
Thread-Modular Model Checking

Cormac Flanagan1 and Shaz Qadeer2

1 Systems Research Center, HP Labs, 1501 Page Mill Road, Palo Alto, CA 94304
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052

Abstract. We present thread-modular model checking, a novel tech-
nique for verifying correctness properties of loosely-coupled multithreaded
software systems. Thread-modular model checking verifies each thread
separately using an automatically inferred environment assumption that
abstracts the possible steps of other threads. Separate verification of
each thread yields significant space and time savings. Suppose there are n
threads, each with a local store of size L, where the threads communicate
via a shared global store of size G. If each thread is finite-state (without
a stack), the naive model checking algorithm requires O(G.Ln) space,
whereas thread-modular model checking requires only O(n.G.(G + L))
space. If each thread has a stack, the general model checking problem is
undecidable, but thread-modular model checking terminates in polyno-
mial time.

1 Introduction

Designing correct multithreaded software is difficult due to subtle interactions
among threads operating concurrently on shared data. Errors in such systems are
easy to introduce but difficult to diagnose and fix. Model checking [CE81,QS81]
is a promising technique for verifying correctness properties of multithreaded
software systems. However, due to the large state spaces of such systems, they
are difficult to model check. In this paper, we present a novel technique called
thread-modular model checking to alleviate the problem of exploring large state
spaces of multithreaded software.

We consider multithreaded software systems with a finite number of threads
where the shared global store and the local store of each thread are finite. How-
ever, each thread also has an unbounded stack which allows us to model proce-
dure calls and recursion. We focus on the verification of safety properties such
as assertions and global invariants. Verification of such safety properties can be
reduced to the problem of checking whether an error state is reachable from
the system’s initial state. This problem is undecidable [HU79,Ram00] in gen-
eral. Thread-modular model checking is a conservative (sound and incomplete)
algorithm for this problem that is powerful enough to verify a variety of multi-
threaded software systems occurring in practice.

Thread-modular reasoning for shared-memory programs was first introduced
by Jones [Jon83]. The basic idea behind this technique is to verify each thread
separately using an environment assumption to model interleaved steps of the

other threads. The environment assumption of each thread is a binary relation
over the set of global stores, and includes all global store updates that may be
performed by other threads.

In earlier work, we extended the proof rule of Jones and implemented it
in the Calvin checker [FFQ02,FQS02] for multithreaded Java programs. Our
experience using Calvin indicates that the threads in most software systems
are loosely-coupled , i.e., there is little correlation among the local states of the
various threads, and thread-modular reasoning is sufficiently powerful to verify
these systems. However, a significant cost of using Calvin is that the programmer
is required to provide the appropriate environment assumption. The thread-
modular model checking technique in this paper avoids this cost by automatically
inferring these environment assumptions.

Thread-modular model checking infers the environment assumption for each
thread by first infering a guarantee for each thread, which models all global store
updates performed by that thread. The environment assumption of a thread is
then the disjunction of the guarantees of all the other threads. The guarantee of
each thread is initially the empty relation, and is iteratively extended during the
model checking process. Each thread is verified using the standard algorithm for
model checking a sequential pushdown system except that at each control point
of the thread, the global state is allowed to mutate according to the guarantees
of the other threads. In addition, whenever a thread modifies the global store,
that transition on the global states is added to that thread’s guarantee. The
iteration continues until the reachable state space and guarantee of each thread
converges. The complexity of this procedure is O(n.G3.L3.F), where n is the
number of threads, F is the number of stack symbols, G is the size of the global
store, and L is the size of local store per thread.

Even if the threads do not have a stack and are consequently finite-state,
thread-modular model checking offers significant savings over standard model
checking. The naive model checking algorithm explicitly models the program
counters of all threads. Therefore, it explores all interleavings of the various
threads and its complexity is exponential in the number of threads. However,
thread-modular model checking verifies each thread separately and its complex-
ity O(n.G2.L.(n + L)) is significantly better than that of the naive algorithm.

1.1 Example

To illustrate the benefits of thread-modular model checking, we consider its
application to a simple multithreaded program. The multithreaded program
Simple(n) has n threads which are concurrently executing the procedure p. Each
thread is identified by unique integer value from the set Tid = {1, . . . , n}. These
threads manipulate a shared integer variable x initialized to 1. The variable x is
protected by a mutex m, which is either the (non-zero) identifier of the thread
holding the lock, or else 0, if the lock is not held by any thread. Thus, the type
Mutex = {0} ∪ Tid . The mutex m is manipulated by two operations, acquire
and release. The operation acquire blocks until m = 0 and then atomically
sets m to tid , the identifier of the current thread. The operation release sets m

back to 0. For each thread, there is an implicit local variable called pc, which
is the program counter of the thread. The variable pc takes values from the set
Loc = {1, . . . , 6} of control locations. We denote the program counter of thread
tid by pc[tid].

A simple multithreaded program

int x := 1;

void p() {
1: acquire;
2: x := 0;
3: x := x + 1;
4: assert x > 0;
5: release;
6: }

Simple(n) = p() | · · · | p()
︸ ︷︷ ︸

n times

We would like to verify three correctness properties for the program Simple(n).
A correctenss property is given by a set of error states; the program satisfies the
correctness property if no error state is reachable.

1. There are no races on the data variable x. The error set is

∃i, j ∈ T id. i �= j ∧ pc[i] ∈ {2, 3, 4} ∧ pc[j] ∈ {2, 3, 4} .

2. The assertion at control location 4 does not fail for any thread. The error
set is

∃i ∈ T id. pc[i] = 4 ∧ x ≤ 0 .

3. Every reachable state satisfies the invariant m = 0 ⇒ x = 1. The error set is

m = 0 ∧ x �= 1 .

Thread-modular model checking can verify these correctness properties. Our
algorithm computes the guarantee

G ⊆ Tid × (Mutex× int) × (Mutex× int)

where Mutex× int is the set of all global stores, and the thread-local reachable
set

R ⊆ Tid × (Mutex× int) × Loc.

The set G has the property that if the thread with identifier tid ever takes a step
in which the pair (m, x) of global variables is modified from (m1, x1) to (m2, x2),
then (tid , (m1, x1), (m2, x2)) ∈ G. The set R has the property that if there is a
reachable state in which the pair (m, x) has the value (m, v) and the program
counter of thread with identifier tid has the value pc, then (tid , (m, x), pc) ∈ R.

These sets are given by the following predicates:

G def=

∨ m = 0 ∧ m′ = tid ∧ x = x′ = 1
∨ m = tid ∧ m′ = 0 ∧ x = x′ = 1
∨ m = m′ = tid ∧ x = 0 ∧ x′ = 1
∨ m = m′ = tid ∧ x = 1 ∧ x′ ∈ {0, 1}

R def=

∨ pc[tid] ∈ {1, 6} ∧ m = 0 ∧ x = 1
∨ pc[tid] ∈ {1, 6} ∧ m ∈ Tid \ {tid} ∧ x ∈ {0, 1}
∨ pc[tid] ∈ {2, 4, 5} ∧ m = tid ∧ x = 1
∨ pc[tid] = 3 ∧ m = tid ∧ x = 0

The environment assumption of the thread tid can be computed from the guar-
antee as follows:

E(tid) def= ∃t ∈ Tid : t �= tid ∧ G[tid := t]

An examination of R proves that Simple(n) satisfies its three correctness
properties:

1. The thread with identifier tid accesses x only when pc[tid] ∈ {2, 3, 4}. Every
member of R satisfies the property that if pc[tid] ∈ {2, 3, 4} then m = tid .
Therefore, it is impossible for two different threads to be at a control location
in {2, 3, 4} simultaneously. Consequently, there is no race on the variable x.

2. Every member of R satisfies the property that x = 1 when pc = 4. Therefore,
the assertion at control location 4 holds.

3. Every member of R satisfies the condition m = 0 ⇒ x = 1, which is therefore
an invariant of Simple(n).

To verify the program Simple(n), the thread-modular model checking algo-
rithm analyzes each thread separately. When analyzing thread tid , each global
state stored by the algorithm contains values for m, x, and the program counter of
thread tid . The algorithm explores O(n) states and transitions for each thread.
Since there are n threads, the number of explored states and transitions is O(n2).

On the other hand, each state stored by a naive model checking algorithm will
provide values for m, x, and the program counters of all the threads. Consequently,
the number of states and transitions explored are O(2n). Thus, for this example,
the thread-modular model checking algorithm provides exponential savings in
the time and space required for state-space enumeration.

1.2 Limitations

Thread-modular model checking is a sound but incomplete verification algo-
rithm. In the program Simple(n), our model of the mutex m is crucial for the
success of thread-modular model checking. Suppose we model the mutex m as a
boolean instead, such that m is true when locked and false when unlocked. The
operation acquire blocks until m = false and then atomically sets m to true. The

operation release sets m back to false. Then, thread-modular model checking
computes the following sets for G and R:

G def=
∨ m = false ∧ m′ = true ∧ x = x′ ∈ {false, true}
∨ m = {false, true} ∧ m′ = false ∧ x = x′ = {false, true}
∨ m = m′ ∧ x ∈ {0, 1} ∧ x′ ∈ {0, 1}

R def= x ∈ {0, 1}

With the R computed above, we cannot prove any of the three correctness
properties from Section 1.1. A reason for the incompleteness of thread-modular
model checking is that the computed thread guarantee is represented only in
terms of updates to the shared variables. The guarantee does not keep track of
either the sequence in which actions updating shared variables are performed
or the number of times each such action is executed. Often, this information is
necessary for verifying the program.

Although thread-modular reasoning is incomplete is general, we can verify
any correctness property with it by providing auxiliary information in the pro-
gram. This information is provided by introducing auxiliary shared variables to
the program and adding appropriate updates to them. In Simple(n), we provided
this information by storing in the mutex m the identifier of the current holder
of the mutex. A different way to achieve the same effect is to introduce for each
thread tid , a boolean shared variable apc[tid] representing an abstraction of the
program counter pc[tid]. The variable apc[tid] is initialized to false, an acquire
operation by thread tid sets apc[tid] to true, and a release operation by thread
tid sets apc[tid] to false.

1.3 Related work

We refer the reader to our earlier papers [FFQ02,FQS02] for a discussion of the
related work on verification of multithreaded software by compositional reason-
ing and model checking.

Cobleigh et al. [CGP03] share our motivation of reducing the annotation
cost of compositional reasoning. They use a counterexample-guided learning al-
gorithm to infer environment assumptions, an approach that is very different
from ours. Our algorithm is based entirely on model checking; the correctness
properties of the program are verified and appropriate environment assumptions
are inferred solely by state-space enumeration.

Bouajjani et al. [BET03] present a generic approach to the static analysis of
concurrent programs. Unlike our work on shared-memory programs, they focus
on synchronous message-passing programs. They present several abstractions for
such programs, including a commutative abstraction that ignores message order.
Our thread-modular model checking algorithm focuses on concurrent updates to
the shared heap, but has a similar flavor to this commutative abstraction, in
that it ignores the order of heap updates performed by a thread.

2 Concurrent finte-state systems

A concurrent finite state system consists of a number of concurrently executing
threads. The threads communicate through a global store, which is shared by
all threads. In addition, each thread has its own local store containing data not
manipulated by other threads, such as the program counter of the thread. Each
thread also has an associated thread identifier. A state of the system consists of
a global store g and a mapping ls from thread identifiers to local stores. We use
the notation ls [t := l] to denote a mapping that is identical to ls except that it
maps thread identifier t to local store l.

Domains

t, e ∈ Tid = {1, . . . , n}
g ∈ GlobalStore
l ∈ LocalStore

ls ∈ LocalStores = Tid → LocalStore
Σ ∈ State = GlobalStore × LocalStores

We model the behavior of the individual threads as the transition relation T :

T ⊆ Tid × (GlobalStore × LocalStore) × (GlobalStore × LocalStore)

The relation T (t, g, l, g′, l′) holds if the thread t can take a step from a state with
global store g and where thread t has local store l, yielding a new state with
global and local stores g′ and l′, respectively.

We assume that program execution starts in an initial state Σ0 = (g0, ls0)
consisting of an initial global store g0 and a mapping ls0 that provides the
initial local store for each thread. The correctness condition for the program in
our system is provided by an error set E ⊆ GlobalStore × LocalStores . A state
(g, ls) is erroneous if E(g, ls) is true. Our goal is to determine if, when started
from the initial state Σ0, the system can reach an erroneous state.

2.1 Standard model checking

Since the set of possible states is finite, we can use standard model checking to
determine if any erroneous state is reachable from the initial state. In particular,
the least solution R ⊆ State to the following inference rules describes the set of
reachable states.

Standard model checking
(basic init)

R(g0, ls0)

(basic step)
R(g, ls) T (t, g, ls(t), g′, l′)

R(g′, ls [t := l′])

Although we provide a declarative definition of R here, it is easily computed
using a worklist-based algorithm. Having computed R, it is straightforward to

determine if any erroneous state is reachable, i.e., if there exist t, g, and ls such
that R(g, ls) ∧ E(t, g, ls).

Unfortunately, the computational cost of this algorithm becomes excessive in
the presence of multiple threads. Let n = |Tid | be the number of threads and let
G = |GlobalStore| and L = |LocalStore| be the sizes of the global and local stores,
respectively. Then the size of R and the space complexity of this algorithm is
O(G.Ln). Furthermore, for each entry in R there may be n.G.L applications of
(basic step). Hence the time complexity of this algorithm is O(n.G2.Ln+1). A
more accurate time complexity can be obtained by accounting for the bounded
nondeterminism of the transition relation of each thread. Let d be the bound
on the number of (g′, l′) pairs for any thread t, global store g, and local store l
such that T (t, g, l, g′, l′) holds. Then, for each entry in R, there are at most n.d
applications of (basic step) and the time complexity is O(n.d.G.Ln).

2.2 Thread-modular model checking

The complexity of standard model checking is exponential in the number of
threads, since it explicitly correlates the local states (and program counters)
of all the various threads. However, since the threads in most software systems
are predominantly loosely-coupled, this correlation is largely redundant. Thread-
modular model checking provides a means to avoid this redundancy.

Under thread-modular model checking, each thread is checked separately,
using the guarantees that abstract the behavior of interleaved steps of other
threads. The algorithm works by computing two relations: R, which specifies the
reachable states of each thread, and G, which is the guarantee of each thread.
Thus, the guarantee is inferred automatically during the model checking process.

R ⊆ Tid × GlobalStore × LocalStore
G ⊆ Tid × GlobalStore × GlobalStore

The relation R(t, g, l) holds if the system can reach a state with global store g
and where the thread t has local store l. Similarly, G(t, g, g′) holds if a step by
thread t can go from a reachable state with global store g to a state with global
store g′. While model checking a thread with identifier different from t, we know
that whenever the global store is g and G(t, g, g′) holds, an interleaved step of
thread t can change the global store to g′. The relations R and G are defined as
the least solution to the following rules.

Thread-modular model checking
(ag init)

R(t, g0, ls(t))

(ag env)
R(t, g, l) G(e, g, g′) t �= e

R(t, g′, l)

(ag step)
R(t, g, l) T (t, g, l, g′, l′)
R(t, g′, l′) G(t, g, g′)

The set of reachable states determined using thread-modular reasoning is a
conservative approximation of the set of actual reachable states, as illustrated
by the following lemma.

Lemma 1. For all global stores g and local store maps ls, if R(g, ls) then for
all thread identifiers t, R(t, g, ls(t))).

Our algorithm reports an error if there is an erroneous state (g, ls) such that
R(t, g, ls(t)) for all t ∈ Tid . If a software error causes an erroneous state to be
reachable, i.e.,

∃g, ls . (E(g, ls) ∧ R(g, ls)) ,

then the thread-modular algorithm will catch that error, i.e.,

∃g, ls . E(g, ls) ∧ ∀t. R(t, g, ls(t)) .

Thread-modular model checking can be performed using a worklist-based al-
gorithm, whose complexity is much less than that of standard model checking.
The space complexity is O(n.G.(G + L)). There may be n2.G2.L applications
of (ag env) and n.G2.L2 applications of (ag step). Hence the time complex-
ity of this algorithm is O(n.G2.L.(n + L)). Again, we improve the bound to
O(n.G.L.(n.G + d)) using the bound d on the nondeterminism of the transition
relations of the thread.

3 Concurrent pushdown systems

The thread-modular approach described so far works well for checking multi-
threaded finite state software systems. However, its applicability to realistic sys-
tems is somewhat limited, because such systems are typically constructed using
procedures and procedure calls, and hence rely on the presence of an unbounded
stack for each thread. In this section, we extend our thread-modular approach
to handle such systems.

We assume that, in addition to a local store, each thread now also has its
own private stack, which is sequence of frames. We leave the exact structure of
each frame unspecified, but it might contain, for example, the return address for
a procedure call. A state of the concurrent pushdown system consists of a global
store, a collection of local stores, one for each thread, and a collection of stacks,
one for each thread.

Domains

f ∈ Frame
s ∈ Stack = Frame∗

ss ∈ Stacks = Tid → Stack
Σ ∈ State = GlobalStore × LocalStores × Stacks

We model the behavior of the individual threads using three relations:

T ⊆ Tid × (GlobalStore × LocalStore) × (GlobalStore × LocalStore)
T + ⊆ Tid × (GlobalStore × LocalStore) × (LocalStore × Frame)
T− ⊆ Tid × (GlobalStore × LocalStore × Frame) × LocalStore

The relation T models thread steps that do not manipulate the stack. The rela-
tion T (t, g, l, g′, l′) holds if the thread t can take a step from a state with global
and local stores g and l, respectively, yielding (possibly modified) stores g′ and
l′, and where the stack is not accessed or updated during this step. The relation
T +(t, g, l, l′, f) models steps of thread t that push a frame onto the stack. The
global and local stores are initially g and l, the global store is unmodified during
this step, the local store is updated to l′, and the frame f is pushed onto the
stack. Similarly, the relation T−(t, g, l, f, l′) models steps of thread t that pop
a frame from the stack. The global and local stores are initially g and l and
the frame f is initially on top of the stack. After the step, the global store is
unmodified, the local store is updated to l′, and the frame f has been popped
from the stack.

The correctness condition is still specified by an error set E ⊆ GlobalStore ×
LocalStores . Note that although the error set depends on the local stores of the
threads, it does not depend on their stacks. A state (g, ls , ss) is erroneous if
(g, ls) ∈ E.

We assume that all stacks are empty in the initial state, and let ss0 map each
thread identifier to the empty stack. The set of reachable states is then defined
by the least relation R ⊆ State satisfying the following rules.

Basic PDA model checking
(basic pda init)

R(g0, ls0, ss0)

(basic pda step)
R(g, ls, ss) T (t, g, ls(t), g′, l′)

R(g′, ls[t := l′], ss)

(basic pda push)
R(g, ls, ss) T+(t, g, ls(t), l′, f)

R(g′, ls[t := l′], ss [t := ss(t).f])

(basic pda pop)
R(g, ls, ss) ss(t) = s.f T−(t, g, ls(t), f, l′)

R(g, ls[t := l′], ss [t := s])

Since the stack sizes are unbounded, the set of reachable states may also be
unbounded. Consequently, any algorithm to compute R may diverge. In fact,
the model checking problem for concurrent pushdown systems is undecidable, a
result that can be proved by reduction from the undecidable problem of deter-
mining if the intersection of two context-free languages is empty [Ram00].

3.1 Thread-modular model checking

Although sound and complete model checking of concurrent pushdown systems is
undecidable, thread-modular reasoning allows us to model check such systems an
a conservative yet useful manner. Again, we model check each thread separately,
using the guarantees to reason about the effect of interleaved steps of other
threads. The algorithm works by computing the guarantee relation G and the
reachability relations P and Q.

G ⊆ Tid × GlobalStore × GlobalStore
P ⊆ Tid × GlobalStore × LocalStore × GlobalStore × LocalStore
Q ⊆ Tid × GlobalStore × LocalStore × Frame × GlobalStore × LocalStore

The guarantee G(t, g, g′) holds if a step by thread t can go from a reachable
state with global store g to a state with global store g′. The reachability relation
P(t, g, l, g′, l′) holds if (1) the system can reach a state with global store g and
where thread t has local store l, and (2) from any such state, the system can
later reach a state with global store g′ and where thread t has local store l′, and
where the stack is identical to that in the first state. Similarly, the reachability
relation Q(t, g, l, f, g′, l′) holds if (1) the system can reach a state with global
store g and where thread t has local store l, and (2) from any such state, the
system can later reach a state with global store g′ and where thread t has local
store l′, and where the stack is identical to that in the first state except that the
frame f has been added to it. These relations are defined as the least solution
to the following rules.

Thread-modular PDA model checking
(ag pda init)

P(t, g0, ls0(t), g0, ls0(t))

(ag pda env1)
P(t, g1, l1, g2, l2) G(e, g2, g3) e �= t

P(t, g1, l1, g3, l2)

(ag pda env2)
Q(t, g1, l1, f, g2, l2) G(e, g2, g3) e �= t

Q(t, g1, l1, f, g3, l2)

(ag pda step1)
P(t, g1, l1, g2, l2) T (t, g2, l2, g3, l3)

P(t, g1, l1, g3, l3) G(t, g2, g3)

(ag pda push)
P(t, g1, l1, g2, l2) T+(t, g2, l2, l3, f)

Q(t, g1, l1, f, g2, l3) P(t, g2, l3, g2, l3)

(ag pda step2)
Q(t, g1, l1, f, g2, l2) P(t, g2, l2, g3, l3)

Q(t, g1, l1, f, g3, l3)

(ag pda pop)
Q(t, g1, l1, f, g2, l2) T−(t, g2, l2, f, l3)

P(t, g1, l1, g2, l3)

The set of reachable states determined using thread-modular reasoning is a
conservative approximation of the set of actual reachable states, as illustrated
by the following lemma.

Lemma 2. For all global stores g and local store maps ls and stack maps ss,
if R(g, ls , ss) then for all thread identifiers t, there exists some g′, l′ such that
P(t, g′, l′, g, ls(t)).

Our algorithm reports an error if there is (g, ls) ∈ E such that for all t ∈ Tid ,
there is a global store g′ and a local store l′ with P(t, g′, l′, g, ls(t)). If a software
error causes an erroneous state to be reachable, i.e.,

∃g, ls, ss . (E(g, ls) ∧R(g, ls , ss))

then the thread-modular algorithm will catch that error, i.e.,

∃g, ls. E(g, ls) ∧ ∀t. ∃g′, l′. P(t, g′, l′, g, ls(t)) .

Let F = |Frame|. Then, the space complexity of this algorithm is O(n.G2.L2.F).
The time complexity of this algorithm is O(n2.G3.L3.F) since each inference rule
can be applied at most n2.G3.L3.F times.

4 Discussion

We have presented a new technique called thread-modular model checking for
verifying multithreaded software systems. Although incomplete for general sys-
tems, this technique is particularly effective for loosely-coupled multithreaded
software where the the various threads synchronize using primitives such as mu-
texes, readers-writer locks, etc. If the synchronization primitives are modeled
with appropriate auxiliary information, these systems can be verified one thread
at a time.

Realistic software systems often have dynamic thread creation that may lead
to unbounded number of threads. This aspect of multithreaded software is cur-
rently not handled by our algorithm. However, the set of thread identifers, even
if infinite, is a scalarset type [ID96]. Consequently, these systems are amenable
to symmetry reduction which we plan to exploit in future work.

The thread-modular model checking algorithm constructs a particular ab-
straction of multithreaded software using environment assumptions. However,
the abstraction might be too coarse to verify the relevant correctness property.
If the algorithm reports an error, we would like an efficient procedure to check
whether the violation is real or introduced due to the abstraction process. In the
second case, we would like to automatically refine the environment assumptions
by possibly explicating some aspect of the program counters of the other threads
in the environment. After the refinement, the model checking algorithm can be
repeated. Thus, the thread-modular model checking algorithm may be converted
to a semi-algorithm that is sound and also complete on termination.

References

[BET03] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static
analysis of concurrent programs with procedures. In POPL 03: Principles of
Programming Languages, 2003. to appear.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Workshop on Logic of Pro-
grams, Lecture Notes in Computer Science 131, pages 52–71. Springer-Verlag,
1981.

[CGP03] J.M. Cobleigh, D. Giannakopoulou, and C.S. Păsăreanu. Learning assump-
tions for compositional verification. In TACAS 03: Tools and Algorithms for
the Construction and Analysis of Systems, 2003. to appear.

[FFQ02] C. Flanagan, S.N. Freund, and S. Qadeer. Thread-modular verification for
shared-memory programs. In ESOP 02: European Symposium on Program-
ming, Lecture Notes in Computer Science 2305, pages 262–277, 2002.

[FQS02] C. Flanagan, S. Qadeer, and S. Seshia. A modular checker for multithreaded
programs. In CAV 02: Computer Aided Verification, Lecture Notes in Com-
puter Science 2404, pages 180–194, 2002.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Publishing Company, 1979.

[ID96] C.N. Ip and D.L. Dill. Better verification through symmetry. Formal Methods
in System Design, 9(1–2):41–75, 1996.

[Jon83] C. B. Jones. Tentative steps toward a development method for interfer-
ing programs. ACM Transactions on Programming Languages and Systems,
5(4):596–619, 1983.

[QS81] J. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In Fifth International Symposium on Programming, Lecture Notes
in Computer Science 137, pages 337–351. Springer-Verlag, 1981.

[Ram00] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is un-
decidable. ACM Transactions on Programming Languages and Systems,
22(2):416–430, 2000.

