of the state space.

2. Dynamic partial order reduction [6] requires a stategessch, and so cannot han-
dle examples such as this one, where there are cycles irdtieesgiace.

3. The approach of [5] provides limited benefit on this benahiabecause it does not
contain much thread-local or lock-protected data.

In Sec. 7, we show that our approach saves close to 73% ofahsitions that need to
be explored for this program.

The contributions of this paper can be summarized as follows

— We present a novelartesian semantidhat reduces the nondeterminism in concur-
rent programs.

— Based on this semantics, we derive a corresponcinigsian partial order reduc-
tion algorithm that can be used to improve both finite-state metetkers and
infinite-state abstract interpreters. Our algorithm idfess dependencies dynami-
cally, avoiding the inherentimprecision of static depemmeanalyses. It also over-
comes the cycle-free restriction of [6], and so is appliedablmore programs, and it
also behaves better on acyclic transition systems withiptelpaths into the same
state.

— We present preliminary experimental results showing thhaapproach can lead to
significant savings in the number of explored states anditians. We also show
that our approach is beneficial in cases where traditiondigb@rder reduction
methods are unable to reduce the space.

The rest of this paper is organized as follows. Sec. 2 pravaaienformal overview
of our method. Sec. 3 includes basic definitions and notstiSac. 4 defines our carte-
sian semantics and shows that it is observationally ecgrivéd the standard semantics.
Sec. 5 and Sec. 6 realize this semantics as a model checliogtlain. Sec. 7 reports
initial empirical results on the behavior of this model ckiag algorithm. Sec. 8 de-
scribes related work and Sec. 9 concludes. Appendix A dessthe benchmarks from
Sec. 7.

2 Overview

This section provides an overview of our approach for
the simple concurrent program shown in Fig. 2. The

two threads in this program share two variableand | Thread 1:] Thread 2:
y, and all variables are initially zero. 0: z:=810: q:=38

Whereas traditional model checking would exd: x := 1 |11 priv :=y
plore all possible interleavings of these two thread3; z := 42)20 q @ = 42
our approach explores only a representative subseflof ¥ - = 7 |31 priv :=x
these interleavings, based on the notiomependent 4 W = Z |4: nop

transitions For thi_s program, there are two pairs Oﬁig.z. Two threads using shared
dependent transitions: the statement 1 (of thread
1) is dependent witlpriv := x (of thread 2); sim-
ilarly, y := 7 is dependent wittpriv :=y. (In this
simple example, a static notion of dependence is suffici@mt approach detects depen-
dencies dynamically, however, thus overcoming the inttereprecision of statically
identified dependencies.)

The key idea of our approach is to find, for each explored statgequence of
transitions for each thread such that only ki transitions in these two sequences are
allowed to be dependent (i.e., every pair of transitiongiothan the last two transitions
must be independent). We refer to the two sequences ofticarsfound for a state as
acartesian vectofor that state.

variablesx andy .

For the program’s initial state, a suitable cartesian westo
Ty:z:=8; x:=1 T>:Q:=8; priv:=y; q:=42; priv:=x

sincez: =8 is independent of all transitions if,’s sequence, and: =1 is indepen-
dent of all transitions ir{y’s sequence except the last. The last transitions1 and
pri v: =x may be (and indeed are) dependent.

After finding the two sequences, we nondeterministicalbkpine of them, exe-
cute that sequence in its entirety (without a context swjtahd then continue explo-
ration from that resulting state. For example, suppose seditecute the sequente:

z: =8; x: =1.Atthe resultant state, a suitable cartesian vector is:

Ty:z:=42; y: =7 T>:Q:=8; priv:=y

since only the last pair of transitions are dependent. Agaa nondeterministically
pick one of these sequences and execute it entirely, wittantext switches.

By proceeding in this manner, we eventually explore all fmsrderings of the
dependent transitions in this program. Fig. 3 shows how ppraach explores a repre-
sentative subset of all possible traces of this program.

w:=z, q:=8, priv:=y, q:=42, priv:=X, nop
2:=42, y:=7 <
q:=8, priv:=y, q:=42, priv:=x, nop, w:=z
z:=8, x:=1
q:=42, priv:i=x, nop, z:=42, y:=7, w:=z
q:=8, privizy <
€ 2:=42, y:=7, W:=z, q:=42, privi=x, nop

nop — z:=8, x:=1,z:=42,)y:=7,w:=z

q:=8, priv:=y, q:=42, privi=x <
z:=8, x:=1,2:=42,y:=7,w:=z —— nop

Fig. 3. Exploration of representative traces of the example pragrfFig. 2.

As an aside, it is worth noting that the statement8 in 7} is a persistent tran-
sition, as it has no future collisions with,. In principle, this could have allowed ex-
ploring only representative traces that begin with=8 as their first step. Establishing
thatz: =8 is indeed a persistent transition, however, requires tigpeof the future
execution ofl; (which in general, may be infinite). In some cases, the pgersig of
a transition can be established by a preceding static depeedanalysis phase. Like
methods based on persistent sets, our approach can alda frenesuch static depen-
dence information when it exists. Unlike =8, the statement: =1 is not persistent,
as it has a future collision witpr i v: =x in T, (as long agr i v: =x is not executed).

3 Basic definitions

We now formalize the key ideas outlined above in the contést concurrent system
composed of a finite s@threadsof threads. The threads communicate by performing
atomic operations on communication objects (e.g. sharedblas).

A stateof the concurrent system consists of tteealStateof each thread (the values
for all the thread’s private variables), and of thkearedStatévalues for all the commu-
nication objects). That isState = SharedStatex LocalStatesvherelLocalStates=
Threads— LocalState Foris € LocalStateswe writels[T' — [] to denote the map
that is identical tds except that it map¥’ to the local staté.

A transitionmoves the system from one state to a subsequent state, loymirg
an atomic operation of a chosen thread. The transitigrof thread T for local statéis
defined via a total functiorti ; : SharedState- LocalStatex SharedStateA transition
tr; € T isenabledn a states = (g, ls) (whereg € SharedStatand/s € LocalStatep
if | =1s(T).If t =ty is enabled ins = (g,ls) andt(g) = (¢’,!’), then we say the
execution oft from s produces a unique successor state- (¢’, [s[T +— [']), written
exe€s,t) = s’ ors = s’. We say thaty is reachable from s in the standard semantics
if s=q.

Notice that in a given state every thread has exactly onded&iansition, therefore
no thread can be blocked. This is not restrictive, as blagkintermination of a thread
can be modeled by a self loop. Letdenote the set of all transitions of the system
7 = {tr|T € Threads! € LocalStaté.

A traceis an infinite sequence = si,t1, s9,%2, ... such that for every € N,
execs;, t;) = s;+1. A trace prefixs a nonempty (possibly infinite) prefix of a trace, that
does not end with a transition. We denote the set of all traefixqes (of the considered
concurrent system) bigrefix A legal prefix of thread Ts a trace prefix that has at least
one transition and all its transitions are executed by thilea

For A € Prefix we say that € A if ¢ is a transition inA. We uselasttran(A) to
denote the last transition af, or L if A is infinite. We denote the first and last states of
A by first(A) andlast(A) respectively. IfA is infinite thenlast(A)=_1. We denote the
set of states iml by stategA).

Our cartesian partial order reduction technique is basati@notion of transitions
beingindependentwvhich essentially means that the order in which theseitians are
executed does not matter.

Definition 1 (Independence)We say that transitionsandt’ of different threads are
independenif * for everys € State ¢,/ € enableds) = exedexe¢s,t),t') =
exec¢exegs,t'),t). If two transitions of different threadsandt’ are independenthen
we writet || ¢, otherwise we write || t'.

4 Cartesian Partial Order Reduction

The standard semantics of multithreaded programs nomdigtistically chooses a thread
for scheduling right after every transition, but this dego# nondeterminism results in
state space explosion. In this section, we present a nonlatdcartesiansemantics
that avoids many context switches, while preserving botindoess and completeness.

! Sometimes similar definitions require that independemtsitins are not disable each other,
this is not necessary because two transitions from difféheeads can never disable each other
in the presented concurrent system.

As outlined in Section 2, our cartesian semantics is defingdrims ofcartesian
vectors Essentially, a cartesian vector (CV) for a state descrbssguence of transi-
tions that each thread can perform without context swit¢toea that state.

Definition 2 (Cartesian Vector). In a concurrent system with threads of control, a
vector (pi,...,pn) € PrefiX" is acartesian vector from a staseif for everyT;, T; €
Threads the following holds:

1. first(p;) = s;
2. p; is alegal prefix of thread’;
3. Vtep,t' epj:tftt = t=lasttran(p;) At' = lasttran(p;).

Intuitively, this definition implies that if two prefixes ane the same cartesian vec-
tor, then only their last transitions may depend on eachroiwe that each state may
have multiple CVs. In particular, every state has at leastrtimimal C\, which contains
exactly one transition for each thread, but many statesalgitt admit larger CVs.

Example 1.For the program of Fig. 2, consider the two trace prefixes ftioeninitial
state:p; is the sequence: =8; x: =1; z:=42 (ofthread 1) ang- is the sequence
g: =8; priv: =y (of thread 2). Each prefix accesses different variablesetbee the
vector(p, p2) is a cartesian vector for the initial state.

Now consider the longer prefi{: z: =8; x:=1; z:=42; y:=7.Inthis case
(p},p2) is still a cartesian vector because only the last transitare dependent.

To generate a cartesian vector for any explored state, werasthe existence of
an cartesian functionp: State — PrefiX' such that, for every € State ¢(s) is a
cartesian vector from s. Every state space has at leastitiimal cartesian function
which simply returns the minimal CV for each state (see $adi). Section 5 describes
an algorithm that implements a better cartesian function.

Given a cartesian functiop, we can build aa cartesian semantidhat uses) as
a guide for execution. The intuition behind the cartesianatics is as follows: when
the cartesian semantics starts the execution from a statlects a prefix from the
vectorg(s) and executes the transitions@fWhen the semantics reacHast(o) (the
last state ob) it starts the procedure again frdast(o). If o is infinite it continues to
go over the states af forever.

The cartesian semantics generate@hy formalized as two binary relations—
and=4 on states, where— relates final states at the end of prefixes and is transi-
tively closed, and=-, extends—; to also include intermediate states.

Definition 3. We define the binary relations—, and=-4 on State with respect to a
cartesian functiorp inductively in Fig. 4.

An important property of cartesian semantics is descrilyetié following theorem,
which says that the set of local states is identical for th@dard semantics and the
cartesian semantics. Consequently, if a thread sees diwiotd a local safety property
(e.g., by using an assert instruction as in Java), then tine tlaread will see the same
violation under the cartesian semantics. (The proof ofgthigerty appears in [9].)

§ —¢ S reflexivity
s —¢ 8 r € ¢(s): s’ = last(r) basis

s _)¢ 8/ 8/ —>¢ 8//

Py transitivity
¢ S

S =>4 S reflexivity

s=>¢ s dr € ¢(s): s’ € stategr) basis

s—p 8 &=y "
s =>4 s"

pseudo-transitivity
Fig. 4. Inference rules for a cartesian semantics.

Theorem 1. For every cartesian functiom, if s = (g,1s[T + []) then there exist
¢’ € SharedState antd’ € LocalStates such that=4 (¢’, ls'[T" — [])

The situation with global properties is somewhat more caxplo illustrate this
situation, consider again the program of Fig. 2, for whichcaa build a cartesian se-
mantics with the following cartesian vector from the irlisgate:7;: z: =8; x: =1;
z:=42, Ty: q:=8; priv:=y; Qq:=42.This cartesian semantics will never reach
a state withz = 8 andq = 8. Therefore, the global propertihere is a state in which
z=8 andq=8" cannot be directly proven by using the cartesian semaritistead, we
can convert this global property into a local property byaducing a dummy thread
that merely observes the variables involved in the prop@mry, a thread that reads
andq in an infinite loop), and then use the cartesian semanticerify\this localized
version of the original global property.

4.1 Cartesian semantics versus an Optimal Persistent Settgarithm

To illustrate the relation between the cartesian semaatidspersistent sets, consider
the example program shown in Fig. 5 (a). For this exampleyptbgram counters of the
two threads uniquely define the current valux@ndy, and so we can represent each
state simply as a pair of program countess, , pcs).

For this program, an optimal persistent sets algorithmsaille only one transition,
that from the state (3,3), because in any other state, inhnthie two threads have not
terminated, there is a collision between the next step offidlasfuture step of T2 (and,
symmetrically, a collision between the next step of T2 andgtare step of T1).

In contrast, a suitable cartesian vector for this programisal state is: 7'1:
X++; X++; X++; T2: y++; y++; y++. Hence, the cartesian semantics sa\&isan-
sitions and entirely avoids the statés2), (1, 1), (2, 1), (2,2), asillustrated in Fig. 5 (b).
The algorithm we propose in Sec. 6 utilizes this fact and dmg®xplore these states
and transitions.

Thread 1: Thread 2:
0: x++ 0: y++
10 x++ 1. y++
2: X++ 2: y++
3: assert(y<c)|3: assert(x<c)
4: end 4: end
(a) (b)

Fig. 5. (a) A simple concurrent program, and (b) reduced state spibe cartesian semantics.

Note that a combination of persistent sets and sleep sdtsavileduce these states
because, in isolation sleep sets can reduce only the nunib@ngitions, but not the
number of visited states.

5 Computing Cartesian Vectors

In order to build an algorithm based on the cartesian secwgntie need the ability
to calculate a cartesian vector for every observed statkeo€oncurrent system. The
algorithmCal cCVin Fig. 6 computes such CVE€al cCV assumes that the state space
is finite or acyclic.

The algorithm starts with eninimal CV, where each prefix contains a single tran-
sition. Such a vector necessarily satisfies Def. 2. Howdgesuch minimal CVs, the
cartesian semantics provides no benefits since it coineiteghe standard semantics.

To yield longer prefixes that reduce the explored state sgheealgorithm then
repeatedly extends this CV with additional transitionsilevktill satisfying Def. 2. The
arrayext endabl e identifies threads whose prefix can still be extended. Ihitiall
threads are extendable, and threads are removed from tlgis senflicts are detected.

Each iteration of th@hi | e loop picks some extendable prefix, and tries to extend
it with the next transition of that thread. Two complicatiarise here. First, if the added
transition conflicts with théast transition of a different prefix, then such conflicts are
allowed by Def. 2, but the algorithm records that neithefiprean be further extended.

Second, if a thread is in an infinite loop whose transitionsidioconflict with con-
current threads, then that thread has an infinite prefix. ®aaliverging in such situa-
tions, theCal cCV algorithm avoids extending a prefix once a cycle has beercete
Instead, it marks such prefixes as beinfinite; these marks are used by the model
checking algorithm of the following section.

This cycle check guarantees that, on any finite state systemCal cCV algo-
rithm will eventually terminate, once all threads are exdtad. Indeed, this procedure
actually returns anaximal cycle-free CVThat is, adding additional transitions to the
result ofCal cCV('s) yields an CV that is either invalid or contains cycles thavisat
previously-explored states.

Cal cCV(s) {
for each i € 1..n do {
CV[i] = s.NextTrans(s, T;).nextState(s, T:);

extendable = { 1..n }
for each i,j € 1..n such that i# and
last tran(CV[i]) is dependent with last_tran(CV[j]) {
extendabl e = extendable - {i,j}

}
whil e (extendabl e#0) { /'l repeatedly extend CV
pick any i € extendable
s = last(QV][i]);
if(3j#i NextTrans(s,T;) is dependent
with some transition in CV[j] (other than the last)) {
ext endabl e = extendable - {i}
} else {
for each j#i such that NextTrans(s, T;)
is dependent with last_tran(CVv[j]) {
ext endabl e = extendable - {i,j}
}
if(NextState(s,T;) in CV[i] and i € extendable) {
mark CV[i] as infinite
ext endabl e = extendable - {i}
/1 add this transition to CV
add Next Trans(s, T;) and NextState(s,T;) to CV[i]
}
}
return CV
}

Helper functions:
Next Trans(s, T): return tr; for s=(g,ls[T —1])
Next State(s, T): return exec(s, NextTrans(s,T))

Fig. 6. Algorithm for calculating cartesian vectors.

Note that the order in which our algorithm tries to extendiges is arbitrary, and
different exploration orders can lead to different resigtCVs. Our implementation
of the algorithm uses a round-robin exploration (we did rest the effect of other
exploration orders).

The correctness of the algorithm is established in theviolig lemma, whose proof
appearsin [9].

Lemma 1. For every state in a finite state systen@al cCV(s) terminates and returns
avalid CV.

Example 2.The following steps describe an execution of CalcCV fromittitgal state
of the program shown in Fig. 2.

=

. At the beginning, both threads are extendable, and eadflx montains only the
program’s initial state, where both threads are about towedine 0.

. Ty executez: =8, T, executes|: =8, and no conflicts are detected.

. Ty executex: =1, T, executepr i v: =y, and no conflicts are detected.

. Ty executez: =42, T, executes): =42, and still no conflicts are detected.

5a. The next transition df} is y: =7, which conflicts with the previously-executed

transitionpr i v: =y of T5, so this thread is no longer extendable.
5b. The nexttransition df; ispri v: =x, which conflicts with the previously-executed
transitionx: =1 of 77, so this thread is also no longer extendable.

A WN

At this point, the extendable set is empty,Ga cCV returns the cartesian vectdr; :
z:=8; x:=1; z:=42; T5:Qq:=8; priv:=y;, q:=42;.

Since CalcCV is called for each visited state, a key concethé running time of
this procedure. For our intended application of softwarelei@hecking, we assume
that each transition accesses at most one memory locatidriye transitions of dif-
ferent threads are dependent only if they access the sameménation and that at
least one of these accesses is a write. Under these assomjittiis fairly straightfor-
ward to implement CalcCV such that its running time is prajpol to the size of the
resulting CV (that is, to the sum of the lengths of the prefirghis CV). In particular,
each step of the implementation either extends CV or rediheesxtendable set.

6 Model Checking Algorithm

Fig. 7 presents a state exploration or model checking dtguarihat explores all reach-
able states of the cartesian semantics, using the subedCailcCV to compute cartesian
vectors for each reached state. Notice that only the lastsstdi finite prefixes are added
to WorkSet (according to the cartesian semantics the exibor does not have to con-
tinue from infinite prefixes).

Notice that CalcCV stops only before or after transitioret tharticipate in a mem-
ory contention (only such transitions can be detected asrdgmt), therefore the re-
duced state space does not contain a state in which two th(eadnore) are at the
middle of sections without memory contentions. Therefoescan simply identify a
class of states that are not present in the reduced state. $piaovorth mentioning that
in many large programs most of the code does not involve mgowortention, therefore
many states are saved by our method.

A simple variant of this algorithm executes a few instande€alcCV in parallel
(on different processors). This variant utilizes the faetttCalcCV runs independently
on one processor without being affected by what happeninthemther processors.
Such variant can efficiently utilize a few processors andced the running time of the
model checking, especially when the calculated CVs are.ldfgpresent the pseudo-
code of this simple variant in Fig. 8, and evaluate its penfmmce in our experiments.

7 Experimental Evaluation

In this section, we describe preliminary experimental ilsstomparing the cartesian
algorithm to other exploration algorithms.

nodel Check(so) {
WorkSet = {so}
CoveredSet = ()
while WorkSet is not enpty {
sel ect and renove s from Wr kSet
i f not nenber(s, CoveredSet) {
CoveredSet = CoveredSet U { s }
CV = Cal cCV(s)
for each prefix € CV {
verify local properties in states(prefix)
if prefix is not marked as infinite
WorkSet = WorkSet U { last(prefix) }
1338:

Fig. 7. A cartesian model checking algorithm based on CalcCV.

I ni t Thr ead(so)
WorkSet = {so}
CoveredSet = ()
ActiveThreads = 0
start a worker thread for each processor
wait until ((WorkSet is enpty) and (ActiveThreads=0))
termnate all worker threads

Wor ker Thr ead()

begi n:

atomc {
if(WrkSet is enpty) goto begin
sel ect and renobve s from Wor kSet
if menber (s, CoveredSet) goto begin
CoveredSet = CoveredSet U { s }
ActiveThr eads++

CV = Cal cCV(5s)
for each prefix € CV
verify local properties in states(prefix)
if prefix is not marked as infinite
atomc { WrkSet = WrkSet U { last(prefix) } }
atom ¢ { ActiveThreads-- }
goto begin

Fig. 8. A concurrent variant of the cartesian model checking athori

We compared the number of states, transitions, and CPU tieasuned by a stan-
dard model checking algorithm (exhaustive exploratiomaiit partial order reduction)
and by the cartesian algorithm of Fig. 7. The comparison wae dor a few benchmark
programs, and the results are reported in Table 1. The nuofib&tes mentioned in the
results is the number of states that the algorithm storeaglits execution (i.e. the size
of CoveredSet when the algorithm terminates). An emptyicéhe table indicates that
the algorithm ran out of memory. Additional results and det@bout the benchmarks
can be found in the appendix.

In order to check dependency between transitions, the mmgi¢ation of the carte-
sian algorithm conservatively assumes that two transteme dependent if they have
conflicting memory accesses (i.e., one writes and the odweds or writes from the
same location). During the execution of CalcCV, the aldgmniremembers the mem-
ory locations accessed by each thread (in the current Cate@¢<ution) and uses this
information for determining dependency between transiio

The benchmarks were also tested on SPIN [11], but its paiidr reduction algo-
rithm was unable to reduce the state space of any of the bearkkrfi.e. SPIN’s partial
order reduction did not affect the numbers of states angitians).

Some of the acyclic benchmarks were tested on the dynamiialparder reduc-
tion algorithm from [6] (hereafter, referred to as FG). Besa FG is stateless we only
compared the number of transitions. For some acyclic beadksnthe cartesian al-
gorithm executed much fewer transitions than FG, even wi@nvgs combined with
sleep sets [8] (e.g. for the SharedArray benchmark, thesiart algorithm executed
only 1648 transitions whereas FG executed more fifidriransitions). For some other
acyclic benchmarks such as FileSystem, FG executed lesstioas than the cartesian
algorithm, but in these cases the differences were lesgisamt.

We also implemented the concurrent variant of the cartedgorithm mentioned in
Sec. 6 and ran the benchmarks on it using a machine with 4 ggoce In some cases
(Indexer, FileSystem, CMIS) it saved aroud@l% of the running time (comparing to
the sequential variant).

8 Related Work

A key limitation in model checking concurrent software gyss [2] is the notorious
state explosion problem. One approach to this problem isdage the size of the state
space viaabstraction[4] and abstraction refinement [1, 10, 3] techniques. A canpl
mentary approach is to only explore a (sufficiently largagfion of the system’s state
space, vigartial order reductiontechniques.

One standard partial order reduction technique is basqubmistent (or stubborn)
sets[17, 8]. This technique computes a subset of the enableditiams in each visited
state, and only explores those transitions. This computiesks is called persistent set
and contains sufficiently many transitions to guarantegoecompleteness properties.
Our approach can yield improvements even over the mostgar@eirsistent sets.

A traditional limitation of persistent sets is that they &pically obtained from a
static analysis of the code, via algorithms such as thoseritbesl in [8]. Hence, the

Standard algorithm Cartesian algorithm Percentage of Saving
Benchmark States | Transitions|Time (ms)| Stateq Transitions|Time (ms)|Conc Time (ms) Stateq Transitions|Time |{Conc Time|
SharedPtr 32131 | 64262 266 418 12785 47 32 98.7 80.1 82.3 31.9
SharedArray 2276 4552 16 132 1648 0 0 94.2 63.8 99 0
2 Robots 4877 9754 109 56 2635 15 15 98.9 73 86.2 0
3 Robots 326759 980277 | 1206422| 56 6387 62 31 100 99.3 99 50
File System (1 Threads) 9 8 0 N/A N/A N/A N/A N/A N/A N/A 0
File System (2 Thread$) 81 144 0 1 16 0 0 98.8 88.9 0
File System (3 Thread$) 729 1944 16 1 24 0 0 99.9 98.8 99 0
File System (4 Threads) 6561 23328 437 1 32 0 0 100 99.9 99 0
File System (5 Thread$)59049 | 262440 | 24047 1 40 0 0 100 100 99 0
File System (6 Thread$)531441| 2834352 | 2567703 1 48 0 0 100 100 99 0
File System (7 Threads) 1 56 0 0 0
File System (8 Threads) 1 64 0 0 0
File System (9 Threads) 1 72 0 0 0
File System (10 Threads) 1 80 0 0 0
File System (11 Threads) 1 88 0 0 0
File System (12 Threads) 1 96 0 0 0
File System (13 Threads) 1 104 0 0 0
File System (14 Threads) 10 1026 62 32 48.4
File System (15 Threads) 100 10120 563 203 63.9
File System (16 Threads) 1000 99800 5968 2078 65.2
File System (17 Threads) 10000 984000 64204 23000 64.2
Indexer (1 Threads) 5 4 0 N/A N/A N/A N/A N/A N/A N/A N/A
Indexer (2 Threads) 25 40 0 1 8 0 0 96 80 0
Indexer (3 Threads) 125 300 0 1 12 0 0 99.2 96 0
Indexer (4 Threads) 625 2000 0 1 16 0 0 99.8 99.2 0
Indexer (5 Threads) 3125 12500 47 1 20 0 0 100 99.8 99 0
Indexer (6 Threads) 15625 | 75000 641 1 24 0 0 100 100 99 0
Indexer (7 Threads) 78125 437500 15297 1 28 0 0 100 100 99 0
Indexer (8 Threads) | 390625 2500000 | 494687 | 1 32 0 0 100 100 99 0
Indexer (9 Threads) 1 36 0 0 0
Indexer (10 Threads) 1 40 0 0 0
Indexer (11 Threads) 1 44 0 0 0
Indexer (12 Threads) 9 394 16 16 0
Indexer (13 Threads) 81 3528 187 79 57.8
Indexer (14 Threads) 729 31590 1813 625 65.5
Indexer (15 Threads) 6561] 282852 17172 6250 63.6
Indexer (16 Threads) 59049 2532546 | 191421 82859 56.7
2 Philosophers 11 22 0 9 28 0 0 18.2 -27.3 0
3 Philosophers 36 108 0 27 174 0 0 25 -61.1 0
4 Philosophers 119 476 0 94 750 0 0 21 -57.6 0
5 Philosophers 393 1965 16 295 2984 31 31 24.9 -51.9 [-93.8 0
6 Philosophers 1298 7788 172 942 11233 187 156 27.4 -44.2 -8.7 16.6
7 Philosophers 4287 30009 1766 | 2955] 41091 1187 969 31.1 -36.9 32.8 18.4
8 Philosophers 14159 | 113272 29594 | 9212] 145717 11609 11141 34.9 -28.6 60.8 4
9 Philosophers 46764 | 420876 | 383219 [28675 509218 | 132078 138703 38.7 -21 65.5 -5
CMIS C=2 N=8 16430 | 115010 813 51 1627 32 15 99.7 98.6 96.1 53.1
CMIS C=4 N=16 10141371 7098917 | 10294344 51 3091 47 31 100 100 99 34
CMIS C=8 N=32 51 8035 156 62 60.3
CMIS C=16 N=64 51 25987 735 281 61.8
CMIS C=32 N=128 51 94147 4875 1719 64.7
CMIS C=64 N=256 51 359491 36531 17672 51.6
CMIS C=128 N=256 6 100336 12141 12250 -0.9
CMIS C=127 N=255 11 221954 27860 27328 1.9

Table 1. Number of stored states, transitions, and running timeligadonds.) of the cartesian
and standard exploration algorithms for our benchmarkshigitable,Conc Timeindicates the
running time of the concurrent variant of the cartesian iatlym.

approximations inherent in any static analysis can reautbiarse persistent sets, par-
ticularly for pointer-rich code. Our algorithm overcomésstlimitation by detecting
conflicts between transitions dynamically, instead oficadt.

The approach of dynamic partial order reduction [6] compuersistent sets on-
the-fly by detecting conflicts dynamically, but only perf@ra stateless search, and
extending it to a stateful search has proven quite diffiénltontrast, the algorithm of
this paper performs a stateful search, which provides twak@rovements over [6]:
(1) it can handle systems with cycles; and (2) even on cyeegystems, storing states
avoids repeated explorations of the same parts of the gtates

A number of recent techniques have considered various kihdgclusive access
predicatesfor shared variables that specify synchronization digogd such as “this
variable is only accessed when holding its protecting loak*this variable is local
to this thread” [14, 15,5, 7]. These exclusive access pateliccan be leveraged to
dynamically infer persistent transitions, and so redueestiiarch space. At the same
time, exclusive access predicates can be verified or irdetueing reduced state-space
exploration. These techniques of [5, 15] in particular hdeenonstrated significant
performance improvements for the common cases of threzad-émd lock-protected
data. However, these techniques are less effective whesytiwronization discipline
changes during program execution, such as when an objecbtiscped by different
variables at different stages during the program’s exeouti

9 Conclusions

We have presented a new appro&adrtesianapproach to partial order reduction that
can be used by model checkers and abstract interpretersraMenaouraged by the
empirical results that show improvement over prior appheador some benchmarks.

References

1. T.Balland S. Rajamani. The SLAM Toolkit. Proceedings of CAV’2001 (13th Conference
on Computer Aided Verificationyolume 2102 of. NCS pages 260-264, Paris, July 2001.

2. E. M. Clarke, O. Grumberg, and D. A. Pelédodel CheckingMIT Press, 1999.

3. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. Ss&aanu, Robby, and H. Zheng.
Bandera: Extracting Finite-State Models from Java Soua#eCInProceedings of the 22nd
International Conference on Software Engineeria@00.

4. P.Cousot and R. Cousot. Systematic design of programgsasflameworks. IfProc. Symp.
on Principles of Prog. Languagepages 269-282, New York, NY, 1979. ACM Press.

5. M. B. Dwyer, J. Hatcliff, V. R. Prasad, and Robby. ExplogiObject Escape and Locking
Information in Partial Order Reduction for Concurrent Qitj®riented ProgramsFormal
Methods in System Desig2b, 2004.

6. C. Flanagan and P. Godefroid. Dynamic Partial-Order Riéuotu for Model Checking Soft-
ware. InProceedings of POPL'2005 (32nd ACM Symposium on Princigi€sogramming
Languages)Long beach, January 2005.

7. C. Flanagan and S. Qadeer. Transactions for Software ING¥deeking. InProceedings of
the Workshop on Software Model Checkipgges 338—349, June 2003.

8. P. Godefroid. Partial-Order Methods for the Verification of ConcurrentsBsms — An Ap-
proach to the State-Explosion Problewolume 1032 o NCS Springer, January 1996.

9. G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesidialparder reduction. Technical
Report TA-CS-2007-052, School of Computer Science, Tel Alniversity, 2007. Avialable
at "http://www.cs.tau.ac.itbguygueta/Cartesian.pdf’.

10. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazstibtion. InProc. of the 29th
ACM Symposium on Principles of Programming Languageges 58-70, Portland, 2002.

11. G.J. HolzmannThe SPIN Model Checker: Primer and Reference Manual

12. G. J. Holzmann and D. Peled. An improvement in formalfisation. InProceedings of
the 7th IFIP WG6.1 International Conference on Formal Dgstoon Techniques V]lpages
197-211, London, UK, UK, 1995. Chapman & Hall, Ltd.

13. D. Peled. All from one, one for all: on model checking gsiepresentatives. IBth Confer-
ence on Computer Aided Verificatiquages 409-423, 1993.

14. S. D. Stoller. Model-Checking Multi-Threaded Distribd Java Programslnternational
Journal on Software Tools for Technology Trans#l):71-91, Oct. 2002.

15. S. D. Stoller and E. Cohen. Optimistic Synchroniza8@sed State-Space Reduction. In
Proc. of the 9th Intl. Conf. on Tools and Algorithms for then@uction and Analysis of
Systems (TACAS)olume 2619 o NCS pages 489-504. Springer, Apr. 2003.

16. A. Valmari. Stubborn sets for reduced state space gémerdn 10th Conference on Appli-
cations and Theory of Petri Netsages 491-515, 1991.

17. A. Valmari. Stubborn sets for reduced state space gemeraln Advances in Petri Nets
199Q volume 483 olLNCS pages 491-515. Springer, 1991.

A Benchmarks Description

In this appendix we describe the benchmarks.

A.1 Robots

The Robots example shown in Fig. 1. This program simulatesema with a number of
robots that move in different paths, where each robot isssgrted by a separate thread.
Approaches based on static dependence will not be able eondiee when a collision
is possible, and would yield a poor reduction of the statesp@ihe dynamic partial
order reduction of [6] is not applicable for this benchmaak,its statespace contains
cycles.

For this benchmark, we consider two configurations: one tisas2 robots, as
shown in Fig. 1, and one witB robots in which a new robot is added and set to start
from position(7, 0).

Table 1 shows that for both configurations (2 robots, and ®t)bthe cartesian
algorithm provides a significant improvement over the staddemantics.

A2 CMIS

CMIS is a concurrent sorting algorithm which is composedfierge-Sort and Insert-
Sort, its pseudo code appears in Fig. 9. In Tabl€ lIndicates an array length from
which CMIS uses a sequential Insert-Sort (see pseudo cod@)dicates the length
of the array. In all the cases the input was an array sortedlaseending order (CMIS
sorted the array in an ascending order). Our approach doedeabwith dynamic thread
creation therefore we simulated the dynamic threads ot using threads that wait
on a loop until they receive an appropriate request.

Concurrent Mergel nsertSort (A, p, r) {

if(r-p+tl1 < C)
InsertSort (A p, r);

el se {
q = [57] ;
run Concurrent Mergel nsertSort (A, p, q) on a child thread ;
Concurrent Mergel nsert Sort (A, q+1, r);
wait for child thread term nation ;
Merge(A, p, q, 1);

}

Assert (A is sorted) ;

}

InsertSort (A p, r) {
for j p+l to r {
key = Alj];
i=j - 1;
while ((i > p-1) and (A[i] > key)) {
AL +1] = Ali];
i--
}
Ali +1] = key ;

}
}

Merge(A p, g, r) {
for i =ptor
draft[i] = Ali] ;
i =p;] =0+l k = p;
while ((i < q) and (j <)) {
if(draft[i] < draft[j])
Al k++] = draft[i++];
el se
Al K++]

draft[j ++];

}
while (i < q)
A k++] = draft[i++;

Fig. 9. The CMIS (Concurrent-Merge-Insert-Sort) benchmark.

A.3 SharedArray

The code of the SharedArray benchmark is shown in Fig. 1ighprogram, there are

two threads writing to a shared array in a loop. Each of theattis accesses different
portions of the array. In every iteration of the loop eacled#itt reads the value of a
shared variableounter and updates the array using its value. After finishing the loo

each thread updates the value of the shared variahbleter. The instructions within
the atomic blocks (marked by the keyword atomic) are exelciogether atomically.

Partial order reduction algorithms based on persistestgidtnot be able to reduce
the state space of this program. This is due to the fact theteny state in which the
two threads are still running, every persistent set costallhenabled transitions.

N = 64;
int A[N|;
int idxo =0, idxy; = 1,counter = 1;
Thread 7 (i=0,1)
Wiile(idx; < N) atomc {
Al i dx;] =counter + idx;;
idx; += 2 ;
}
atomc {
counter = counter + 1 + idx;_; ;
assert(counter < 2«N + 4) ;

}

Fig. 10. SharedArray Example.

A.4 SharedPtr

The code for the SharedPtr benchmark is shown in Fig. 11.ignknchmark, two
threads are performing updates to memory locations idedtifsing a shared pointer

The behavior of this example is similar to that of the Shamedpexample, in the
sense that the threads sometimes access disjoint partsnabmpebut in a way that a
static partial order reduction approach will not be abledtedt.

A.5 Indexer

This example is taken from [6]. This example has no cycleskaithves well with a
persistent sets algorithm. In this benchmark, there aretigions between the threads
when the number of threads is less thanAs a result, the cartesian algorithm is able to
considerably reduce the number of transitions when usirtg tp threads. In contrast,
the standard exploration suffers from exponential in@aéashe number of transitions.
Notice that in some cases the number of stored states isslisttdasonable because in
these cases the threads have no conflicts between them.

A.6 File System

This example is also taken from [6]. It uses up to 17 threads cbmmunicate via
a shared memory. The properties of this example are sintléndse of the Indexer
example.

N = 100;
int x=3, y=4, cl1=0, ¢2=0
intx p
Thread 1
p = &y;
for(int i=0; i < N, i++) cl += x;
*p += 3:
assert(3<z,y<9);
Thread 2
p = &x;
for(int i=0; i < N, i++) c2 +=vy;
*p += 2;
assert(3<uz,y<9);

Fig. 11. SharedPtr Example.

const int size = 128;
const int max = 4;
int[size] table;
int m=0, w h;
Thread tid
while (true) {
w = getnsg();
h := hash(w);
while (cas(table[h],0,w) == false) {
h := (h+1) % si ze;
}
}
int getnsg() {
if (m<nmax) {
return (++m = 11 + tid;
} else {
exit(); // terminate

}

}
int hash(int w) {
return (w=* 7) %size;

}

Fig. 12.Indexer Example (from [6]).

A.7 Dining Philosophers

This example is the classical dining philosophers program.

