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Abstract

Ensuring the correctness of multithreaded programs is difficult, due to the potential for unexpected interactions between
concurrent threads. Much previous work has focused on detecting race conditions, but the absence of race conditions does not
by itself prevent undesired interactions between threads.

A more fundamental noninterference property is atomicity. A method is atomic if its execution is not affected by and does not
interfere with concurrently-executing threads. Atomic methods can be understood according to their sequential semantics, which
significantly simplifies both formal and informal correctness arguments.

This paper presents a dynamic analysis for detecting atomicity violations. This analysis combines ideas from both Lipton’s
theory of reduction and earlier dynamic race detectors. Experience with a prototype checker for multithreaded Java code demon-
strates that this approach is effective for detecting errors due to unintended interactions between threads. In particular, our atomicity
checker detects errors that would be missed by standard race detectors. Our experimental results also indicate that the majority of
methods in our benchmarks are atomic, indicating that atomicity is a standard methodology in multithreaded programming.
c© 2008 Elsevier B.V. All rights reserved.
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1. Reliable multithreaded programming

Multiple threads of control are widely used in software development because they help reduce latency, increase
throughput, and provide better utilization of multiprocessor machines. However, reasoning about the behaviour and
correctness of multithreaded code is difficult, due to the need to consider all possible interleavings of the executions
of the various threads. Thus, methods for specifying and controlling the interference between threads are crucial to
the cost-effective development of reliable multithreaded software.

Much previous work on controlling thread interference has focused on race conditions. A race condition occurs
when two threads simultaneously access the same data variable, and at least one of the accesses is a write [1]. In
practice, race conditions are commonly avoided by protecting each data structure with a lock [2]. This lock-based
synchronization discipline is supported by a variety of type systems [3–9] and other static [10–13] and dynamic
[1,14–17] analyses.
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Fig. 1. Excerpt from java.lang.StringBuffer.

Unfortunately, the absence of race conditions is not sufficient to ensure the absence of errors due to unexpected
interference between threads. As a concrete illustration of this limitation, consider the excerpt shown in Fig. 1 from the
class java.lang.StringBuffer. All fields of a StringBuffer object are protected by the implicit lock associated
with the object, and all StringBuffer methods should be safe for concurrent use by multiple threads.
The append method shown above first calls sb.length(), which acquires the lock sb, retrieves the length of sb, and
releases the lock. The length of sb is stored in the variable len. At this point, a second thread could remove characters
from sb. In this situation, len is now stale [18] and no longer reflects the current length of sb, and so the getChars
method is called with an invalid len argument and may throw an exception. Thus, StringBuffer objects cannot be
safely used by multiple threads, even though the implementation is free of race conditions.

Recent results have shown that subtle defects of a similar nature are common, even in well-tested libraries [19].
Havelund reports finding similar errors in NASA’s Remote Agent spacecraft controller [20], and Burrows and
Leino [18] and von Praun and Gross [15] have detected comparable defects in Java applications. Clearly, the
construction of reliable multithreaded software requires the development and application of more systematic methods
for controlling the interference between concurrent threads.

This paper focuses on a strong yet widely-applicable noninterference property called atomicity. A method (or in
general a code block) is atomic if for every (arbitrarily interleaved) program execution, there is an equivalent execution
with the same overall behaviour where the atomic method is executed serially, that is, the method’s execution is not
interleaved with actions of other threads.

Atomicity corresponds to a natural programming methodology, essentially dating back to Hoare’s monitors1 [21].
Many existing classes and library interfaces already follow this methodology, and our experimental results indicate
that the vast majority of methods in our benchmarks are atomic.

Atomicity provides a strong, indeed maximal, guarantee of noninterference between threads. This guarantee
reduces the challenging problem of reasoning about an atomic method’s behaviour in a multithreaded context to
the simpler problem of reasoning about the method’s sequential behaviour. The latter problem is significantly more
amenable to standard techniques such as manual code inspection, dynamic testing and static analysis.

1 Monitors are less general in that they rely on syntactic scope restrictions and do not support dynamically-allocated shared data.
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Fig. 2. Atomizer error report.

In summary, atomicity is a widely-applicable and fundamental correctness property of multithreaded code.
However, traditional testing techniques are inadequate to verify atomicity. While testing may discover a particular
interleaving on which an atomicity violation results in erroneous behaviour, the exponentially-large number of possible
interleavings makes obtaining adequate test coverage essentially impossible.

This paper presents a dynamic analysis for detecting atomicity violations. For each code block annotated as being
atomic, our analysis dynamically verifies that every execution of that code block is not affected by and does not
interfere with other threads. Intuitively, this approach increases the coverage of traditional dynamic testing. Instead
of waiting for a particular interleaving on which an atomicity violation causes erroneous behavior, such as a program
crash, the checker actively looks for evidence of atomicity violations that may cause errors under other interleavings.
Our approach synthesizes ideas from dynamic race detectors (such as Eraser’s Lockset algorithm) and Lipton’s theory
of reduction (described in Section 3.1). For the StringBuffer class described above, our technique detects that
append contains a window of vulnerability between where the lock sb is released inside length and then reacquired
inside getChars, and produces the warning in Fig. 2, even on executions where this window of vulnerability is not
exploited by concurrent threads.

We have implemented this dynamic analysis in an automatic checking tool called the Atomizer. The application of
this tool to over 200,000 lines of Java code demonstrates that it provides an effective approach for detecting defects
in multithreaded programs, including some defects that would be missed by existing race-detection tools. In addition,
the Atomizer avoids false alarms on benign races that do not cause atomicity violations.2 Our results also suggest
that a large majority of the methods in our benchmarks are atomic, which validates our hypothesis that atomicity is a
widely-used programming methodology.

We believe that the application of this dynamic analysis during the development and validation of multithreaded
programs may provide multiple benefits, including:

• detecting atomicity violations that are resistant to both traditional testing and existing race detection tools;
• facilitating safe code reuse in multithreaded settings by validating atomicity properties of interfaces;
• simplifying code inspection and debugging, since atomic methods can be understood according to their sequential

semantics;
• improving concurrent programming methodology by encouraging programmers to document the atomicity

guarantees provided by their code.

In concurrent work, Wang and Stoller [23] have developed several algorithms for checking atomicity dynamically,
including the basic algorithm we describe in Section 3.4 as well as more precise but more expensive block-based
algorithms. Their original block-based algorithms used an offline, trace-based analysis, but they have more recently
explored an online approach [24] similar to ours.

2 For simplicity, we assume a sequentially consistent memory model in our prototype. Some such race conditions may not be benign under Java’s
relaxed memory model [22].
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Fig. 3. Domains.

Several static analysis techniques for atomicity have been recently developed, including a type system for
atomicity [19,25,26] and the Calvin-R tool [27]. Dynamic atomicity checking complements these static techniques,
since most software is validated using a combination of static type checking and dynamic testing. For large, legacy
programs, a benefit of the dynamic approach is that it avoids both the overhead of type annotations and the cost of
type inference [28].

The presentation of our results proceeds as follows: Section 2 introduces a model of concurrent programs that we
use as the basis for our development. Section 3 describes our dynamic analysis for atomicity. Section 4 describes how
the Atomizer implements this analysis, and Section 5 presents our experimental results. Section 6 discusses related
work, and we conclude with Section 7.

2. Multithreaded programs

We provide a formal basis for reasoning about interference between threads by first formalizing an execution
semantics for multithreaded programs. In this semantics, a multithreaded program consists of a number of concurrently
executing threads, each of which has an associated thread identifier t ∈ Tid, as defined in Fig. 3. The threads
communicate through a global store σ , which is shared by all threads. The global store maps program variables x
to values v. The global store also records the state of each lock variable m ∈ Lock. If σ(m) = t , then the lock m is
held by thread t ; if σ(m) = ⊥, then that lock is not held by any thread.

In addition to operating on the shared global store, each thread also has its own local store π containing data
not manipulated by other threads, such as the program counter and stack of that thread. A state Σ = (σ,Π ) of
the multithreaded system consists of a global store σ and a mapping Π from thread identifiers t to the local store
π = Π (t) of each thread. Program execution starts in an initial state Σ0 = (σ0,Π0).

2.1. Standard semantics

We model the behaviour of each thread in a multithreaded program as the transition relation T :

T ⊆ Tid × LocalStore × Operation × LocalStore

The relation T (t, π, a, π ′) holds if the thread t can take a step from a state with local store π , performing the operation
a ∈ Operation on the global store, yielding a new local store π ′. The set of possible operations on the global store
includes:

• rd(x, v), which reads a value v from a variable x ;
• wr(x, v), which writes a value v to a variable x ;
• acq(m) and rel(m), which acquire and release a lock m, respectively;
• begin and end , which mark the beginning and end of an atomic block; and
• ε, the empty operation.

a ∈ Operation ::= rd(x, v) | wr(x, v) | acq(m) | rel(m) | begin | end | ε

The relation σ →
a
t σ ′ defined in Fig. 4 models the effect of an operation a by thread t on the global store σ . We use

the notation σ [x := v] to denote the global store that is identical to σ except that it maps the variable x to the value v.
The transition relation Σ → Σ ′ performs a single step of an arbitrarily chosen thread (see Fig. 5). We use →

∗ to
denote the reflexive-transitive closure of →. A transition sequence Σ0 →

∗ Σ models the arbitrary interleaving of the
various threads of a multithreaded program, starting from the initial state Σ0. Although dynamic thread creation is not
explicitly supported by the semantics, it can be modelled within the semantics in a straightforward way.

2.2. Serialized semantics

We assume the function A : LocalStore → Nat indicates the number of atomic blocks that are currently active,
perhaps by examining the program counter and thread stack recorded in the local store. This count should be zero in
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Fig. 4. Effect of operations: σ →
a
t σ ′.

Fig. 5. Standard semantics: Σ → Σ ′.

Fig. 6. Serialized semantics: Σ 7→ Σ ′.

the initial state, and should only change when entering or leaving an atomic block. We formalize these requirements
as follows:

• A(Π0(t)) = 0 for all t ∈ Tid;
• if T (t, π, begin, π ′) then A(π ′) = A(π) + 1;
• if T (t, π, end, π ′), then A(π) > 0 and A(π ′) = A(π) − 1; and
• if T (t, π, a, π ′) for a 6∈ {begin, end}, then A(π) = A(π ′).

The relation A(Π ) holds if any thread is inside an atomic block:

A(Π )
def
= ∃t ∈ Tid. A(Π (t)) 6= 0

The serialized transition relation 7→ defined in Fig. 6 is similar to the standard relation →, except that a thread
cannot perform a step if another thread is inside an atomic block. Thus, the serialized relation 7→ does not interleave
the execution of an atomic block with instructions of concurrent threads.

Reasoning about program behaviour and correctness is much easier under the serialized semantics ( 7→) than
under the standard semantics (→), since each atomic block can be understood sequentially, without the need to
consider all possible interleaved actions of concurrent threads. However, standard language implementations only
provide the standard semantics (→), which admits additional transition sequences and behaviors. In particular, a
program that behaves correctly according to the serialized semantics may still behave erroneously under the standard
semantics. Thus, in addition to being correct with respect to the serialized semantics, the program should also use
sufficient synchronization to ensure the atomicity of each block of code that is intended to be atomic. Thus, for
any program execution (σ0,Π0) →

∗ (σ,Π ) where ¬A(Π ), there should exist an equivalent serialized execution
(σ0,Π0) 7→

∗ (σ,Π ). We call this the atomicity requirement on program executions, and any execution of a correctly
synchronized program should satisfy this requirement. (The restriction ¬A(Π ) avoids consideration of partially-
executed atomic blocks.)

3. Dynamic atomicity checking

In this section, we present an instrumented semantics that dynamically detects violations of the atomicity
requirement. We start by reviewing Lipton’s theory of reduction [29], which forms the basis of our approach.
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Fig. 7. Reduced execution sequence.

3.1. Reduction

The theory of reduction is based on the notion of right-mover and left-mover actions. An action b is a right-mover
if, for any execution where the action b performed by one thread is immediately followed by an action c of a concurrent
thread, the actions b and c can be swapped without changing the resulting state.

For example, if the operation b is a lock acquire, then the action c of the second thread neither acquires nor releases
the lock, and so cannot affect the state of that lock. Hence, the acquire operation can be moved to the right of c without
changing the resulting state, and we classify each lock acquire operation as a right-mover.

Conversely, an action c is a left-mover if whenever c immediately follows an action b of a different thread, the
actions b and c can be swapped, again without changing the resulting state. Suppose the operation c by the second
thread is a lock release. During b, the second thread holds the lock, and b can neither acquire nor release the lock.
Hence the lock release operation can be moved to the left of b without changing the resulting state, and we classify
each lock release operation as a left-mover.

Next, consider an access (read or write) to a variable that is shared by multiple threads. If the variable is protected
by some lock that is held whenever the variable is accessed, then two threads can never access the variable at the same
time, and we classify each access to that variable as a both-mover, which means that it is both a right-mover and a
left-mover. If the variable is not consistently protected by some lock, we classify the variable access as a non-mover.
In summary, we classify operations performed by a thread as follows:

Operation Mover status

lock acquire right-mover
lock release left-mover
access to protected data both-mover
access to unprotected data non-mover

To illustrate how the classification of actions as various kinds of movers enables us to verify atomicity, consider
the first execution trace shown in Fig. 7. In this trace, a thread:

(1) acquires a lock m,
(2) reads a variable x protected by that lock,
(3) updates x , and
(4) then releases m.

The execution path of this thread is interleaved with arbitrary actions b1, b2, b3 of other threads. Because the acquire
operation is a right-mover and the write and release operations are left movers, there exists an equivalent serial
execution in which the operations of this path are not interleaved with operations of other threads, as illustrated
by the diagram in Fig. 7. Thus the execution path is atomic.

More generally, suppose a path through a code block contains a sequence of right-mover actions, followed by
at most one non-mover action, followed by a sequence of left-mover actions. Then this path can be reduced to an
equivalent serial execution, with the same resulting state, where the path is executed without any interleaved actions
by other threads.

The non-mover action on a reducible path is called the commit point of that path. (If the path does not contain
a non-mover action, then the first left-mover action is the commit point.) This commit action thus divides the states
of the path into pre-commit states (where all preceding actions are right movers) and post-commit states (where all
succeeding actions are left movers).
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Fig. 8. Instrumented operations: Σ ⇒
a
t ϕ′ and Σ ⇒

a
t wrong.

3.2. Checking atomicity via reduction

We next leverage the theory of reduction to verify atomicity dynamically. In an initial presentation of our approach,
we assume the programmer provides a partial function

P : Var −→◦ Lock

that maps protected shared variables to associated locks; if P(x) is undefined, then x is not protected by any lock.
We develop an instrumented semantics that only admits code paths that are reducible, and which goes wrong on

irreducible paths. To record whether each thread is in the pre-commit or post-commit part of an atomic block, we
extend the state space with an instrumentation store:

ϕ : Tid → {PreCommit, PostCommit, Outside}

We use Outside to denote when a thread is outside any atomic block. Each state is now a triple (σ, ϕ,Π ). If
A(Π (t)) 6= 0, then thread t is inside an atomic block, and ϕ(t) indicates whether the thread is in the pre-commit
or post-commit part of that atomic block. The initial instrumentation store ϕ0 is given by ϕ0(t) = Outside for all
t ∈ Tid.
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Fig. 9. Instrumented semantics: Σ ⇒t Σ ′, Σ ⇒ Σ ′, Σ ⇒ wrong and Σ |⇒ Σ ′.

Fig. 10. Instrumented execution sequence.

The relation Σ ⇒
a
t ϕ′ in Fig. 8 updates the instrumentation store whenever thread t performs operation a. The

rule [INS ACCESS PROTECTED] deals with an access to a protected variable while holding the appropriate lock. This
action is a both-mover and so the instrumentation store ϕ does not change. Accesses to unprotected variables are non-
movers, and they cause an atomic block to commit: see [INS RACE COMMIT]. Unprotected accesses are also allowed
outside atomic blocks: see [INS RACE OUTSIDE]. Acquire operations are right movers, and they can occur outside or
in the pre-commit part of an atomic block, and conversely for release operations.

The relation Σ ⇒
a
t wrong holds if the operation a by thread t would go wrong by accessing a protected variable

without holding the correct lock [WRONG RACE VIOLATE], or by performing a nonleft-mover action in the left-mover
part of an atomic block. Nonleft-mover actions include accessing an unprotected variable [WRONG RACE VIOLATE]
or acquiring a lock [WRONG ACQUIRE].

Fig. 9 defines four additional instrumented transition relations:

• the transition relation Σ ⇒t Σ ′ performs an instrumented step of thread t ;
• the transition relation Σ ⇒ Σ ′ performs an instrumented step of an arbitrary thread;
• the transition relation Σ ⇒ wrong holds if a step from Σ could violate the synchronization discipline or the

atomicity requirement; and
• the transition relation Σ |⇒ Σ ′ is a serialized variant of the instrumented semantics ⇒.

As an illustration of the instrumented semantics, Fig. 10 shows the information tracked by the instrumented
semantics for thread 1 during the execution of an atomic fragment of code. In that figure, Σi = (σi , ϕi ,Πi ) and
in the initial state Σ0 we have A(Π0(1)) = 0. Thus, thread 1 is not initially inside an atomic block. Note that the
transition from PreCommit to PostCommit for thread 1 is delayed as long as possible, until the release of the lock,
which is the first left-mover operation of the code sequence.

3.3. Correctness

The following theorem states that the instrumented semantics is identical to the standard semantics, except that the
instrumented semantics records the additional information ϕ and may go wrong.
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Theorem 1 (Equivalence of Semantics).

(1) If (σ, ϕ,Π ) ⇒
∗ (σ ′, ϕ′,Π ′), then (σ,Π ) →

∗ (σ ′,Π ′).
(2) If (σ,Π ) →

∗ (σ ′,Π ′) then ∀ϕ such that either
(a) (σ, ϕ,Π ) ⇒

∗ wrong, or
(b) ∃ϕ′ such that (σ, ϕ,Π ) ⇒

∗ (σ ′, ϕ′,Π ′).

Proof. The proof of both parts proceeds by induction over transition sequences and by case analysis on the first
transition rule in the sequence.

(1) Suppose (σ, ϕ,Π ) ⇒ (σ ′, ϕ′,Π ′). Then, by [INS STEP], we have that T (t,Π (t), a, π ′) and σ →
a
t σ ′ and

Π ′
= Π [t := π ′

]. Hence, by [STD STEP], (σ,Π ) → (σ ′,Π ′).
(2) Suppose (σ,Π ) → (σ ′,Π ′). Then, by the rule [STD STEP], we have that T (t,Π (t), a, π ′) and σ →

a
t σ ′ and

Π ′
= Π [t := π ′

].
Let Σ = (σ, ϕ,Π ). An inspection of the rules in Fig. 8 shows that either Σ ⇒

a
t wrong or there exists ϕ′ such that

Σ ⇒
a
t ϕ′. In the former case, (σ, ϕ,Π ) ⇒ wrong via [INS WRONG]; in the latter case, (σ, ϕ,Π ) ⇒ (σ ′, ϕ′,Π ′)

as required. �

In addition, any instrumented execution that does not go wrong satisfies the atomicity requirement.

Theorem 2 (Instrumented Reduction). If (σ0, ϕ0,Π0) ⇒
∗ (σ, ϕ,Π ) and ¬A(Π ), then (σ0,Π0) 7→

∗ (σ,Π ).

Proof. We first note that any reachable state has the following well-formedness property stating that ϕ is consistent
with the function A:

WellFormedState = {(σ, ϕ,Π ) | A(Π (t)) = 0 ⇔ ϕ(t) = Outside}.

Clearly, (σ0, ϕ0,Π0) ∈ WellFormedState, and it easy to show that well-formedness is preserved by the relation ⇒.
We now introduce three state predicates Out(t), Pre(t), and Post(t), where Out(t) means that thread t is not in

an atomic block, and Pre(t) and Post(t) mean that thread t is in the pre-commit and post-commit parts of an atomic
block, respectively:

Out(t)
def
= {(σ, ϕ,Π ) ∈ WellFormedState | ϕ(t) = Outside}

Pre(t)
def
= {(σ, ϕ,Π ) ∈ WellFormedState | ϕ(t) = PreCommit}

Post(t)
def
= {(σ, ϕ,Π ) ∈ WellFormedState | ϕ(t) = PostCommit}

We introduce some additional notation to specify properties of these state predicates. For two actions b, c ⊆

WellFormedState×WellFormedState, we say that b right-commutes with c if for all Σ1,Σ2,Σ3, whenever (Σ1,Σ2) ∈ b
and (Σ2,Σ3) ∈ c, then there exists Σ ′

2 such that (Σ1,Σ ′

2) ∈ c and (Σ ′

2,Σ3) ∈ b. The action b left-commutes with the
action c if c right-commutes with b. We also define the left restriction ρ · b and the right restriction b · ρ of an action
b with respect to a set of states ρ ⊆ WellFormedState.

ρ · b
def
= {(Σ ,Σ ′) ∈ b | Σ ∈ ρ}

b · ρ
def
= {(Σ ,Σ ′) ∈ b | Σ ′

∈ ρ}

Using this notation, the following Reduction Theorem formalizes five conditions (A1–A5) that are sufficient to
conclude that all atomic blocks are reducible. We next prove that these predicates satisfy the five requirements of the
Reduction Theorem, for t, u ∈ Tid with t 6= u:

A1. They clearly partition WellFormedState.
A2. (Post(t) · ⇒t · Pre(t)) is empty, since ϕ(t) is never set to PreCommit while within an atomic block.
A3. (⇒t · Pre(t)) right-commutes with ⇒u , since if Pre(t) holds after an action of thread t , then that action

must be by one of the rules [INS ACCESS PROTECTED], [INS ACQUIRE], [INS ENTER], [INS NESTED ENTER],
or [INS NESTED EXIT], [INS NO-OP], all of which right-commute with ⇒u .
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A4. (Post(t) · ⇒t ) left-commutes with ⇒u , since if Post(t) holds before an action of thread t , then that action
must be by one of the rules [INS ACCESS PROTECTED], [INS RELEASE COMMIT], [INS NESTED ENTER],
[INS NESTED EXIT], [INS EXIT], or [INS NO-OP], all of which left-commute with ⇒u .

A5. if Σ ⇒t Σ ′, then Σ ∈ Pre(u) ⇔ Σ ′
∈ Pre(u) and Σ ∈ Post(u) ⇔ Σ ′

∈ Post(u), since a step by thread t does
not change ϕ(u) or Π (u).

Hence by Theorem 3 (Reduction), (σ0, ϕ0,Π0) |⇒
∗ (σ, ϕ,Π ), and therefore (σ0,Π0) 7→

∗ (σ,Π ). �

Theorem 3 (Reduction). Suppose that for all t, u ∈ Tid with t 6= u:

A1. Pre(t), Post(t), and Out(t) form a partition of WellFormedState.
A2. (Post(t) · ⇒t · Pre(t)) is empty.
A3. (⇒t · Pre(t)) right-commutes with ⇒u .
A4. (Post(t) · ⇒t ) left-commutes with ⇒u .
A5. if Σ ⇒t Σ ′, then Σ ∈ Pre(u) ⇔ Σ ′

∈ Pre(u), and Σ ∈ Post(u) ⇔ Σ ′
∈ Post(u).

Suppose further that Σ0 ⇒
∗ Σ and Σ0 and Σ are in Out(t) for all t ∈ Tid. Then Σ0 |⇒

∗ Σ .

Proof. See [30].

If the instrumented semantics admits a particular execution, then not only is that execution reducible, but
many similar executions are also reducible. In particular, when an atomic block is being executed, the only
scheduling decision that affects program behaviour is when the commit operation (the transition from PreCommit to
PostCommit) is scheduled. Scheduling decisions regarding when other operations in the atomic block are scheduled
are irrelevant, in that they do not affect program behaviour or reducibility. Hence, one test run under our instrumented
semantics can simultaneously verify the reducibility of many executions of the standard semantics.

3.4. Inferring protecting locks

The instrumented semantics of the previous section relies on the programmer to specify protecting locks for shared
variables. To remove this limitation, we next extend the instrumented semantics to infer protecting locks, using a
variant of Eraser’s Lockset algorithm [1]. We extend the instrumentation store ϕ to map each variable x to a set of
candidate locks for x , such that these candidate locks have all been held on every access to x seen so far:

ϕ : (Tid → {PreCommit, PostCommit, Outside}) ∪ (Var → 2Lock)

The initial candidate lock set for each variable is the set of all locks, that is, ϕ0(x) = Lock for all x ∈ Var.
The relation Σ Va

t ϕ′ updates the extended instrumentation store whenever thread t performs operation a on the
global store: see Fig. 11. The rule [INS2 ACCESS] for a variable access removes from the variable’s candidate lock set
all locks not held by the current thread. We use H(t, σ ) to denote the set of locks held by thread t in state σ :

H(t, σ ) = {m ∈ Lock | σ(m) = t}

If the candidate lock set for a variable becomes empty, then all accesses to that variable should be treated as non-
movers, but previous accesses may already have been incorrectly classified as both-movers. For example, if ϕ(x) = {m}
when thread t enters the following function doubleIt, then the first access to x by thread t will be classified as a
both-mover. If, at that point, an action of a concurrent thread causes ϕ(x) to become empty, the analysis will classify
the second access to x by t as a non-mover, but will not reclassify the first access, and thus the analysis will fail to
recognize that this execution of doubleIt may not be reducible.

/*# atomic */ void doubleIt() {

synchronized (m) {

int t = x;
x = 2 * t;

}

}
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Fig. 11. Instrumented operations 2: Σ Va
t ϕ′ and Σ Va

t wrong.

Fig. 12. Instrumented semantics 2: Σ V Σ ′ and Σ V wrong.

Thus, to ensure soundness, the lock inference semantics does not support unprotected variables and instead requires
every variable to have a protecting lock. If the candidate lock set becomes empty, then that state goes wrong, via
[WRONG2 RACE].

The relation Σ V Σ ′ in Fig. 12 performs an instrumented step (with lock inference) of an arbitrarily chosen thread;
the relation Σ V wrong describes states that go wrong.

Like the previous instrumented semantics (⇒), the lock-inference semantics (V) is equivalent to the standard
semantics (→) except that it only admits execution sequences that satisfy the atomicity requirement. The following
two theorems formalize these correctness properties. Their proofs are analogous to those of Theorems 1 and 2.

Theorem 4 (Equivalence of Semantics 2).

(1) If (σ, ϕ,Π ) V∗ (σ ′, ϕ′,Π ′), then (σ,Π ) →
∗ (σ ′,Π ′).

(2) If (σ,Π ) →
∗ (σ ′,Π ′) then ∀ϕ either

(a) (σ, ϕ,Π ) V∗ wrong, or
(b) ∃ϕ′ such that (σ, ϕ,Π ) V∗ (σ ′, ϕ′,Π ′).

Theorem 5 (Instrumented Reduction 2). If (σ0, ϕ0,Π0) V∗ (σ, ϕ,Π ) and ¬A(Π ), then (σ0,Π0) 7→
∗ (σ,Π ).

Again, if the instrumented semantics admits a particular execution, then all executions that are equivalent to that
execution modulo irrelevant scheduling decisions are reducible.
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4. Implementation

We have developed an implementation, called the Atomizer, of the dynamic analysis outlined in the previous
section. The Atomizer takes as input a multithreaded Java [31] program and rewrites the program to include additional
instrumentation code. This instrumentation code calls methods of the Atomizer runtime that implement the Lockset
and reduction algorithms and issue warning messages when atomicity violations are detected.

The Atomizer performs the instrumentation on Java source code. This approach has a number of advantages: it
supports programmer-supplied annotations, it works at the high level of abstraction of the Java language, and it is
portable across Java virtual machines. This approach does require source code, but the instrumentation could also be
performed at the bytecode level.

The target program can include annotations in comments to indicate that a method is atomic, as in

/*# atomic */ void getChars() {...}

The /*# assume atomic */ and /*# assume mover */ annotations can be used to indicate that the Atomizer
should assume that a specific method is atomic or a both-mover, respectively, without checking this requirement. The
annotation /*# assume guarded */ on a field indicates that the Atomizer should assume there are no simultaneous
access race conditions on that field; any potential race conditions detected by the Lockset algorithm are assumed to
be false alarms and are ignored. This annotation is useful when the Lockset algorithm does not properly handle the
observed access pattern, such as when data local to a thread is transferred to another thread through a global queue [1].
To facilitate suppressing false alarms, the /*# no warn */ annotation turns off all Lockset and reduction checking
for a single line of code.

When checking code linked with uninstrumented libraries, the Atomizer assumes that all methods defined in the
uninstrumented code are movers by default. Alternatively, some or all of the library source code may be instrumented
by the Atomizer.

In order to reduce the burden of annotating large programs, the Atomizer also provides two built-in heuristics for
deciding which blocks should be checked for atomicity:

(1) Export+Synch: the first heuristic is that (1) all methods exported by classes should be atomic, and (2) all
synchronized blocks and synchronized methods should be atomic. Exported methods are those that are public
or package protected. However, this heuristic is not used for main and the run methods of Runnable objects,
because these methods typically are not atomic.

(2) Synch: the second heuristic is to ignore exported methods and only assume that all synchronized blocks and
synchronized methods should be atomic.

Although these heuristic are quite simple, they provide a reasonable starting point for identifying atomicity errors in
unannotated code. These two heuristics are experimentally compared in the following section.

In the rest of this section, we describe our Lockset and reduction implementation, demonstrate how the tool
identifies and reports errors, and present several improvements to the basic algorithm.

4.1. Lockset algorithm

For each field of each allocated object, the Atomizer tracks a state that reflects the degree to which the field has
been shared among multiple threads.

The possible states of our algorithm, as shown in Fig. 13, are similar to the states in earlier race detectors [1,32]:

• Thread-Local: The field has only been accessed by the object’s creating thread.
• Thread-Local (2): Ownership has transferred to a second thread, and the field is no longer accessed by the creating

thread. This state supports common initialization patterns in Java [32].
• Read-Shared: The field has been read, but not written, by multiple threads.
• Shared-Modified: The field has been read and written by multiple threads, and a candidate lock set records which

locks have been consistently held when accessing this field. When entering this state, the candidate set is initialized
with all locks held by the current thread.

Some of these extensions introduce some degree of unsoundness [1,32] into the algorithm. However, we do not
believe these extensions miss a large number of errors, and they substantially reduce the false alarm rate.
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Fig. 13. Lockset algorithm states for each allocated field.

Fig. 14. Relaxed instrumentation: Σ Va
t ϕ′ and Σ Va

t wrong.

4.2. Reduction algorithm

The instrumented semantics for lock inference in Section 3.4 goes wrong on any race condition. Since programs
frequently have benign races, the Atomizer implements a relaxed version of this semantics that accommodates such
benign race conditions. If the candidate lock set for a variable becomes empty, then subsequent accesses to that variable
are considered non-movers. Note that previous accesses to that variable, which were earlier classified as movers,
will not be reclassified as non-movers, since storing a history of all variable accesses would be expensive. Thus, as
mentioned in Section 3.4, these relaxed rules introduce a degree of unsoundness. We believe this unsoundness rarely
causes the Atomizer to miss atomicity violations in practice because it requires an unlucky scheduling of operations
and because the Atomizer will report the problem on the next execution of the nonatomic code fragment. The rules in
Fig. 14 adapt the relations Σ Va

t ϕ′ and Σ Va
t wrong to express this relaxed semantics.

To produce clear error messages like that in Section 1, the Atomizer can optionally capture stack traces (in the form
of Exception objects) at the entry and commit points of each atomic block, and include these stack traces in error
messages. Since the Atomizer supports nested atomic blocks, a single operation could result in multiple atomicity
violations.

4.3. Redundant locking

The Atomizer may produce false alarms due to imprecisions in the Lockset and reduction algorithms. We next
present several improvements that eliminate many of these false alarms. We start by revisiting the treatment of
synchronization operations during reduction. The classification of lock acquires and releases as right-movers and
left-movers, respectively, is correct but overly conservative in some cases. In particular, modular programs typically
include redundant synchronization operations that we can more precisely characterize as both-movers.
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• Re-entrant locks. Lock acquires are in general only right-movers and not left-movers. However, Java provides
re-entrant locks, and a re-entrant lock acquire is a both-mover, because this operation cannot interact with other
threads. Similarly, a re-entrant release is also a both-mover.

• Thread-local locks. If a lock is used by only a single thread, acquires and releases of that lock are both-movers.

• Thread-local (2) locks. Adding another Thread-local state, as in our Lockset algorithm, eliminates false alarms
caused by initialization patterns in which one thread creates and initializes a protected object, and then transfers
ownership of both the object and its protecting lock to another thread.

• Protected locks. Suppose each thread always holds some lock m1 before acquiring lock m2. In this case, two threads
cannot attempt to acquire m2 simultaneously, and so operations on the lock m2 are also both-movers.

In essence, these improvements lead us to treat lock operations in a similar fashion to field accesses. The only
major difference is that locks do not have a notion of Read-Shared. The Thread-local and Thread-local (2) extensions
are unsound for reasons similar to the analogous states in the race detector described in Section 4.1.

4.4. Write-protected data

Consider the following two methods, in which the variable x is protected by a lock for all writes, but not protected
for reads.

/*# atomic */ int read() {
return x;

}

/*# atomic */ void inc() {
synchronized (lock) {

x = x+1;
}

}

If x is a 32-bit variable, then the read() method is atomic on a sequentially-consistent machine, even though no
protecting lock is held. Despite the presence of such unprotected reads, the inc() method is also atomic. In particular,
when the lock is held, a read of x is a both-mover, since no other thread can write to x without holding the lock.

To handle examples like this one, we use a variant of the Lockset algorithm that implies a pair of lock sets for each
program variable. That is, we extend the instrumentation store ϕ to map each variable x to two lock sets:

(1) an access-protecting lock set ϕ(x, A), which contains locks held on every access (read or write) to that field, and

(2) a write-protecting lock set ϕ(x, W), which contains locks held on every write to that field.

The instrumentation store now has the type

ϕ : (Tid → {PreCommit, PostCommit, Outside}) ∪ (Var × {A, W} → 2Lock)

The access-protecting lock set ϕ(x, A) is always a subset of the write-protecting lock set ϕ(x, W). Both lock sets
initially contain all locks, that is, ϕ0(x, A) = ϕ0(x, W) = Lock.

The new relation Σ Va
t ϕ′ shown in Fig. 15 implies these lock-set pairs and uses them to more precisely determine

which operations are movers and which are non-movers. A field read is a both-mover if the current thread holds at
least one of the write-protecting locks (see [INS3 READ]); otherwise the read is a non-mover and may be a benign race
condition (see [INS3 READ RACE]) or may cause an atomicity violation (see [WRONG3 READ]). In contrast, a field
write is a both-mover only if the access-protecting lock set is nonempty (see [INS3 WRITE]); otherwise the write is a
non-mover (see [INS3 WRITE RACE] and [WRONG3 WRITE]).

Using the new instrumented semantics, the Atomizer can imply that inc() is atomic, since it consists of a right-
mover (the lock acquire); a both-mover (the read of x); an atomic action (since the write of x does not commute with
concurrent reads of other threads); and a left-mover (the lock release). In comparison, existing race-detection tools
would produce a warning about the race condition in read(), even though this race condition is benign and does not
affect the atomicity of either method.
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Fig. 15. Instrumented operations 3: Σ Va
t ϕ′ and Σ Va

t wrong.

5. Evaluation

This section summarizes our experience applying the Atomizer to the following twelve benchmark programs:

• elevator, a discrete event simulator for elevators [15] configured with the small default data file;
• hedc, a tool to access astrophysics data from Web sources [15] configured with the default configuration;
• tsp, a Travelling Salesman Problem solver [15] configured to solve the problem for the map16c input file with

eight threads;
• sor, a scientific computing program [15] configured to perform 50 iterations of computation with two threads;
• mtrt, a multithreaded ray-tracing program from the SPEC JVM98 benchmark suite [33];
• jigsaw, an open source web server [34] configured to serve a fixed number of pages to a crawler;
• specJBB, the SPEC JBB2000 business object simulator [33] modified to process a fixed number of transactions;
• moldyn, montecarlo, and raytracer from the Java Grande benchmark suite [35] (all configured to use four

threads and the small problem size);
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Fig. 16. Summary of test programs and performance, when configured with the Export+Synch heuristic.

• webl, a scripting language interpreter for processing web pages, configured to execute a simple web crawler [36];
• lib-java, an uninstrumented test harness (comprised of webl, jbb, and hedc) that tests an instrumented version

of the standard Java libraries java.lang, java.io, java.net, and java.util. (All programs other than
lib-java use uninstrumented libraries.)

The Atomizer instrumented these programs using both the Synch and Export+Synch heuristics described in
Section 4. To ensure that our measurements would accurately reflect the cost of the underlying analysis, for these tests
the Atomizer did not record stack histories for atomic block entry and commit points. We performed the experiments
on a Red Hat Linux 8.0 computer with dual 3.06 GHz Pentium 4 Xeon processors and 2 GB of memory. We used the
Sun JDK 1.4.2 compiler and virtual machine for all benchmarks except lib-java, for which we used the Sun JDK
1.3.1 virtual machine due to compatibility problems.

Fig. 16 presents several statistics for the test programs using all the extensions from Sections 4.3 and 4.4 and the
Export+Synch heuristic. The “Num. Threads” column shows the number of threads created during execution; the
“Num. Locks” column shows the number of distinct locks acquired during execution; and the “Max. Locks Held”
column shows the maximum number of locks held at the same time by any thread during execution. The number of
locks and distinct lock set pairs were relatively small for most programs, although the larger programs used many
objects as locks, in some cases several orders of magnitude more than in comparably-sized C programs [1].

The slowdown incurred by the instrumentation varied from 2.2x to roughly 50x . We only report slowdowns for
compute-bound programs. Those programs with very little slowdown, such as sor and montecarlo, spent most of the
time in uninstrumented library code. We believe that slowdowns of 20x–40x are representative for most programs.
We did not focus on efficiency in this prototype, however, and there is much room for improvement. In particular,
static analyses have reduced the overhead of dynamic race detection to under 50% [15], which suggests that similar
performance could be achieved when checking atomicity.

Fig. 18 illustrates the benefit of the various analysis extensions described in Sections 4.3 and 4.4, under the
Export+Synch heuristic. The “Basic” column indicates the number of warnings reported for each program using the
basic Lockset and reduction algorithms. The succeeding columns show the number of warnings as each refinement to
the algorithm is added. Cumulatively, these five refinements are quite effective: they reduce the number of warnings
by roughly 70% (from 341 to 97).

We next consider the behaviour of the Atomizer with all of these extensions enabled. Fig. 17 presents the number of
warnings and errors identified by the Atomizer under both the Export+Synch and Synch heuristics. For each heuristic,
the “Warnings” column reports the number of atomic blocks that failed the Atomizer’s atomicity requirements, and the
“Errors” column reports the number of these warnings that we consider errors, either because they lead to undesirable
program behaviour or because they violate documented atomicity properties. Despite checking only mature software,
the Atomizer identified a number of potentially damaging errors, which we discuss in more detail below.

On the lib-java benchmark, the Atomizer detected an atomicity violation in the synchronized method
PrintStream.println(String s), which uses two method calls to write the string s and the following new-line
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Fig. 17. Summary of atomizer warnings.

Fig. 18. Warnings reported by the Atomizer under different configurations, using the Export+Synch heuristic.

character to a stream stored in the instance variable out. Another thread could concurrently write to out, thus
potentially corrupting the output stream. Since the println method is synchronized, this error was detected under
both heuristics. Notably, this error was not caused by a race condition, and so would not be detected by a race detector.
A comparable error in PrintWriter had been previously identified by a static type system for atomicity [19], but that
system requires a significant number of programmer-inserted annotations. Other errors in lib-java include known
problems with iterators for collections (such as Hashtable) in the presence of concurrent modifications [23].

On the jigsaw benchmark, the Atomizer detected an error in the method ResourceStoreManager.load
ResourceStore, where a specific interleaving could allow an entry to be added to a resource store after the store
had been closed as part of the shutdown process. This error was only detected under the Export+Synch heuristic, since
this method is not synchronized. As before, this error was not caused by race conditions, and would not be detected
by a race detector. This particular error was previously detected using a static view consistency analysis [15].

On the raytracer benchmark, the Atomizer detected an atomicity violation in the JGFRayTracerBench class,
which was caused by race conditions on a checksum field. Similarly, on the hedc benchmark, the Atomizer detected
an atomicity error caused by race conditions on a java.util.Calendar object that was improperly shared among
multiple threads.

In most programs, the warnings that did not indicate defects could be suppressed by inserting a handful of
annotations. A significant number of false alarms were due to the overly-optimistic heuristics employed to identify
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atomic blocks. Identifying atomic blocks via explicit /*# atomic */ declarations instead of using these heuristics
would produce fewer false alarms. For example, atomicity violations were often reported on methods called near the
top-level entry points of the program (the main and run methods), but many such methods are not intended to be
atomic and would not be labeled as atomic by a programmer.

Other common sources of false alarms include double-checked locking patterns, lazy initialization patterns, and
various caching idioms. These programming idioms are notoriously problematic for analysis tools based on race
detection and are discussed in more detail in [16]. Although some of these practices, such as double-checked locking,
are incompatible with the Java’s relaxed memory model specification [22], we classify them as false alarms since they
do not cause problems in most current Java environments [16].

During these tests, the Atomizer also recognized five fields with benign race conditions that did not lead to atomicity
violations (under our simplifying assumption that the memory model is sequentially consistent). The Atomizer does
not report spurious warnings for these benign races.

Overall, the Atomizer found no potential atomicity violations in over 90% of the methods annotated as atomic that
were exercised during our test runs. These statistics suggest that atomicity is a fundamental design principle in many
multithreaded systems, especially library classes and reusable application components.

6. Related work

Lipton [29] first proposed reduction as a way to reason about concurrent programs without considering all possible
interleavings. He focused primarily on checking deadlock freedom. Doeppner [37], Back [38], and Lamport and
Schneider [39] extended this work to allow proofs of general safety properties. Cohen and Lamport [40] extended
reduction to allow proofs of liveness properties. Misra [41] has proposed a reduction theorem for programs built with
monitors [21] communicating via procedure calls.

Eraser [1] introduced the Lockset algorithm for dynamic race detection. This approach has been extended to object-
oriented languages [32] and has been improved for precision and performance [14,17]. O’Callahan and Choi [16]
recently combined the Lockset algorithm with a happens-before analysis to reduce false alarms in a dynamic race
detector for Java programs.

A number of static race detectors have also been developed. Warlock [10] is a static race detection system for C
programs. ESC/Java [11] statically catches a variety of software defects, including race conditions. Other approaches
for static race and deadlock prevention are discussed in earlier papers [4,5,3]; these include model checking [12,13,42],
dataflow analysis [43], abstract interpretation [44], and type systems for process calculi [45,46].

In previous work, we produced a type system [3] that prevents violations of the lock-based synchronization
discipline. Since then, similar type systems have been developed that include a notion of object ownership [7], and that
target other languages such as Cyclone [9], a type-safe variant of C. Compared to dynamic techniques, these static
type systems provide stronger soundness guarantees and detect errors earlier in the development cycle, but require
more effort from programmer. Type inference techniques have also been developed for such type systems [28].

Agarwal and Stoller [47] have developed a dynamic analysis tool that computes many of the annotations necessary
for applying a type-based static analysis [7], thereby reducing the overhead of applying static tools to large,
unannotated legacy systems. We believe that the Atomizer can be extended to output annotations regarding the locking
discipline and the atomicity requirements for methods in much the same way.

While some of these race detection tools have been quite effective, they may fail to detect atomicity violations and
may yield false alarms on benign race conditions that do not violate atomicity.

Bacon et al. developed Guava [48], an extension to the Java language with a form of monitor capable of sharing
object state in a way that prevents race conditions. The Atomizer would work very well for languages like Guava, since
language-enforced race freedom would eliminate several common sources of false alarms observed while checking
programs written in languages that permit races.

In recent work, Flanagan and Qadeer developed a static type system to verify atomicity in Java programs
[30,19]. In comparison to the Atomizer, the type system provides better coverage and soundness guarantees, but is
less expressive (for example, it does not fully support redundant locking). The type system also requires programmer-
inserted annotations that specify properties such as the locking discipline followed by the program. The expressiveness
of this type system has been extended by exploiting the notion of pure expressions [25]. We have recently explore
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type inference for this system [26] as a way to eliminate some of the overhead of using type-based techniques. In
similar work, Sasturkar et al. [49] have explored static atomicity inference combined with a runtime race-condition
analysis.

This type system for atomicity was inspired by the Calvin-R [27] static checking tool for multithreaded programs.
Calvin-R supports modular verification of multithreaded programs by annotating each procedure with a specification;
this specification is related to the procedure implementation via abstraction relation that combines the notions of
simulation and reduction. In ongoing work, the notions of reduction and atomicity are used by Qadeer et al. [50] to
infer concise procedure summaries in an analysis for multithreaded programs.

An alternative approach for verifying atomicity using model checking is being explored by Hatcliff et al. [51].
In addition to using Lipton’s theory of reduction, they also investigate an approach based on partial order reductions.
Their experimental results suggest that the model-checking approach for verifying atomicity is feasible for unit testing,
where the reachable state space is smaller than in integration testing. A more general (but more expensive) technique
for verifying atomicity during model checking is commit-atomicity [52].

Wang and Stoller have developed an alternative block-based approach to verifying atomicity. In comparison to
our approach based on reduction, their block-based approach is more precise but is significantly slower for some
programs. A detailed experimental comparison of the two approaches is presented in [24].

Atomicity is a semantic correctness condition for multithreaded software. In this respect, it is similar to strict
serializability [53], a correctness condition for database transactions, and linearizability [54], a correctness condition
for concurrent objects. Verifying that an object is linearizable requires full program verification. We hope that our
analysis for atomicity can be leveraged to develop lightweight checking tools for related correctness conditions.

Artho et al. [20] have developed a dynamic analysis tool to identify one class of “higher-level races”. The analysis
is based on the notion of view consistency. Intuitively, a view is the set of variables accessed within a synchronized
block. Thread A is view consistent with B if all views from the execution of A, intersected with the maximal view of
B, are ordered by subset inclusion. Violations of view consistency can indicate that a program may be using shared
variables in a problematic way. View consistency violations can also be detected statically [55]. ESC/Java has been
extended to catch a different notion of higher-level races, where a stale value from one synchronized block is used in
a subsequent synchronized block [18].

While our tool checks atomicity, other researchers have proposed using atomicity as a language primitive,
essentially implementing the serialized semantics 7→. Lomet [56] first proposed the use of atomic blocks for
synchronization. The Argus [57] and Avalon [58] projects developed language support for implementing atomic
objects. Persistent languages [59,60] are attempting to augment atomicity with data persistence in order to
introduce transactions into programming languages. A more recent approach to supporting atomicity uses lightweight
transactions implemented in the runtime system [61]. An alternative is to generate synchronization code automatically
from high-level specifications [62].

7. Conclusions

Developing reliable multithreaded software is notoriously difficult, because concurrent threads often interact
in unexpected and erroneous ways. Programmers try to avoid unintended interactions by designing methods and
interfaces that are atomic, but traditional testing techniques are inadequate for verifying atomicity.

This paper presents a dynamic analysis designed to catch atomicity violations would be missed by traditional
testing or (static or dynamic) race-detection techniques. This analysis has been implemented and applied to a
range of benchmark programs, and has successfully detected atomicity violations in these programs. In addition,
our experimental results suggest that over 90% of the methods in our benchmarks are atomic, which validates our
hypothesis that atomicity is a fundamental design principle in multithreaded programs.

For future work, we hope to study hybrid atomicity checkers based on a synthesis of the dynamic and static
approaches. In one combination, a static type-based analysis may verify many expected race-freedom and atomicity
properties, and the dynamic atomicity checker could then focus on the unverified residue. For race detection, this
hybrid approach has reduced the instrumentation overhead by an order of magnitude [15,16]; we expect comparable
improvements when checking atomicity.
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