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Abstract

We present a novel approach for efficiently tracking in-
formation flow in a dynamically-typed language such as
JavaScript. Our approach is purely dynamic, and it detects
problems with implicit paths via a dynamic check that avoids
the need for an approximate static analyses while still guar-
anteeing non-interference. We incorporate this check into
an efficient evaluation strategy based on sparse information
labeling that leaves information flow labels implicit when-
ever possible, and introduces explicit labels only for values
that migrate between security domains. We present experi-
mental results showing that, on a range of small benchmark
programs, sparse labeling provides a substantial (30%—-50%)
speed-up over universal labeling.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.4.6
[Operating Systems]: Security and Protection—Information
flow controls

General Terms Languages, Security

Keywords Information flow control, dynamic analysis

1. Introduction

The error-prone nature of software systems motivates the
desire to separate security from functionality wherever pos-
sible. For example, much current software is developed in
safe languages, where memory safety is ensured by the lan-
guage runtime itself, rather than being an emergent property
of complex and buggy application code.

Applications written in safe languages such as JavaScript
are still vulnerable to other kinds of security problems, how-
ever, such as loss of privacy or integrity, and particularly so
in a browser setting where JavaScript code from multiple un-
trusted or semi-trusted servers executes in the same process.
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For example, cross-site scripting attacks exploit confusions
about the degree of authority or trust that should be granted
to various code and data fragments.

To help address these kinds of higher-level security prob-
lems, we explore the approach of dynamically tracking in-
formation flow in the language runtime. The particular lan-
guage we consider is a variant of the untyped A-calculus,
but the general approach should be applicable to JavaScript
and other dynamically-typed languages. We note that much
prior work on type systems that enforce information flow
properties [Myers 1999, Myers and Liskov 1997] is unfor-
tunately not applicable to such languages. Furthermore, a
static analysis approach could be problematic in a browser
setting, where the analysis might need to be re-run on each
browser client before program execution [Vogt et al. 2007].
Finally, dynamic analysis also allows for somewhat more
flexibility in applying policies, and can allow us to hot-swap
information flow policies [Chandra and Franz 2007].

This paper presents two semantics for tracking infor-
mation flow. The first semantics uses a straightforward
Universal Labeling representation, where every value has
an associated information flow label. This explicit rep-
resentation makes it straightforward to track information
flows and to enforce the key correctness property of non-
interference [Goguen and Meseguer 1982]. However, uni-
versal labeling incurs significant overhead to allocate, track,
and manipulate the labels attached to each value.

In practice, programs typically exhibit a significant de-
gree of label locality, where most or all items in a data
structure will likely have identical labels. For example, in
a browser setting, most values will likely be created and ma-
nipulated within a single information flow domain.

To exploit this label locality property, our second seman-
tics uses a more efficient Sparse Labeling representation that
leaves labels implicit (i.e., determined by context) whenever
possible, and introduces explicit labels only for values that
migrate between information flow domains. This strategy
eliminates a significant fraction of the overhead usually asso-
ciated with dynamic information flow analyses. At the same
time, sparse labeling has no effect on program semantics and
is observably equivalent to universal labeling. In particular,



we show that sparse labeling still satisfies the key correct-
ness property of non-interference.

We present experimental results showing that, on a range
of small benchmark programs, sparse labeling provides a
substantial (30%—-50%) speed-up over universal labeling.

The presentation of our results proceeds as follows. The
next section introduces the source language that we use
as the basis for our development. Section 3 and 4 present
the universal and sparse labeling semantics, respectively,
together with their non-interference proofs. Section 5 de-
scribes our language implementations, benchmarks, and ex-
perimental results. Section 6 discusses related work, and
Section 7 concludes.

2. Information Flow in the Lambda Calculus

We assume that the set Label of information flow labels
forms a lattice with associated ordering operation C, join
operation LI, and minimal element L, and that this lattice has
at least two elements L and H such that L T H. Thus, H
is a high-confidentiality label, and L is a low-confidentiality
label.

This lattice may of course contain additional elements.
For example, in a browser setting, Label might be the power
set lattice over all web sites that the browser is communicat-
ing with. If a data item is labelled with

{ good.com, evil.com }

then this label indicates that that data has been influenced by
network messages from both these sites. In particular, that
data should not be sent to evil. com, since it might contain
private data from good. com. In this paper, however, our fo-
cus is not so much on information flow policies, but rather on
efficient mechanisms for information flow tracking, which is
a prerequisite to policy enforcement.

We formalize our information flow tracking mechanisms
in terms of the idealized language A"/, which is a variant
of the \-calculus extended with imperative reference cells
and with a mechanism for tagging data with information
flow labels. The syntax of A™? is shown in Figure 1. Terms
include constants (c), variables (x), functions (Ax.e) and
functional application (e; es). In addition, the language also
supports mutable reference cells, with operations to allocate
(ref e), dereference (!e), and update (e; :=e2) a reference
cell. Finally, the operation (k)e attaches the information flow
label k to the result of evaluating e.

This language A" is intentionally minimal, in order to
clearly present our information flow evaluation strategies.
However, as usual, a rich variety of additional constructs
(booleans, conditionals, let-expressions, pairs, etc) can be
encoded in the language, as illustrated in Figure 1. We will
use some of these encodings in example programs below.

Figure 1: The Source Language \"/°

I
Syntax:
e = Term
x variable
c constant
Az.e abstraction
(e1 €2) application
ref e reference allocation
le dereference
e:=e assignment
(ke labeling operation
k,l,pc Label
T,Y, 2 Variable
c Constant

Standard encodings:

true = Axr.)\y.x

false def AT AY.Y

if e thenes else ey o (e1 (Md.ea) (Ad.e3)) (Az.x)
letz=¢e; iney def (Ax.ez) €1
ey ; e def letx=eyines, = & FV(eg)
pairej es def Az Ay Ab. bz y) e eg
fste def e true
snde ¥ ¢ false

3. Universal Labeling Semantics for \"™?

We formalize a semantics of A"/ that tracks information
flow dynamically to enforce non-interference. In particular,
if the result of program execution is public (i.e., labeled L)
then that result cannot have been influenced by confidential
data. Of course, any confidential data accessed during the
execution could influence how long that execution takes,
and in the extreme could cause the program to diverge. To
de-emphasise these timing-related issues, we formulate the
semantics of A"/ as a big-step operational semantics.

In this semantics, each reference cell is allocated at an ad-
dress a, and the store o maps addresses to values. A closure
(Az.e,0) is a pair of a A\-expression and a substitution 6 that
maps variables to values. We use () to denote both the empty
store and the empty substitution. A raw value r is either a
constant, an address, or a closure.

Our initial semantics uses a universal labeling strategy,
where every value v has the form r* and combines a raw
value r with an explicit information flow label k.



Figure 2: Universal Labeling for \"/

Runtime Syntax

a € Address

o € Store, = Address —, Value,
0 € Subst, = Var —, Value,

r € RawValue, == clal(Az.e,0)

v € Value, n= ok

Evaluation Rules:

0,0,c{pc o,cP*

0,6, (Az.e) Ipc o, (Az.e, §)P°

0,8,z Jpc o, (6(x) U pc)

k
g, 07 €1 ‘Upc 01, ()‘x'ea 0,)
01, 67 €2 U’pc 02, V2
0279/[$ = U2]7 € ‘U’pc‘.lk U/,U

g, 65 (61 62) ‘UPC 0/7U

g, 05 €1 Upc 01, Ck
01, 9, €2 Upc g2, dl
r = [c](d)

ag, 97 (61 62) ‘Upc o2,T

kUIUpc

/
o,0,e 0’ v

0,0, {kye p. o', (v E)

0,0,elpc o’ v
a & dom(c’)
0,0, (ref e) |y o'[a = v],aP®

0,0, pc o’ a”
0,0,'e Y, o, (o' (a) UK U pe)

0,0,e upc 01, a”
0150762 ‘U’pc 02,0
k C label(oz(a))

0,0, (e1:=e2) Ipe o2[a := (vUK)],v

[U-CONST]

[U-FUN]

[U-VAR]

[U-APP]

[U-PRIM]

[U-LABEL]

[U-REF]

[U-DEREF]

[U-ASSIGN]

We formally define the universal labeling strategy via the
big-step evaluation relation:

!
0,0,epc 0, v

This relation evaluates an expression e in the context of a
store o, a substitution (or environment) €, and the current
label pc of the program counter, and it returns the resulting
value v and the (possibly modified) store o”.

This relation is defined via the evaluation rules shown
in Figure 2. The rules ensure that the result value v has a
label of at least pc (since this computed value depends on
the program counter). Thus, the rule [U-CONST] evaluates a
constant ¢ to the value cP¢. The rule [U-VAR] evaluates x to
(0(x) U pc). Here, we overload the operation L to also take a
value as its left argument, and this operation strengthens the
label on that value:

Uk ok
The rule [U-APP] evaluates the body of the called function
with upgraded program counter label pc LI k, where k is the
label of the called closure, since the callee “knows” that that
closure was invoked. The notation f[z := v] denotes the
substitution that is identical to 6 except that it maps x to v.

A primitive function is a constant such as “+” that can be
applied. The rule [PrIM] evaluates applications of primitive
functions. This rule is defined in terms of the partial func-
tion:

[-] - : Constant x Constant —, Constant

For example:
[+](3) = +s
[+s](4) = 7

The rule [U-LABEL] joins an additional label k£ onto a
computed value v.

The last three rules track information flow across refer-
ence cells. Allocation of reference cells via [U-REF] returns
a newly-allocated address a”¢ with label pc. When a labeled
address a* is dereferenced via [U-DEREF], the correspond-
ing value ¢'(a) is retrieved from the store, and the value
(¢'(a) U k U pe) is returned, since this result depends on
the address being dereferenced and on the execution of this
code branch.

Implicit Flows Finally, we consider the tricky issue of im-
perative updates, which introduces the classic problem of
implicit flows [Denning 1976]. To illustrate this problem,
suppose we used the following assignment rule, which dy-
namically upgrades the label on a reference cell whenever it
is updated. Note that the first antecedent in this rule ensures
that pc C k:

k
g, 97 €1 llpc 01,0

0179762 U’pc 02,0
0.0, (e1:=€2) {pe o2la := (vUK)],v

[U-ASSIGN-BAD]



Unfortunately, this rule leaks information via implicit flows.
To illustrate this problem, consider the function:

f ©f Mo, let y =
let z = ref true in
if x then y := false else skip;
if !y then z := false else skip;
1z

ref true in

When this function is applied to confidential boolean data,
the rule [U-ASSIGN-BAD] permits both of the following eval-
uations:

0,0,(f truet) Y1, [ay = false™ a, = truel], truel
0,0,(f falseH) Uz [ay == truel,a, == falseL],falseL

Thus, the function f leaks the value of its confidential argu-
ment (labeled with H) into its public result (Ilabeled with L).
In particular, the conditional statement

if x then y := false else skip

leaks information about the argument x into the reference
cell y in both branches, but only in one of these branches is
the label on !y upgraded to H (as shown by the values for a,,
in the two resulting stores). Thus, this conditional leaks half
a bit, and so the dynamic upgrade strategy illustrated by the
rule [U-ASSIGN-BAD] is inadequate to prevent information
leaks, essentially because the information flow label is only
upgraded on one of the two possible branches.

The No-Sensitive-Upgrade Check Our solution to this im-
plicit paths problem is to prohibit such dynamic label up-
grades that are caused by a confidential program counter
or a confidential address (an approach also explored by
Zdancewic [2002] in his dissertation). Dynamic label up-
grades caused by a confidential right-hand-side are not prob-
lematic, however, and so are permitted.

Our semantics formalizes this strategy via the following
rule, where the additional antecedent k T label(o2(a))
performs the required no-sensitive-upgrade check. Here, the
function label extracts the label from a value, and is defined
by label(r) .

0,0,e1 |pe 01, 0"
o1,0,ex Upe 02,0
k C label(oz(a))
0,0, (e1:=€3) Ipe o2[a := (vUE)],v

[U-ASSIGN]

If this no-sensitive-upgrade check fails, then program evalu-
ation terminates with an error. (As usual, program termina-
tion may leak one bit of data.)

Under this rule, the problematic programs (f truef!) and
(f false™) can no longer be evaluated with the program
counter label L. These programs are instead considered erro-
neous because they attempt to update a public reference cell

from a confidential program counter. However, the program-
mer can preemptively upgrade reference cells as needed, be-
fore the conditional branch, as in the following function f,:

def

for = Az. let y = ref true in
let z = ref true in
y = (H)'y;
if x then y := false else skip;
z = (H)!lz;
if !y then z := false else skip;
'z

This revised function f,; then permits the executions:

0,0, (for truef) Up, [ay == false™ a, := true™], true™

0,0, (for false™) Ur [ay = true™ a. := false™], false™

where the confidential result is now appropriately labeled.

This approach of preemptively upgrading certain refer-
ence cells requires the programmer (or possibly a static anal-
ysis tool) to display some foresight about when code with a
confidential program counter may update public reference
cells. This foresight then avoids the traditional problem with
dynamic information flow—trying to reason about what lo-
cations might have been assigned on the branch-not-taken
in a conditional statement. Thus, the no-sensitive-upgrade
mechanism enables precise information flow analysis with-
out needing an expensive and conservative static analysis of
every conditional branch.

In fact, the static analysis can be seen simply as a special
case of our approach, one that automatically and preemp-
tively upgrades appropriate variables. Interestingly, we can
drop the strict requirement that the static analysis be con-
servative, and use a heuristic analysis instead. If the static
analysis preemptively upgrades too few variables, the no-
sensitive-upgrade check will still prevent secret information
from being leaked.

From the evaluation rules for the core language, we can
derive corresponding evaluation rules for the encoded con-
structs: see Figure 3. Reassuringly, these derived rules match
our expected intuition.

3.1 Correctness of Universal Labeling
We now show that the universal-labeling evaluation strategy
guarantees non-interference. In particular, if two program
states differ only in H-labeled data, then these differences
cannot propagate into L-labeled data.

To formalize this idea, we say two values are H -equivalent
(written v1 ~ g v9) if either:
1. V1 = V2, O
2. both v and v, have the label at least H, or

3. vy = (Mz.e,01)" and vy = (\w.e,02)" and 0; ~p Os.



Figure 3: Universal Labeling for Encodings

I
Abbreviations:

(vla UQ)k déf

(Ab. by vg,0)F
Derived Evaluation Rules:

k
0',0,61 ‘Upc o1, (true,ﬂ)
01,9,62 Upcuk 0’,7)

[U-THEN]
0,0, (if e; then ey else e3) {pe 07,0
g, 9; €1 Upc 01, (falsea e)k
01,0,e o' v
: 1,Y,€3 ‘U’pc\_lk ) . [U-ELSE]
0,0, (if e; then ey else e3) |y 07,0
0,0,e1 {pc 01,01
01,0, ¢ 09,V
: 1,Y,€62 *U'pc 2,02 - [U-PAIR]
0,0, (pair ej e2) |pe 02, (v1,v2)P
g, 07 € ‘U’pc OJa (Ula v2)k [U-FST]
0,0, (fst e) Jpc o, (v1 U K)
g, 07 € ‘U’pc OJa (Ula v2)k [U-SND]
0,0, (snd e) |y o, (V2 UK)
0,0,e1 {pc 01,01
o1,0[z :=v], e o' v
1 [ 1]7. 2 U’pc i - [U-LET]
0,0,(let x=e1 ineq) Ypc o', v
g, 07 €1 ‘Upc 01,01
01,0, e o' v
1,V,€2 ‘U’pc ) [U-SEQ]

ag, 97 (61; 62) ‘Upc 0-/7 v

Similarly, two substitutions are H -equivalent (written 61 ~
f5) if they have the same domain and

Vo € dom(61). 01(x) ~g O2(x)

LEMMA 1 (Equivalence). The two ~p relations on values
and substitutions are equivalence relations.

We define an analogous notion of H-compatible stores:
two stores o1 and oy are H-compatible (written 07 g 02)
if they are H-equivalent at all common addresses, i.e.,

o1~y op Va € (dom(o1)Ndom(o3)). o1(a) ~g o2(a)

Note that the H-compatible relation on stores is not tran-
sitive, i.e., 01 ~py 02 and oy ~p o3 does not imply
01 &~y 03, since o1 and o3 could have a common address
that is not in o5.

The evaluation rules enforce a key invariant, namely that
the label on the result of an evaluation always includes at
least the program counter label:

LEMMA 2. If 0,0, e |,c o', 7" then pc C k.

The following lemma formalizes that evaluation with a
H-labeled program counter cannot influence L-labeled data
in the store.

LEMMA 3 (Evaluation Peserves Compatibility).
Ifo,0,elly o' ,vtheno ~g o'

PROOF By induction on the derivation of o, e ||z o', v and
case analysis on the final rule in the derivation. |

Finally, we prove non-interference: if an expression e is
executed twice from H-compatible stores and H-equivalent
substitutions, then both executions will yield H-compatible
resulting stores and H -equivalent resulting values. Thus, H -
labeled data never leaks into L-labeled data.

THEOREM 1 (Non-Interference for Universal Labeling).
If

01 ~H 02

01 ~mg 02

01,01,e dpe 01,01

02,02, € {pec 05,2
then

oy =y ob

U1 ~H U2

PROOF By induction on the derivation o1, 61, e {,c 07, v1
and case analysis on the final rule. This proof is similar to
the proof of Theorem 2, shown in the appendix. |

Although non-interference is an important correctness
property, it does not address certain sources of information
leaks, such as those caused by divergence, abrupt termi-
nation, timing channels, or input-output operations, as dis-
cussed in [Askarov et al. 2008]. Addressing these informa-
tion leaks remains an important topic for future work.

4. Sparse Labeling Semantics for \™"

The universal labeling strategy incurs a significant overhead
to allocate, track, and manipulate the labels attached to each
value. Moreover, programs typically exhibit a significant
amount of label locality, where most or all items in a data
structure will likely have identical labels. For example, in
a browser setting, most values will likely be created and
manipulated within a single information flow domain.

We exploit this label locality property to avoid introduc-
ing an explicit label on every data item. Instead, we leave
labels implicit (i.e., determined by context) whenever pos-
sible, and introduce explicit labels only for values that mi-
grate between information flow domains. This strategy of
sparse labeling eliminates a significant fraction of the over-
head usually associated with dynamic information flow. At



the same time, sparse labeling has no effect on program se-
mantics and is observably equivalent to universal labeling.

Figure 4 revises our earlier operational semantics to in-
corporate sparse labeling. A value v now combines a raw
value r with an optional label k; if this label is omitted, it
is interpreted as being L. In addition, each value is implic-
itly labeled with the current program counter label pc. The
following function label,. extracts the true label of a value
with respect to a program counter label pc:

label p. (1) = pc
label,y.(r*) def pclUk

The revised sparse labeling evaluation relation:
o,0,e lpc o' v

is defined via the evaluation rules shown in Figure 4. The
label pc is implicitly applied to all values in both 6 and
v. Thus, many rules (e.g., [S-CONST], [S-FUN], and [S-VAR])
can ignore labeling issues entirely and incur no information
labeling overhead.

For the other constructs, we provide two rules: a fast path
for unlabeled values, and a slower rule that deals with explic-
itly labeled values.! For function applications, the fast path
rule [s-App] handles applications of an unlabeled closure in
a straightforward manner with no labeling overhead. If the
closure has label &, then the second rule [s-APP-SLOW] adds
that label to the program counter before invoking the callee,
and also adds & to the result of the function application. This
rule uses the operation (k)P¢ v, which applies the label k to
a value v, unless k is subsumed by the implicit label pc.

def r ifk C pc
pec lef =
(ke { rk  otherwise

(kyPe (1) def kL

The rule [s-REF] allocates a reference cell at address a to
hold a value v. To avoid making the implicit label pc on v ex-
plicit, each address a has an associated label label(a), which
is implicitly applied to the value at that address. Hence, by
allocating an address a where label(a) = pc, we avoid ex-
plicitly labeling v.2

The fast path assignment rule [S-ASSIGN] checks that the
target address a came from the current domain pc via the
antecedent pc = label(a). If this fast-path check passes, then
the no-sensitive-upgrade rule holds, and also the implicit pc
label on the assigned value v can be left implicit.

' A dynamically-typed language such as JavaScript already has slow paths
to deal with various exceptional situations (such as attempting to apply a
non-function) so handling explicitly-labeled value might naturally fit within
these existing slow paths.

2 An implementation might represent the label on addresses by associating
an entire page of addresses with a particular label.

The slow path rule [s-AsSIGN-sLOW] handles the more
general case. This rule extracts k as the label on the target
address (where k = L if that address has no explicit label);
identifies the implicit label m for values at address a; checks
that (pc U k) is not more secret than the label on the value
at address a; and appropriately labels the new value before
storing it at address a.

Figure 5 shows how this sparse-labeling evaluation strat-
egy extends to the various encoded constructs; these derived
rules again match our expectations.

4.1 Correctness for Sparse Labeling

As before, our non-interference argument is based on the
notion of H-equivalent values, but we now parameterize that
equivalence relation over the implicit label pc. Thus, the new
H-equivalence relation vy N";; v holds if either:

1. V1 = V2
2. H C labelpe(v1) and H T labelpe(v2).
3. v = ()\LE.B, 01)’“ and Vg = ()\x.e, Qg)k and 91 NII)_IC 92.

Similarly, two substitutions are H -equivalent with respect to
an implicit label pc (written 6, N’I’f ) if they have the same
domain and

Va € dom(6). 01(x) ~Y; O2(x)

We begin by noting some straightforward properties of la-
beling and H-equivalence.

LEMMA 4. pc C label,.(v).
LEMMA 5. If H C k then vy ~%; vs.

LEMMA 6 (H-Equivalence). The relations ~%; values and
substitutions are equivalence relations.

LEMMA 7 (Monotonicity of H-Equivalence).
Ifk Clthen ~% C ~b.

LEMMA 8 (Labeling Equivalence).

Ifv1 ~K vg then (K)Pe vy ~B7 (k)PC va.

Two stores 01 and oy are H-compatible (written o1 ~p
09) if they are H-equivalent at all common addresses, i.e.,

Va € (dom(oy) N dom(osz)). o1(a) ngbel(a) oa(a)

Note that since every address a has an implicit label label(a),
the H-compatible relation is not parameterized by pc.

If an evaluation returns an address a, then the label on
that address is at least label(a).

LEMMA 9. If 0,0, ¢ . 0, a* then label(a) C (pc U k).

The following lemma proves that evaluation with a H-
labeled program counter cannot influence L-labeled data.

LEMMA 10 (Evaluation Preserves Compatibility).
Ifo,0,e |g o',vtheno ~g o'



Figure 4: Sparse Labeling Semantics for \"/°

I
Runtime Syntax

Q < =3

MM MmMmmMm

RawValueg

Value
Subst
Store

Big-Step Evaluation Rules:

0,0,c lpco,c

0,0, (Az.€) |pe o, (Az.€,0)

g, 07 z lPC a, 9(33)

a,0,e1 lpe o1, (Az.€,0")
0'1,9762 J,pc g2, U2
02,0 [z :=va],e |pec 0,0

0707 (el 62) lpc JI7U

0,0,e1 |pc 01,cC
0—179762 erC 0—27d
r = [c](d)

0793 (61 62) J/I’C 02,T

o,0,e |0’ v
7,0, (ke |pc o', (k)P v

a,0,e |pc o' \v
a & dom(o")
label(a) = pc

0,0, (ref e) |pc 0'la:=1],a

’
o,0,e lpc0’,a

a, 07 le l;ﬁc 0/7 O'/(CL)

g, 07 €1 lPC 01,0
Ula 03 €2 JrPC 027 v
pc = label(a)

0,0, (e1:=€2) |pc o2[a :=v],v

[S-CONST]

[S-FUN]

[S-VAR]

[s-aPP]

[S-PRIM]

[S-LABEL]

[S-REF]

[S-DEREF]

[S-ASSIGN]

clal|(Ax.e,8)
r|rk

Var —, Values
Address —, Values

0,0, e1 Lpe 01, (Az.e,0)"
0’179,62 lpc g2,V2
02,0 [z :=va],€ |peik 0’0
7,0, (e1 €2) Lpe o', (k)P v

0',19761 lpc O'1,Ck
01,0, |pe 02,d"
r = [c](d)
0,0, (61 62) Lpe 02, <kU l>pc7“

’ k
0,0,e |pc0',a

g, 97 le lpc 0/7 <k>pc U/(U,)

0’,0,61 J,pc Jl,ak
0179762 lpc g2,v
m = label(a)
(pc U k) C labelm(o2(a)))
v = {pcUk)"v

7,0, (e1:=€2) |pe 02]a :=0],v

[S-APP-SLOW]

[S-PRIM-SLOW]

[S-DEREF-SLOW]

[S-ASSIGN-SLOW]




Figure 5: Sparse Labeling for Encodings

0,0,e1 |pc 01, true
!
0-1:9162 lpc o,v

- 7 [S-THEN]
0,0, (if e; then ey else e3) |pe 0, v
g, 03 €1 lpc 01,01
o1,0,¢e 09,V
L0, e2 Lpe 02,02 [S-PAIR]
0,0, (pair ey e2) |pe 02, (v1,02)
g, 97 € lpc 0-/7 (Ula U2) [S—FST]
0.0, (fste) [pc o', 01
0,6,€ |pc 0, (v1,02) [5-SND]
0,0,(snd e) |pc o', v2
g, 9, €1 U’pc 01,01
01,0z :==v1],ez Upe 0’ v [s-LET]
0,0,(let x=e1 ineq) Jpc 0, v
0,0,e1 dpe 01,01
01,0,e o' v
1,V,€2 Upc ) [S-SEMI]

g, 97 (61; 62) ‘Upc 0/7 v

o,0,e1 |pe 01, true®
/
0179762 lpcuk o,v

[S-THEN-SLOW]
0,0, (if e; then ey else e3) | e o', (k)P°v

g, 0; € lpc 0,7 (’Ul, U2)k
0,0, (fst e) lpe o, (k)P° vy

[S-FST-SLOW]

g, 0; € lpc 0,7 (’Ul, U2)k
0,0, (snd e) |, o, (k)P° vy

[S-SND-SLOW]

PROOF By induction on the derivation of o, e |y ¢’, v, and
case analysis on the final rule in the derivation.

® [S-CONST], [S-FUN], [S-VAR]: ¢/ = 0.

® [S-APP], [S-APP-SLOW], [S-LABEL], [S-PRIM], [S-PRIM-SLOW],
[S-DEREF], [S-DEREF-SLOW]: By induction.

¢ [s-REF]: o and ¢’ agree on their common domain.

® [s-ASSIGN]: Let 0/ = o2[a := v]. From the no-sensitive-
upgrade check, H = label(a). By Lemma 5, 02(a) ~ v
and so o9 &~ ¢’. By induction, 0 ~pg o1 &~y 9. Also,
dom(o) C dom(o1) C dom(oz) = dom(c’). Hence,
o~go.

® [S-ASSIGN-SLOW]: Similar.

We next show that non-inference holds for the sparse-
labeling semantics: if e is executed twice from H -compatible
stores and H-equivalent substitutions, then the two execu-
tions yield H-compatible resulting stores and H-equivalent
resulting values.

THEOREM 2 (Non-Interference for Sparse Labeling).
If
01 ~[g 02
Oy ~7 6,
01, 017 € lpc 0'/17 (%1
!/
g2, 927 € lpc 09, V2

then

! /
01 ~H 03
pc
7}1 NH ’[}2

PROOF By induction on the derivation 01,01, e |, 01,01
and case analysis on the last rule used in that derivation. The
details of the case analysis are presented in Appendix A. N1

5. Experimental Results

In order to evaluate the relative costs of universal and sparse
labeling, we developed three different language implemen-
tations. The implementations all support the same language,
which is an extension of A"/ with features necessary for re-
alistic programming. These features include pairs and lists
built as a native part of the language, strings, and associated
utility functions. The three implementations are:

e NOLABEL is a traditional interpreter that performs no
labeling or information flow analysis, and so establishes
our baseline for performance;

e UNIVERSALLABEL, which implements the universal la-
beling semantics; and

e SPARSELABEL, which implements the sparse labeling
semantics.



Benchmark NOLABEL || UNIVERSALLABEL SPARSELABEL
(secs/100k runs) || (vs NOLABEL) (vs. NOLABEL) [ (vs. UNIVERSALLABEL)
SumList 2.295382 || 1.94 0.79 0.41
UserPwdFine 1.248581 1.63 1.12 0.68
UserPwdCoarse 1.251994 || 2.45 1.03 0.42
FileSysO 23.206768 || 3.38 1.07 0.32
FileSys25 24.843616 || 3.00 1.22 0.41
FileSys50 24.840610 || 3.54 1.27 0.36
FileSys100 24.455563 || 4.12 1.62 0.39
FileSysExplicit 24.470711 || Information leak prevented || Information leak prevented | Information leak prevented
ImplicitFlowTrue 0.028825 || Information leak prevented || Information leak prevented | Information leak prevented
ImplicitFlowFalse 0.031577 || 1.04 1.01 0.98
Average - || 2.64 1.14 0.50

Table 1: Benchmark Results

We compared these implementations on the following
benchmark programs:

e SumList: Calculates the sum for a list of 100 numbers.
There are no labels so that we can show the overhead
when information flow is not needed.

e UserPwdFine: Simulates a login by looking up a user-
name and password in an association list. The passwords
stored in the list are labeled as “secret”.

¢ UserPwdCoarse: Identical to UserPwdFine, except that
the entire association list is labeled as “secret”.

e FileSysO0: Reads a file from an in-memory file system
implemented in our target language, and represented as
a directory tree structure. The file system contains 1023
directories and 2048 regular files, and contains no non-
trivial labels.

e FileSys25, FileSys50, and FileSys100: Identical to
FileSysO0, except that 25%, 50%, and 100% of the files
and directories are labeled as “secret”, respectively.

e FileSysExplicit: Identical to FileSys100, except
that this benchmark causes a information leak by an ex-
plicit flow.

® TmplicitFlowTrue and ImplicitFlowFalse: Imple-
ments the implicit information flow leak example dis-
cussed in Section 3, where the confidential variable x is
given values of true and false, respectively.

We ran our tests on a MacBook Pro with a 2.6 GHz Intel
Core 2 Duo processor, 4 gigabytes of RAM, and running
OS X version 10.5.6. All three language implementations
were interpreters written in Objective Caml and compiled to
native code with ocamlopt version 3.10.0. All benchmarks
were run 100,000 times, and Table 1 summarizes the results.

In almost all cases, NOLABEL performs the fastest but
permits information leaks, as on FILESYSEXPLICIT and
IMPLICITFLOWTRUE benchmarks. (Note that IMPLICIT-
FLOWFALSE leaks one bit of termination information in all
three implementations, as expected.) Column three shows
the slowdown of UNIVERSALLABEL over NOLABEL, which

is on average more than a 2.6x slowdown, and may be unac-
ceptable in many situations. In contrast, column five shows
that the SPARSELABEL running time is only 50% of the
UNIVERSALLABEL running time. Thus, our results show
that the sparse labeling runs much closer to the speed of
code with no labels.

Our tests also identified an additional, unexpected bene-
fit of the sparse labeling strategy. The SPARSELABEL im-
plementation was noticeably less affected by differences in
the style of programmer annotations. This is most visible
in the results of UserPwdFine and UserPwdCoarse. The
UNIVERSALLABEL implementation suffered a 50% perfor-
mance penalty, even though there were less annotations.
Whenever a field is pulled from a secure list, it must be
given a label matching the list. In contrast, the SPARSELA-
BEL implementation’s performance was comparable on both
UserPwdFine and UserPwdCoarse. Thus, with a sparse la-
beling strategy, the programmer is to some degree insulated
from performance concerns, and can instead focus on the
proper policy from a security perspective.

While these experimental results are for a preliminary,
interpreter-based implementation, these results do suggest
that sparse labeling may also provide significant benefits in
a highly-optimized language implementation. We are cur-
rently adding sparse labeling into the Narcissus JavaScript
implementation [Eich] and are exploring how to incorporate
these ideas into the SpiderMonkey trace-based compiler for
JavaScript [Gal et al. 2009].

6. Related Work

Denning’s seminal work [Denning 1976] outlines the gen-
eral approach to dynamic information flow. Denning and
Denning [1977] presents a static analysis to certify pro-
grams as being information-flow secure. Sabelfeld and My-
ers [2003] provide an extensive survey of prior research on
information flow. Among other things, they discuss vari-
ous covert channels, including timing channels and resource
exhaustion channels. We do not address these attacks in
A" and instead focus only on implicit and explicit flows.
Venkatakrishnan et al. [2006] perform a hybrid of static and



dynamic analysis. The static analysis is used to transform
the code in order to instrument it with the appropriate run-
time checks.

Several approaches use type systems for information flow
analysis. Volpano et al. [1996] introduce a type system based
on Denning’s model and proved its soundness. Heintze and
Riecke [1998] create a simple calculus and show how it can
be expanded to deal with concurrency, assignment, and in-
tegrity. Pottier and Simonet [2003] introduce type inference
to ML (specifically a variation called Core ML).

Non-interference is one of the most common correctness
criteria for information flow analyses. Barthe et al. [2004]
discuss better approaches for analyzing non-interference,
which were extended by Terauchi and Aiken [2005]. McLean
[1992] shows that non-interference can be proved on a trace,
rather than the usual intermediate step of a state machine.
Boudol [2008] argues that non-interference is not necessar-
ily the best property to use, specifically because it rules out
programs that deliberately declassify information. Instead,
the author suggests using an intensional notion of security.

Fenton [1974] presents a dynamic analysis for informa-
tion flow; the analysis requires that each mutable variable
has a fixed security label, which is somewhat restrictive. Our
approach allows these security labels to be dynamically up-
graded, while the no-sensitive-upgrade check still prohibits
implicit information leaks.

A few papers highlight the challenges of working with
more advanced features of languages. Banerjee and Nau-
mann [2002] address complications caused by dynamic
memory allocation for information flow analysis. King et al.
[2008] highlight the problems with false alarms caused by
implicit flows, and in particular exceptions. A"/ has neither
of these features; extending it to address these topics remains
an area for future work.

Web programming has become one of the central targets
for information flow analyses. On the server side, Haldar
et al. [2005] introduce dynamic taint propagation for Java.
Lam et al. [2008] focus on defending against SQL injection
and cross-site scripting attacks. Zheng and Myers [2008] ad-
dress web encryption specifically through static information
flow analysis. Dealing with information release (e.g., for
password validation) is an interesting case for information
flow, since certain outputs must be declassified; Both Chong
and Myers [2004] and Fournet and Rezk [2008] address this.

In addition to the server-side, there has been a great deal
of interest in information flow analysis for client-side pro-
gramming. Primarily, this centers around Java applets and,
more recently, JavaScript. Myers and Liskov [1997] use a
decentralized information control model for Java applets.
JFlow [Myers 1999] has become one of the standards for
information flow analysis on the JVM. Chandra and Franz
[2007] also combine static and dynamic analysis for the
JVM, but permitting the information flow policies to be
changed at runtime. Interestingly, client-side research is

more focused on confidentiality, whereas server-side pro-
gramming tends to address integrity concerns in more depth.

Unlike with Java code, JavaScript is not compiled in ad-
vance. Faced with this limitation,Vogt et al. [2007] add in-
formation flow analysis to JavaScript that relies on dynamic
analysis whenever possible. Although we have not directly
dealt with JavaScript, this is one of our central motivations.

Although static analysis has been considered indispens-
able in many approaches, the benefits of dynamic analysis
are becoming appreciated. Le Guernic et al. [2006] discuss
using dynamic automaton-based monitoring. Askarov et al.
[2008] highlight the risks with Denning-style analysis. In
particular, they show that if intermediary output is allowed,
the assumption that only one bit of information leaks with
termination is not valid. Although A" does not technically
permit intermediary output, it will be a clear concern as we
extend sparse labeling to more realistic languages. Malacaria
and Chen [2008] also provide a framework for quantifying
exactly how much information can leak with a given model.
O’Neill et al. [2006] have highlighted some of the complica-
tions that are introduced through interactive programs. Since
many web-based applications fall into this domain, this is of
particular interest to us.

Our sparse labeling strategy is inspired by prior work on
contracts [Findler 2002] and language interoperation [Gray
et al. 2005]. In particular, each security domain can be
viewed as a separate “language”, and explicit labels function
as proxies that permit transparent interoperation between
these multiple languages.

7. Conclusions

With the increasing importance of JavaScript and similar
languages, fast and correct information flow analysis at run
time is essential. We have shown that, through sparse label-
ing, it is possible to track information flow dynamically with
reduced overhead. We believe these techniques may help to
further safe client-side scripting.
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A. Non-Interference for Sparse Labeling

RESTATEMENT OF THEOREM 2 (Non-Interference for Sparse

Labeling). If
01 ~"H 02
pc
01~ 02
/
0179176 lpc 01,01
0 l /
02,02,€ |pc 09, V2
then . .
01 ~H 03

U1 NI;{C V2

PROOF By induction on the derivation o1, 61, € |pc o, v
and case analysis on the last rule used in that derivation.

Note that any derivation via the [s-APP] rule can be de-
rived via the [s-app-sLow] rule, and similarly for the other
[...-sLow] rules, and so we assume without loss of general-
ity that both evaluations are via the [...-sLow] rules when-
ever possible.

¢ [s-coNsT]: Then e = ¢ and ¢} = 01 ~g 02 = o} and
V1 = Vg = C.

® [s-varR]: Then e = x and 0] = 01 =y 02 = 0} and
C
V1 = 91(1‘) N‘TI)_I 92(.’1;) = V2.

¢ [s-FUN]: Then e = Az.¢’ and 0] = 01 &~ 09 = 0} and
_ / pc / —
v1 = (Az.€/,01) ~ (Ax.€/,62) = va.

¢ [s-ApP-sLow]: In this case, e = (e, €;), and from the
antecedents of this rule, we have that for i € 1, 2:

() eia €a lpc Uélv ()\.13.61‘, 9;)k7
oi,0i,ep Lpe 0,0}

02//7 927 eilr = 'U;] Lpelik; 0;, Uzl‘l
v; = (k)P v}

By induction:

7 "
0’1 ~H 0’2
"o "
01 =<H 0y
ki . pe k:
(Az.e1c)™ ~ (Az.ea0)™?

/ pc /
Uy ~g V2

» If k1 and ko are both at least H (with respect to pc)

then v, N’I’f vg, since they both have label at least H.

By Lemma 10, 0] =y o’ =y o}’ =~y o}, and we
need to conclude that o] ~pg 5.

We know that dom (o) 2 dom(o!"), since execution
only allocates additional reference cells. Without loss
of generality, we assume that the two executions allo-
cate reference cells from disjoint parts of the address
space,’ i.e.:

(dom(a}) \ dom (o)) N dom(oh_,) =0

%

3 We refer the interested reader to [Banerjee and Naumann 2002] for an
alternative proof argument that does use of this assumption, but which
involves a more complicated compatibility relation on stores.

Under this assumption, the only common addresses in

o} and o} are also the common addresses in o7 and

o4’, and hence we have that o] =y o}.

» If k1 and ko are not both at least H (with respect
to pc), then 0] ~%7 05 and e; = e and k1 = ko.

By induction, o ~p o} and v{ ~%7 v4, and hence
/ pc 1
v] ~R v,

e [s-pPrIM-SLOW]: This case holds via a similar argument.

e [s-REF]: In this case, e = ref e’. Without loss of gener-
ality, we assume that both evaluation allocate at the same
address a € dom(o1) U dom(o2), and so a = v = vs.
From the antecedents of this rule, we have that for i €
1,2:

i, 9i7 e lpc Ugla U;
ol = o¥la:= 0]

By induction, 0 ~y o4 and v] ~§; v5, and so 0] ~p

o} as label(a) = pc.

® [s-DEREF-SLOW]: In this case, e = !¢€’, and from the
antecedents of this rule, we have that for i € 1, 2:

(D) eia € l«pc U;v a;
v; = (ki)?¢ o7(a;)
By induction, o} ~ 0% and a}' ~%¢ a52.
= If ky and k, are both at least H (wrt pc), then vy ~%;
V9, since they both have label at least H (wrt pc).

= Otherwise, a; = as and k1 = ks and o/ (a) NZbel(a)

o4(a). By Lemma 9, label(a) T k;, and so by

Lemma 7, o (a) ~*1 o4 (a). By Lemma 8, vy ~%5 vy,

® [s-ASSIGN-sLow] In this case, e = (e,:=¢p), and from
the antecedents of this rule, we have that for ¢ € 1, 2:

0i,0i,€q Lpe Uz{lva?i

0'7{/,01-’ €p lpc U;”Wi

m; = label(a;)

(pc U k;) C label,y,, (0 (a;))
of = ol"[a; = (pc U k)™ v;]

g

By induction:

"o " "o "
01 RH 0y 01 =H 09
k pc k pc

ayt ~y ay’ V1~ V2

= If a’fl = a§2 then let [ = my; = mo. By Lemma 8,
{pc)tvy ~4 (pc)tvg, and hence o} a2 o from the
above.

» Otherwise H T k; C label,,, (c}"(a;)). Hence
o) =y oh.



