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Abstract. The race condition checker rccjava uses a formal type sys-
tem to statically identify potential race conditions in concurrent Java pro-
grams, but it requires programmer-supplied type annotations. This paper
describes a type inference algorithm for rccjava. Due to the interaction of
parameterized classes and dependent types, this type inference problem is
NP-complete. This complexity result motivates our new approach to type
inference, which is via reduction to propositional satisfiability. This paper
describes our type inference algorithm and its performance on programs of
up to 30,000 lines of code.

1 Introduction

A race condition occurs when two threads in a concurrent program manipulate
a shared data structure simultaneously, without synchronization. Errors caused
by race conditions are notoriously hard to catch using testing because they are
scheduling dependent and difficult to reproduce. Typically, programmers attempt
to avoid race conditions by adopting a programming discipline in which shared
variables are protected by locks.

In a previous paper [10], we described a static analysis tool called rccjava
that enforces this lock-based synchronization discipline. The analysis performed
by rccjava is formalized as a type system, and it incorporates features such as
dependent types (where the type of a field describes the lock protecting it) and
parameterized classes (where fields in different instances of a class can be protected
by different locks).

Our previous evaluation of rccjava indicates that it is effective for catching
race conditions. However, rccjava relies on programmer-inserted type annota-
tions that describe the locking discipline, such as which lock protects a particular
field. The need for these type annotations limits rccjava’s applicability to large,
legacy systems. Hence, to achieve practical static race detection for large programs,
annotation inference techniques are necessary.

In previous work along these lines, we developed Houdini/rcc [11], a type in-
ference algorithm for rccjava that heuristically generates a large set of candidate
type annotations and then iteratively removes all invalid annotations. However,
this approach could not handle parameterized classes or methods, which limits its
ability to handle many of the synchronization idioms of real programs.
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In the presence of parameterized classes, the type inference problem for rccjava
is NP-complete, meaning that any type inference algorithm will have an exponen-
tial worst-case behavior. This complexity result motivates our new approach to
type inference, which is via reduction to propositional satisfiability. That is, given
an unannotated (or partially-annotated) program, we translate this program into
a propositional formula that is satisfiable if and only if the original program is
typeable. Moreover, after computing a satisfying assignment for the generated for-
mula, we translate this assignment into appropriate annotations for the program,
yielding a valid, explicitly-typed program. This approach works well in practice,
and we report on its performance on programs of up to 30,000 lines of code.

Producing a small number of meaningful error messages for erroneous or un-
typeable programs is often challenging. We tackle this aspect of type inference by
generating a weighted Max-SAT problem [4] and producing error messages for the
unsatisfied clauses in the optimal solution. Our experience shows that the resulting
warnings often correspond to errors in the original program, such as accessing a
field without holding the appropriate lock.

We have implemented our type inference algorithm in the Rcc/Sat tool for
multithreaded Java programs. Experiments on benchmark programs demonstrate
that it is effective at inferring valid type annotations for multithreaded code. The
algorithm’s precision is significantly improved by performing a number of standard
analyses, such as control-flow and escape analysis, prior to type checking.

The key contributions of this paper include:

– a type inference algorithm based on reduction to propositional satisfiability;
– a refinement of this approach to generate useful error messages via reduction

to weighted MAX-SAT; and
– experimental results that validate the effectiveness of this approach.

The annotations constructed by Rcc/Sat also provide valuable documentation to
the programmer; facilitate checking other program properties such as atomicity [16,
15, 12]; and can help reduce state explosion in model checkers [26, 27, 14, 9].

2 Types Against Races

2.1 Type Checking

This section introduces rfj2, an idealized multithreaded subset of Java with a type
system that guarantees race freedom for well-typed programs. This type system
extends our previous work on the rccjava type system [10], for example with
parameterized methods. To clarify our presentation, rfj2 also simplifies some
aspects of rccjava. For example, it does not support inheritance. (Inheritance
and other aspects of the full Java programming language are dealt with in our
implementation, described in Section 4.)

An rfj2 program (see Figure 1) is a sequence of class declarations together with
an initial expression. Each class declaration associates a class name with a body
that consists of a sequence of field and method declarations. The self-reference
variable “this” is implicitly bound within the class body.



P ::= defn∗ e (program)
defn ::= class cn〈ghost x∗〉 { field∗ meth∗ } (class declaration)
field ::= t fn guarded by l (field declaration)
meth ::= t mn〈ghost x∗〉(arg∗) requires s { e } (method declaration)

arg ::= t x (argument declaration)
c, t ::= cn〈l∗〉 (type)

l ::= x | α | l · θ (lock expression)
s ::= ∅ | {l} | s ∪ s | β | s · θ (lock set expression)
θ ::= [x1 := l1, . . . , xn := ln] (substitution)

e, f ::= x | null | new c(e∗) | e.fn | e.fn = e | e.mn〈l∗〉(e∗) (expressions)
| let x = e in e | synchronized x e | e.fork

α ∈ LockVar
β ∈ LockSetVar

x , y ∈ Var
cn ∈ ClassName

fn ∈ FieldName
mn ∈ MethodName

Fig. 1. The idealized language rfj2.

The rfj2 language includes type annotations that specify the locking discipline.
For example, the type annotation guarded by x on a field declaration states that
the lock denoted by the variable x must be held whenever that field is accessed
(read or written). Similarly, the type annotation requires x1, . . . , xn on a method
declaration states that these locks are held on method entry; the type system
verifies that these locks are indeed held at each call-site of the method, and checks
that the method body is race-free given this assumption.

The language provides parameterized classes, to allow the fields of a class to
be protected by some lock external to the class. A parameterized class declaration

class cn〈ghost x1 . . . xn〉 { . . . }
introduces a binding for the ghost variables x1 . . . xn, which can be referred to
from type annotations within the class body. The type cn〈y1 . . . yn〉 refers to an
instantiated version of cn, where each xi in the body is replaced by yi. As an
example, the type Hashtable〈y1, y2〉 may denote a hashtable that is protected by
lock y1, where each element of the hashtable is protected by lock y2.

The rfj2 language also supports parameterized method declarations, such as

t m〈ghost x〉(cn〈x〉 y) requires x { . . . }
which defines a method m that is parameterized by lock x, and which takes an
argument of type cn〈x〉. A corresponding invocation e.m〈z〉(e′) must supply a
ghost argument z and an actual parameter e′ of type cn〈z〉.

Expressions include object allocation new c(e∗), which initializes a new ob-
ject’s fields with its argument values; field read and update; method invocation;
and variable binding and reference. The expression synchronized x e is evaluated
in a manner similar to Java’s synchronized statement: the lock for object x is
acquired, the subexpression e is then evaluated, and finally the lock is released.
The expression e.fork starts a new thread. Here, e should evaluate to an object
that includes a nullary method run. The fork operation spawns a new thread that
calls that run method.



(a) Example Program Ref

class Lock〈〉 { }
class Ref〈ghost x〉 {

int y guarded by α1
boolean lessThan(Ref〈α2〉 o) requires β {

this.y < o.y ;
}

}

let lock = new Lock〈〉();
r1 = new Ref〈α3〉(1);
r2 = new Ref〈α4〉(2)

in synchronized (lock) {
r1.lessThan(r2);

}

(b) Constraints

α1 ∈ { this, x } declaration of y
α2 ∈ { this, x } declaration of lessThan
β ⊆ { this, x, o } declaration of lessThan

α3 ∈ { lock } first new expression
α4 ∈ { lock, r1 } second new expression

α1 ∈ β access to this.y
α1[this := o, x := α2] ∈ β access to o.y

β[this := r1, x := α3, o := r2] ⊆ {lock} requires clause for call
α2[this := r1, x := α3, o := r2] = α4 parameter type eq call

(c) Conditional Assignment

Y (α1) = (b1?this : x) declaration of y
Y (α2) = (b2?this : x) declaration of lessThan
Y (β) = (b4?this : ∅) ∪ (b5?x : ∅) ∪ (b6?o : ∅) declaration of lessThan

Y (α3) = lock first new expression
Y (α4) = (b3?lock : r1) second new expression

(d) Boolean Constraints

(b1?this : x) ∈ (b4?this : ∅) ∪ (b5?x : ∅) ∪ (b6?o : ∅) access to this.y
(b1?o : (b2?this : x)) ∈ (b4?this : ∅) ∪ (b5?x : ∅) ∪ (b6?o : ∅) access to o.y

(b4?r1 : ∅) ∪ (b5?lock : ∅) ∪ (b6?r2 : ∅) ⊆ {lock} requires clause for call
(b2?r1 : lock) = (b3?lock : r1) parameter type eq call

(e) Boolean Formula

[(b1 ∧ b4) ∨ (¬b1 ∧ b5)]
∧ [(b1 ∧ b6) ∨ (¬b1 ∧ ((b2 ∧ b4) ∨ (¬b2 ∧ b5)))]
∧ [¬b4 ∧ ¬b6]
∧ [(b2 ∧ ¬b3) ∨ (¬b2 ∧ b3)]

access to this.y
access to o.y
requires clause for call
parameter type eq call

Fig. 2. Example program and type inference constraints.

The rfj2 type system leverages parameterized methods to reason about thread-
local data. (This approach replaces the escape by analysis embedded in our ear-
lier type system [10].) Specifically, the run method of each forked thread takes a
ghost parameter tl lock denoting a thread-local lock that is always held by that
thread:

t run〈ghost tl lock〉() requires tl lock { e }
Intuitively, the underlying run-time system creates and acquires this thread-local
lock when a new thread is created. This lock may be used to guard thread-local
data and may be passed as a ghost parameter to other methods that access thread-
local data. In a similar fashion, we also introduce an implicit, globally-visible lock
called main lock, which is held by the initial program thread and can be used to
protect data exclusively accessed by that thread.



2.2 Type Inference

Our previous evaluation of the race-free type system rccjava indicates that it
is effective for catching race conditions [10]. However, the need for programmer-
inserted annotations limits its applicability to large, legacy systems, which moti-
vates the development of type inference techniques for race-free type systems.

In this paper we describe a novel type inference system for rfj2. We introduce
lock variables α and lockset variables β, collectively referred to as locking variables.
Locking variables may be mentioned in type annotations, as in guarded by α,
requires β, or cn〈α1, α2〉. During type inference, each lock variable α is resolved
to some specific program variable in scope, and each lock set variable β is resolved
to some set of program variables in scope. As an example, Figure 2(a) presents
a simple reference cell implementation, written in rfj2 extended with primitive
types and operations, that contains locking variables.

An rfj2 program is explicitly-typed if it does not contain locking variables. The
type inference problem is, given a program with locking variables, to resolve these
locking variables so that the resulting explicitly-typed program is well-typed.

Parameterized classes introduce substitutions that complicate the type infer-
ence problem. We use the notation [x1 := l1, . . . , xn := ln] to denote a substitution
θ that replaces each program variable xi with the lock expression l i. To illustrate
the need for these substitutions, consider the class declaration:

class cn〈ghost x〉 { t fn guarded by l ; }
If a variable p has type cn〈y〉, then the field p.fn is protected by θ(l), where
the substitution θ ≡ [x := y] replaces the formal ghost parameter x by the ac-
tual parameter y. The application of a substitution to most syntactic entities is
straightforward; however, the application of a substitution θ to a lock expression l
is delayed until any lock variables α in the lock expression are resolved. We use the
syntax l ·θ to represent this delayed substitution. Similarly, if the lock set expression
s denote the set of locks in a method’s requires clause, then the application of a
substitution θ to s yields the delayed substitution s · θ. The following examples
illustrate the application of a substitution to various syntactic entities. (Due to
space limitations, we do not present an exhaustive definition.)

θ(x) = l if θ ≡ [. . . , x := l, . . .]
θ(synchronized x e) = synchronized θ(x) θ(e)

θ(l) = l · θ
θ(s) = s · θ

Since the type rules reason about delayed substitutions, we include these delayed
substitutions in the programming language syntax, but we require that substitu-
tions do not appear in source programs.

The type rules for rfj2 generate a collection of constraints that contain de-
layed substitutions. These constraints include equality constraints between lock
expressions and containment constraints between lock set expressions:

C ::= s ⊆ s | l = l

The core of the type system is defined by the judgment:

P ; E; s � e : t & C̄



Here, the program P is included to provide access to class declarations; E is an
environment providing types for the free variables of the expression e; the lock set
s describes the locks held when executing e; t is the type inferred for e; and C̄ is
the generated set of constraints.

Most of the type rules are straightforward. The complete set of type judgments
and rules is contained in Appendix A. Here we briefly explain two of the more
crucial rules. The rule for synchronized x e checks e with an extended lock set
that includes x, since the lock x is held when evaluating e. The rule for e.fn checks
that e is a well-typed expression of some class type cn〈l1..n〉 and that cn has a
field fn of type t, guarded by lock l.

P ; E; s � x : t′ & C̄
P ; E; s ∪ {x} � e : t & C̄′

P ; E; s � synchronized x e : t & (C̄ ∪ C̄′)

P ; E; s � e : cn〈l1..n〉 & C̄
class cn〈ghost x1..n〉 {. . . t fn guarded by l . . .} ∈ P

θ = [this := e, xj := lj
j∈1..n]

P ; E � θ(t)

P ; E; s � e.fn : θ(t) & (C̄ ∪ {θ(l) ∈ s})

Since the protecting lock expression l (and type t) may refer to the ghost pa-
rameters x1..n and the implicitly-bound self-reference this, neither of which are
in scope at the field access, we introduce the substitution θ which substitutes ap-
propriate expressions for these variables. The constraint θ(l) ∈ s, an abbreviation
for {θ(l)} ⊆ s, ensures that the substituted lock expression is in the current lock
set. The type of the field dereference is computed by applying the substitution θ
to the field type t, which must yield a well-formed type.

The type system defines the top-level judgment P � C̄, where C̄ is the gener-
ated set of constraints for the program P . Applying these type rules to the example
program Ref of Figure 2(a) yields the constraints shown in Figure 2(b). (We ignore
main lock in this example for simplicity).

We next address the question of when the generated constraints over the locking
variables are satisfiable. An assignment

A : (LockVar → Var) ∪ (LockSetVar → 2Var )

resolves all lock and lock set variables to corresponding program variables and sets
of program variables, respectively. We extend assignments to lock expressions, lock
set expressions, and substitutions. In particular, since an assignment resolves all
locking variables, any delayed substitutions can be immediately performed.

A : l → Var
A(x) = x

A(l · θ) = A(θ)(A(l))

A : s → 2Var

A(∅) = ∅
A({l}) = {A(l)}

A(s1 ∪ s2) = A(s1) ∪ A(s2)
A(s · θ) = A(θ)(A(s))

A : θ → θ
A([x1 := l1, . . . , xn := ln]) =
[x1 := A(l1), . . . , xn := A(ln)]

We extend assignments in a compatible manner to other syntactic units, such as
constraints, expressions, programs, etc.

An assignment A satisfies a constraint C (written A |= C) as follows:

A |= s1 ⊆ s2 iff A(s1) ⊆ A(s2)
A |= l1 = l2 iff A(l1) = A(l2)



If A |= C for all C ∈ C̄ then we say A is a solution for C̄, written A |= C̄. A set
of constraints C̄ is valid, written |= C̄, if every assignment is a solution for C̄. For
example, the constraints of Figure 2(b) for the program Ref are satisfied by the
assignment: α1 = α2 = x, α3 = α4 = lock, and β = {x}.

We say P is well-typed if P � C̄ and the constraints C̄ are satisfiable. If a
solution A for the constraints C̄ exists, the following theorem states that the
explicitly-typed program A(P ) is well-typed. (Proofs for the theorems in this paper
appear in an extended report [13].)

Theorem 1. If P � C̄ and A |= C̄ then A(P ) � A(C̄) and |= A(C̄).

For explicitly-typed programs, since the generated constraints C̄ do not contain
locking variables, checking the satisfiability of C̄ is straightforward. In the more
general case where P is not explicitly-typed, the type inference problem involves
searching for a solution A for the generated constraints C̄. Due to the interaction
between parameterized classes and dependent types, the type inference problem
for rfj2 (and similarly for rccjava) is NP-complete. (The proof is via a reduction
from propositional satisfiability.)

Theorem 2. For an arbitrary program P , the problem of finding an assignment
A such that A(P ) is explicitly-typed and A(P ) � C̄ and |= C̄ is NP-complete.

Despite this worst-case complexity result, we demonstrate a technique in the
next section that has proven effective in practice.

3 Solving Constraint Systems

3.1 Generating Boolean Constraints

For each lock variable α mentioned in the program, the type rules introduce a scope
constraint α ∈ {x1, . . . , xn} that constrains α to be one of the variables x1, . . . , xn

in scope. A similar constraint β ⊆ {x1, . . . , xn} is introduced for each lock set
variable β. These scope constraints specify the possible choices for each locking
variable, and enable us to translate each constraint C over locking variables into
a Boolean constraint D that uses Boolean variables to encode the possible choices
for each locking variable. The notation b ? X : Y denotes X if the Boolean variable
b is true, and denotes Y otherwise.

D ::= S ⊆ S | L = L (Boolean constraints)
L ::= x | b ?L : L (conditional lock expressions)
S ::= ∅ | {L} | b ?S : S | S ∪ S (conditional lock set expressions)
b ∈ BoolVar (Boolean variables)

From the scope constraints, we generate a conditional assignment Y that en-
codes the possible choices for each locking variable. For example, the scope con-
straint α ∈ {x1, . . . , xn} yields:

Y (α) = b1?x1 : (b2?x2 : (. . . bn−1?xn−1 : xn) . . .)



where each Boolean variable bi is fresh.3 Similarly, the scope constraint β ⊆
{x1, . . . , xn} yields:

Y (β) = (b1?{x1} : ∅) ∪ · · · ∪ (bn?{xn} : ∅)
We extend the conditional assignment

Y : (LockVar → L) ∪ (LockSetVar → S )

to translate each constraint C to a Boolean constraint D = Y (C), and to translate
lock expressions, lock set expressions, and substitutions, as follows. Since the con-
ditional assignment (conditionally) resolves locking variables, as part of this trans-
lation we immediately apply any delayed substitutions, to yield a substitution-free
Boolean constraint:

Y : C → D
Y (s1 ⊆ s2) = Y (s1) ⊆ Y (s2)
Y (l1 = l2) = Y (l1) = Y (l2)

Y : l → L
Y (x) = x

Y (l · θ) = Y (θ)(Y (l))

Y : s → S
Y (∅) = ∅

Y ({l}) = {Y (l)}
Y (s1 ∪ s2) = Y (s1) ∪ Y (s2)

Y (s · θ) = Y (θ)(Y (s))

Y ([x1 := l1, . . . , xn := ln]) =
[x1 := Y (l1), . . . , xn := Y (ln)]

Figure 2(c) and (d) show the conditional assignment and Boolean constraints for
the example program Ref.

A truth assignment assigns truth values to Boolean variables:

B : BoolVar ⇀ Boolean

We extend truth assignments to L and S in a straightforward manner:

B : L → Var
B(x) = x

B(b ?L1 : L2) =

{
B(L1) if B(b)
B(L2) if ¬B(b)

B : S → 2Var

B(∅) = ∅
B({L}) = {B(L)}

B(b ?S1 : S2) =

{
B(S1) if B(b)
B(S2) if ¬B(b)

B(S1 ∪ S2) = B(S1) ∪ B(S2)

A truth assignment B satisfies a set of Boolean constraints D̄ if B |= D for each
D ∈ D̄, where:

B |= S1 ⊆ S2 iff B(S1) ⊆ B(S2)
B |= L1 = L2 iff B(L1) = B(L2)

For example, the Boolean constraints of Figure 2(d) are satisfied by the following
truth assignment: b1 = b2 = b4 = b6 = false and b3 = b5 = true.

The application of a truth assignment B to a conditional assignment Y yields
the (unconditional) assignment B(Y ) defined by:

B(Y )(x) = B(Y (x))

The translation from constraints to Boolean constraints is semantics-preserving,
in the sense that if the generated Boolean constraints are satisfiable, then the orig-
inal constraints are also satisfiable.
3 We could encode the same choice as a decision tree with only log n Boolean variables.



Theorem 3. Suppose D̄ = Y (C̄) and let B be a truth assignment. Then B(Y ) |=
C̄ if and only if B |= D̄.

3.2 Solving Boolean Constraints

The final step is to find a truth assignment B satisfying the generated Boolean
constraints D̄. We accomplish this step by translating D̄ into a Boolean formula
F , which can then be solved by a standard propositional satisfiability solver such
as Chaff [22]. The Boolean formula syntax and this translation are as follows:

F ::= true | false | b | F ∨ F | F ∧ F | ¬F

[[·]] : D̄ → F
[[D̄]] = ∧D∈D̄[[D]]

[[·]] : D → F

[[x = x]] = true
[[x = y]] = false if x �≡ y

[[L = (b?L1 : L2)]] = (b ∧ [[L = L1]])
∨(¬b ∧ [[L = L2]])

[[(b?L1 : L2) = L]] = [[L = (b?L1 : L2)]]
[[∅ ⊆ S]] = true

[[(S1 ∪ S2) ⊆ S]] = [[S1 ⊆ S]]
∧[[S2 ⊆ S]]

[[(b?S1 : S2) ⊆ S]] = (b ∧ [[S1 ⊆ S]])
∨(¬b ∧ [[S2 ⊆ S]])

[[{L} ⊆ ∅]] = false
[[{L} ⊆ (b?S1 : S2)]] = (b ∧ [[{L} ⊆ S1]])

∨(¬b ∧ [[{L} ⊆ S2]])
[[{L} ⊆ (S1 ∪ S2)]] = [[{L} ⊆ S1]]

∨[[{L} ⊆ S2]]
[[{L1} ⊆ {L2}]] = [[L1 = L2]]

Figure 2(e) presents the formulas for the four constraints from our example
program. This translation is semantics preserving with respect to the standard
notion of satisfiability B |= F for Boolean formulas.

Theorem 4. If F = [[D̄]] then for all B, B |= F if and only if B |= D̄.

In summary, our type inference algorithm proceeds as follows: Given a program
P with locking variables, we generate from P a collection of constraints C̄ over
the locking variables; we extract a conditional assignment Y from C̄ and generate
Boolean constraints D̄ = Y (C̄); and we generate a corresponding Boolean for-
mula F = [[D̄]]. We use a propositional satisfiability solver to determine a truth
assignment B for F , in which case we also have that B |= D̄ by Theorem 4 and
(B(Y )) |= C̄ by Theorem 3, and therefore the explicitly-typed program (B(Y ))(P )
is well-typed. Conversely, if the generated formula F is unsatisfiable, then there is
no assignment A such that the explicitly-typed program A(P ) is well-typed.

4 Implementation

We have implemented our inference algorithm in the Rcc/Sat checker, which sup-
ports the full Java programming language (although it does not currently detect
race conditions on array accesses). Rcc/Sat takes as input an unannotated or
partially-annotated program, where any typing annotations are provided in com-
ments starting with “#”, as in /*# guarded by y */.



Rcc/Sat begins by adding a predetermined number of ghost parameters to all
classes and methods lacking user-specified parameters. Next, for each unguarded
field, Rcc/Sat adds the annotation guarded by α, where α is fresh. Rcc/Sat also
uses fresh locking variables to add any missing requires annotations and class
and method instantiation parameters. Rcc/Sat then performs our type inference
algorithm. If the generated constraints are satisfiable, then the satisfying assign-
ment is used to generate an explicitly-typed version of the program. Section 4.2
outlines how we generate meaningful error messages when they are not.

4.1 Java Features

We handle additional features of the Java programming language as follows.
Scope constraints. In the rfj2 language, the only valid lock expressions are

variables in scope. When checking Java, however, Rcc/Sat permits lock expressions
to be any final object references, including: (1) this; (2) ghost parameters; (3)
variables, static fields, and parameters that are labeled final; and (4) well-typed
expressions of the form e.f , where e is a constant expression and f is a final field.
This set may be infinite, and we heuristically limit it to expressions with at most
two field accesses.

Interfaces, inheritance, and subtyping. Given the declaration
class C〈ghost a1,...,an〉 extends D〈ghost b1,...,bk〉 { ... }

we consider the type instantiation C〈l1..n〉 to be an immediate subtype of D〈m1..k〉
provided mi ≡ bi[aj := lj

j∈1..n] for all i ∈ 1..k. The subtyping relation is the
reflexive and transitive closure of this rule. An overriding method’s signature must
match the overridden method’s signature exactly, after applying the appropriate
type parameter substitutions induced by the inheritance hierarchy. Interfaces are
handled in a similar fashion.

Inner classes. Non-static inner classes may access the type parameters from
the enclosing class and may declare their own parameters. Thus, the complete type
for such a class is Outer〈l1..n〉.Inner〈m1..k〉.

Static fields, methods, and inner classes. Static members may not refer
to the enclosing class’ type parameters since static members are not associated
with a specific instantiation of the class.

Thread objects. In order to allow Thread objects to store thread-local data
in their fields, Rcc/Sat adds an implicit final field tl lock to each Thread class.
This field is analogous to (and replaces) the ghost parameter on the run method in
rfj2. It may guard other fields, and it is assumed to be held when run is invoked.

Escape mechanisms. We provide escapes from the rfj2 type system through
a “no warn” annotation that suppresses the generation of constraints for a line of
code. Also, since ghost parameters are erased at run time, the ghost parameters
in typecasts of the form (C〈a〉)x are unchecked, as in C, rather than dynamically
checked, as in Java.

4.2 Reporting Errors

We introduce two important improvements that enable the tool to pinpoint likely
errors in the program when the generated constraints are unsatisfiable.



First, we change the algorithm to check each field declaration in a program
separately, thereby enabling us to distinguish fields with potential races from those
that are race-free. To check a single field, we generate the constraints as before,
except that we only add field access constraints for accesses to the field of interest.
The analysis is compositional in this manner because the presence or absence of
races on one field is independence of races on other fields.

There is a possibility that the same locking variable will be assigned different
values when checking different fields. If this occurs, we can compose the results
of the separate checks together by introducing additional type parameters and
renaming locking variables as necessary. For example, if a type instantiation C〈α〉
of class C〈ghost x〉 becomes C〈l1〉 when checking one field of C and C〈l2〉 when
checking another, we can change the class declaration to C〈ghost x1, x2〉, and
instantiate it as C〈l1,l2〉 at the conflicting location.

Second, when there are race conditions on a field, it is often desirable to infer
the most likely lock protecting it and then generate errors for locations where that
lock is not held. For example, the following program is not well-typed:

1: class C〈ghost y〉 {
2: int c guarded by α;
3: void f1() requires y { c = 1; }
4: void f2() requires y { c = 2; }
5: void f3() requires this { c = 3; }
6: }

Our tool produces the following diagnostic message at the likely error site:

C.java:5: Lock ’y’ not held on access to ’c’. Locks held: { this }.

To pinpoint likely error locations in this way, we express type inference as an
optimization problem instead of a satisfiability problem. First, we add weights to
some of the generated constraints, as follows. A constraint C with weight w is
written as the weighted constraint W = C|w.

α ∈ {y, this, no lock} Scope constraint for c

α ∈ {y, this} |2 Requirement that c is guarded by a valid lock
α ∈ {y, no lock} |1 Access constraint for c from f1

α ∈ {y, no lock} |1 Access constraint for c from f2

α ∈ {this, no lock} |1 Access constraint for c from f3

These five constraints refer to no lock, a lock name used in the checker to indicate
that no reasonable guarding lock can be found for a field. Given constraints C̄ and
weighted constraints W̄ , we compute the optimal assignment A such that:

1. A |= C for all C ∈ C̄, and
2. the sum

∑
{w | C|w ∈ W̄ ∧ A |= C} is maximized.

Note that we do not require all constraints in W̄ be satisfied by A. For the con-
straints above, A is the assignment α = y, with a value of 4. We then generate
error messages for all constraints in W̄ that are not satisfied by A. The constraint
α ∈ {this, no lock} |1 is not satisfied by the optimal assignment A, yielding
the above error message. Conversely, if the optimal assignment A did not satisfy
the constraint α ∈ {y, this} |2, then we would generate the corresponding error
message:



C.java:2: No consistent guarding lock for field ’c’.

We have found that the heuristic of weighting declaration constraints 2–4 times
more than field access constraints works well in practice.

We solve the constraint optimization problem for W̄ and C̄ by translating the
constraints into a weighted Max-SAT problem and solving it with the PBS tool [4].
The translation is similar to the case without weights. PBS and similar tools can
find optimal assignments for formulas including up to 50–100 weighted clauses.
Optimizing over a larger number of weighted clauses is currently computationally
intractable. Thus, we still check one field at a time and only optimize over con-
straints generated by field accesses, placing all constraints for requires clauses
and type equality in C̄. If C̄ is not satisfiable, we forego the optimization step and
instead generate error messages for constraints in the smallest unsatisfiable core
of C̄, which we find with Chaff [22].

4.3 Improving Precision

Rcc/Sat implements a somewhat more expressive type system than that described
in Section 2 to handle the synchronization patterns of large programs more effec-
tively. In particular:

– Unreachable code is not type checked.
– Read-shared fields do not need guarding locks. A read-shared field is a field

that is initialized while local to its creating thread, and subsequently shared
in read-only mode among multiple threads.

– A field’s protecting lock need not be held for accesses occurring when only a
single thread exists or when the object has not yet escaped its creating thread.

Large programs typically relax the core lock-based synchronization discipline along
these lines. The checker uses quite basic implementations of rapid type analysis [5],
escape analysis [6], and control-flow analysis to identify unreachable code, single-
thread sections of code, and ranges in which references to newly created objects
have not yet escaped from the creating thread. We suspect that using more precise
analyses would further improve our type inference algorithm.

5 Evaluation

We applied Rcc/Sat to several benchmark programs, including elevator, a dis-
crete event simulator [30]; tsp, a Traveling Salesman Problem solver [30]; sor, a
scientific computing program [30]; the mtrt ray-tracing program and jbb business
objects simulator benchmarks [25]; and the moldyn, montecarlo, and raytracer
benchmarks [21]. We ran these experiments on a 3.06GHz Pentium 4 processor
with 2GB of memory, with Rcc/Sat configured to insert one ghost parameter on
classes and interfaces and two parameters on static methods.

Table 1 shows, for each benchmark, the size of that benchmark in lines of code,
the overall time for type inference, as well as the average type inference time per
field. It also shows the size of the constraint problem generated, in number of



Time/ Fields
Program Size Time Field Number of Formula Size Manual read- race- no

(LOC) (s) (s) Constraints vars clauses Annot. Total shared free guard

elevator 529 5.0 0.22 215 1,449 3,831 0 23 17 6 0
tsp 723 6.9 0.19 233 2,090 7,151 3 37 21 16 3
sor 687 4.5 0.15 130 562 1,205 1 29 22 7 0
raytracer 1,982 21.0 0.27 801 9,436 29,841 2 77 45 28 4
moldyn 1,408 12.6 0.12 904 4,011 10,036 3 107 57 44 6
montecarlo 3,674 20.7 0.19 1,097 9,003 25,974 1 110 68 42 0
mtrt 11,315 138.8 1.5 5,636 38,025 123,046 6 181 112 69 4
jbb 30,519 2,773.5 3.52 11,698 146,390 549,667 40 787 472 295 20

Table 1. Summary of test program performance.

constraints and the number of variables and clauses in the resulting Boolean for-
mula, after conversion to CNF. The preliminary analyses described in Section 4.3
typically consumed less than 2% of the run time on the larger benchmarks.

The “Manual Annotations” column reflects the number of annotations manu-
ally inserted to guide the analysis. We added these few annotations to suppress
warnings only in situations where immediately identifiable local properties en-
sured correctness. The manual annotations were inserted, for example, to delineate
single-threaded parts of the program after joining all spawned threads; to explicitly
instantiate classes in two places where the scope constraint generation heuristics
did not consider the appropriate locks; and to identify thread-local object ref-
erences not found by our escape analysis. In jbb, we also added annotations to
suppress spurious race-condition warnings on roughly 25 fields with benign races.
These fields were designed to be write-protected [12], meaning that a lock guarded
write accesses to them, but read accesses were not synchronized. This idiom is
unsafe if misused but permits synchronization-free accessor methods.

The last four columns show the total number of fields in the program, as well
as their breakdown into read-shared fields, race-free fields, and fields for which
no guarding lock was inferred. The analyses described in Section 4.3 reduced the
number of fields without valid guards by 20%–75%, a significant percentage.

Rcc/Sat identified three fields in the tsp benchmark on which there are inten-
tional races [23, 12]. On raytracer, Rcc/Sat identified a previously known race
on a checksum field and reported spurious warnings on three fields. A known data
race on a counter in mtrt was also identified. The remaining warnings for modlyn,
mtrt, and jbb were spurious and could be eliminated by additional annotations or,
in some cases, by improving the precision of the additional analyses of Section 4.3.

Overall, these results are quite promising. Manually inserting a small number
of annotations enables Rcc/Sat to verify that the vast majority (92%–100%) of
fields are race-free. These results show a substantial improvement over previous
type inference algorithms for race-free type systems, such as Houdini/rcc.

6 Related Work

Boyapati and Rinard have defined a race-free type system with a notion of object
ownership [7]. They include special owners to indicate thread-local data, thereby
allowing a single class declaration to be used for both thread-local instances and
shared instances, which motivated some of our refinements in rfj2. They present



an intraprocedural algorithm to infer ownership parameters for class instantiations
within a method. This simpler intraprocedural context yields equality constraints
over lock variables, which can be efficiently solved using union-find. We believe
it may be possible to extend our interprocedural type inference algorithm to ac-
commodate ownership types. Grossman has developed a race-free type system for
Cyclone, a statically safe variant of C [18]. Cyclone has a number of additional
features, such as existential quantification and singleton types, and it remains to
be seen how our techniques would apply in this setting.

The requires annotations used in our type system essentially constrain the
effects that the method may produce. Thus, we are performing a form of effect
reconstruction [29, 28], but our dependent types are not amenable to traditional ef-
fect reconstruction techniques. Similarly, the constraints of our type system do not
exhibit the monotonicity properties that facilitate the polynomial time solvers used
in other constraint-based analyses (see, for example, Aiken’s survey [2]). Cardelli [8]
was among the first to explore type checking for dependent types. Our dependent
types are comparatively limited in expressive power, but the resulting type check-
ing and type inference problems are decidable.

Eraser [24] is a tool for detecting race conditions in unannotated programs
dynamically (though it may fail to detect certain errors because of insufficient
test coverage). Agrawal and Stoller [1] present a dynamic type inference technique
for the type system of Boyapati and Rinard. Their technique extracts locking
information from a program trace and then performs a static analysis involving
unique pointer analysis [3] and intraprocedural ownership inference [7] to construct
appropriate annotations. These dynamic analyses complement our static approach,
and it may be possible to leverage their results to facilitate type inference.

A common and significant problem with many type-inference techniques is
the inability to construct meaningful error messages when inference fails (see,
for example, [31, 32, 19]). An interesting contribution of our approach is that we
view type inference as an optimization problem over a set of constraints that
attempts to produce the most reasonable error messages for a program. Heine and
Lam [20] generate meaningful error messages for a constraint-based unique pointer
analysis by solving 0-1 inequality constraints with a specialized tool that processes
constraints incrementally, starting with those most likely to be correct.

7 Conclusions

This paper contributes a new type inference algorithm for race-free type systems,
which is based on reduction to propositional satisfiability. Our experimental re-
sults demonstrate that this approach works well in practice on benchmarks of up
to 30,000 lines of code. Extending and evaluating this approach on significantly
larger benchmarks remains an issue for future work. We also demonstrate exten-
sions to facilitate reliable error reporting. We believe the resulting annotations
and race-free guarantee provided by our type inference system have a wide range
of applications in the analysis, validation, and verification of multithreaded pro-
grams. In particular, they provide valuable documentation to the programmer,
they facilitate checking other program properties such as atomicity, and they can
help reduce state explosion in model checkers.
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A Type System

This appendix provides a complete definition of rfj2. We first informally define a
number of predicates used in the type system. (See [17] for their precise definition.)

Predicate Meaning

ClassOnce(P ) no class is declared twice in P
FieldsOnce(P ) no class contains two fields with the same name
MethodsOncePerClass(P ) no method name appears more than once per class



A typing environment is defined as: E ::= ∅ | E , arg | E , garg

P � C̄

ClassOnce(P ) FieldsOnce(P )
MethodsOncePerClass(P )

P = defn1..n e
P � defni & C̄i ∀i ∈ 1..n

P ; ghost main lock; {main lock} � e : t & C̄

P � C̄1..n ∪ C̄

P � defn & C̄

gargi = ghost xi

E = garg1..n, cn〈x1..n〉 this
P ; E � fieldi & C̄i ∀i ∈ 1..j

P ; E � methi & C̄′
i ∀i ∈ 1..k

C̄ = C̄1..j ∪ C̄′1..k

P � class cn〈ghost x1..n〉
{ field1..j meth1..k} & C̄

P ; E � wf & C̄

P ; ∅ � wf & ∅
P ; E � t & C̄
x 
∈ dom(E)

P ; E, t x � wf & C̄

P ; E � wf & C̄
x 
∈ dom(E)

P ; E, ghost x � wf & C̄

P ; E � t & C̄

P ; E � wf & C̄
class cn〈ghost x i∈1..n

i
〉 . . . ∈ P

C̄′ = C̄ ∪ {li ∈ dom(E) i∈1..n}
P ; E � cn〈l1..n〉 & C̄′

P ; E � field & C̄

P ; E � t & C̄
C̄′ = C̄ ∪ {l ∈ dom(E)}

P ; E � t fn guarded by l & C̄′

P ; E � meth & C̄

gargi = ghost xi ∀i ∈ 1..n
E′ = E, garg1..n, arg1..d

P ; E′; s � e : t & C̄
C̄′ = C̄ ∪ {s ⊆ dom(E′)}

s is either {y1, . . . , yk} or β

P ; E � t mn〈ghost x1..n〉(arg1..d) requires s { e } & C̄′

P ; E; s � e : t & C̄

P ; E � c & C̄

P ; E; s � null : c & C̄

P ; E � wf & C̄
E = E1, t x , E2

P ; E; s � x : t & C̄

P ; E; s � e : cn〈l1..n〉 & C̄
P ; E � cn〈l′1..n〉 & C̄′

C̄′′ = C̄ ∪ C̄′ ∪ {l1 = l′1, . . . , ln = l′n}
P ; E; s � e : cn〈l ′1..n〉 & C̄′′

y is fresh

θ = [xj := lj
j∈1..n, this := y]

P ; E, cn〈l1..n〉 y; s � ei : θ(ti) & C̄i ∀i ∈ 1..k
class cn〈ghost x1..n〉 { field1..k meth1..m } ∈ P

fieldi = ti fni guarded by l′i ∀i ∈ 1..k
P ; E � cn〈l1..n〉 & C̄′

C̄′′ = C̄1..k ∪ C̄′ ∪ {l1 ∈ dom(E), . . . , ln ∈ dom(E)}
P ; E; s � new cn〈l1..n〉(e1..k) : cn〈l1..n〉 & C̄′′

P ; E; s � e : cn〈l1..n〉 & C̄
class cn〈ghost x1..n〉

{. . . t fn guarded by l . . .} ∈ P
θ = [this := e, xj := lj

j∈1..n]
P ; E � θ(t) & C̄′

P ; E; s � e.fn : θ(t) & (C̄ ∪ C̄′ ∪ {θ(l) ∈ s})

P ; E; s � e : cn〈l1..n〉 & C̄
class cn〈ghost x1..n〉

{. . . t fn guarded by l . . .} ∈ P
θ = [this := e, xj := lj

j∈1..n]
P ; E � e′ : θ(t) & C̄′

P ; E; s � e.fn = e′ : θ(t) & (C̄ ∪ C̄′ ∪ {θ(l) ∈ s})

P ; E; s � e1 : t1 & C̄1
P ; E, t x; s � e2 : t2 & C̄2

θ = [x := e1]
P ; E � θ(t2) & C̄3

C = (C̄1 ∪ C̄2 ∪ C̄3)

P ; E; s � let x = e1 in e2 : θ(t2) & C

P ; E; s � e : cn〈l1..n〉 & C̄

class cn〈ghost x1..n〉 {. . . t mn〈ghost y1..k〉(tj z j∈1..d
j

) requires s′ { e′ } . . .} ∈ P

θ = [this := e, xi := li
i∈1..n, yi := l ′i

i∈1..k, zi := ei
i∈1..d]

P ; E; s � ej : θ(tj) & C̄j ∀j ∈ 1..d
P ; E � θ(t) & C̄′

C̄′′ = C̄ ∪ C̄1..d ∪ C̄′ ∪ {θ(s′) ⊆ s}
P ; E; s � e.mn〈l ′1..k〉(e1..d) : θ(t) & C̄′′

P ; E; s � x : t′ & C̄
P ; E; s ∪ {x} � e : t & C̄′

P ; E; s � synchronized x e : t & (C̄ ∪ C̄′)

P ; E; s � e : cn〈l1..n〉 & C̄
class cn〈ghost x1..n〉 {. . . meth . . .} ∈ P

meth = t′ run〈ghost tl lock〉() requires tl lock { e′ }
P ; E; s � e.fork : t & C̄


