
Automatic Software Model Checking

using CLP

Cormac Flanagan

Systems Research Center

Hewlett Packard Laboratories

flanagan@hpl.hp.com

Abstract. This paper proposes the use of constraint logic programming

(CLP) to perform model checking of traditional, imperative programs.

We present a semantics-preserving translation from an imperative lan-

guage with heap-allocated mutable data structures and recursive pro-

cedures into CLP. The CLP formulation (1) provides a clean way to

reason about the behavior and correctness of the original program, and

(2) enables the use of existing CLP implementations to perform bounded

software model checking, using a combination of symbolic reasoning and

explicit path exploration.

1 Introduction

Ensuring the reliability of software systems is an important but challenging prob-
lem. Achieving reliability through testing alone is difficult, due to the test cover-
age problem. For finite state systems, model checking techniques that explore all
paths have been extremely successful. However, verifying software systems is a
much harder problem, because such systems are inherently infinite-state: many
variables are (essentially) infinite-domain and the heap is of unbounded size.

A natural method for describing and reasoning about infinite-state systems
is to use constraints . For example, the constraint a[i] > y describes states in
which the ith component of a is greater than y. The close connection between
constraints and program semantics is illustrated by Dijkstra’s weakest precondi-
tion translation [10]. This translation expresses the behavior of a code fragment
that does not use iteration or recursion as a boolean combination of constraints.
Fully automatic theorem provers, such as Simplify [9], provide an efficient means
for reasoning about the validity of such combinations of constraints. These tech-
niques provide the foundation of the extended static checkers ESC/Modula-3 [8]
and ESC/Java [14].

Unfortunately, iterative and recursive constructs, such as while loops, for
loops, and recursive procedure calls, cannot be directly translated into boolean
combinations of constraints. Instead, extended static checkers rely on the pro-
grammer to supply loop invariants and procedure specifications to aid in this

translation.1 The need for invariants and specifications places a significant bur-
den on programmer, and is perhaps the reason these checkers are not more widely
used, even though they catch defects and improve software quality [14].

This paper presents a variant of the extended static checking approach that
avoids the need for programmer-supplied invariants and specifications. Instead,
we start with an unannotated program, which may include iterative and recur-
sive constructs, and asserted correctness properties. We translate this program
into in an extended logic called constraint logic programming (CLP) [19, 21, 20,
22]. Essentially, a constraint logic program consists of the sequence of rules,
each of which defines a particular relation symbol as a boolean combination of
constraints. Since constraints may refer to relation symbols, these rules can be
self- and mutually-recursive. By expressing iterative and recursive constructs of
the original imperative program as recursive CLP rules, we avoid the need for
programmer-supplied invariants and specifications.

This paper presents a semantics-preserving translation into CLP from an
imperative language that is infinite-state and that supports global and local
variables, heap-allocated mutable data structures, and recursive procedure calls.
We use this translation to illustrate the connection between imperative programs
and CLP, between program executions and depth-first CLP derivations, between
procedure behaviors and sets of ground atoms, and between erroneous program
executions and satisfiable CLP queries.

Our translation enables the use of efficient CLP implementations, such as
SICStus Prolog [27], to check correctness properties of software. This implemen-
tation performs a depth-first search for a satisfying assignment, using efficient
constraints solvers to symbolically reason about boolean variables, linear arith-
metic, and functional maps. This search strategy corresponds to explicitly ex-
ploring all program execution paths, but symbolically reasoning about data val-
ues. That is, instead of explicitly enumerating all possible values for an integer
variable x, the CLP implementation symbolically reasons about the consistency
of a collection of constraints or linear inequalities on x. This symbolic analysis
provides greater coverage and more efficient checking.

The depth-first search strategy may diverge on software with infinitely long
or infinitely many execution paths. To cope with such systems, we bound the
depth of the CLP search, thus producing a bounded software model checker. Our
translation also facilitates software model checking using other CLP implementa-
tion techniques, such as breadth-first search, tableaux methods, or subsumption,
which may provide stronger termination and error detection properties.

The remainder of the paper proceeds as follows. The next section provides
a review of CLP. Section 3 illustrates our CLP translation by applying it to
an example program, and uses the CLP representation to detect defects in the
program. Section 4 presents the imperative language that is the basis for our
formal development, and section 5 translates this language into CLP. Section 6
uses the CLP representation for program checking and defect detection. Section 7
discusses related work, and we concluded in Section 8.

1 Loops without invariants are handled in a manner that is unsound but still useful.

2 A Review of Constraint Logic Programming

In this section, we provide a brief review of the constraint logic programming
paradigm [19, 21, 20, 22]. A term t is either a variable or the application of a
primitive function f to a sequence of terms. An atom r(�t) is the application of
a user-defined relation r to a term sequence �t. A primitive constraint p(�t) is the
application of a primitive predicate p to a term sequence. Constraints include
primitive constraints and their negations, conjunction, disjunction, and atoms.
A rule r(�t)← c is an (implicitly universally quantified) implication, and provides
a definition of the relational symbol r. For example, the rule r(x, y) ← x = y
defines r as the identity relation.

Primitive functions include binary functions for addition and subtraction,
nullary constants, and the select and store operations, which are explained
in Section 5. Primitive predicates include equality, disequality, inequalities, and
the nullary predicates true and false. We sometimes write binary function and
predicate applications using infix instead of prefix notation.

CLP Syntax
(terms) t ::= x | f(�t)

(atoms) a ::= r(�t)

(constraints) c ::= p(�t) | ¬p(�t)

| c ∧ c | c ∨ c | a
(rules) R ::= a← c

(variables) x, y, z

(constants) k ∈ {0, 1, 2, . . .}
(primitive fns) f ∈ {k, +,−, select, store}
(primitive preds) p ∈ {true , false, =, �=, <, . . .}
(relation names) r

A CLP program �R is a sequence of rules. These rules may be self- or mutually-
recursive, and so the CLP program �R may yield multiple models. We are only
interested in the least model of �R that is compatible with the intended interpreta-
tion D of the primitive functions and predicates. In particular, we are interested
in the question of whether this least compatible model of �R implies a particu-
lar goal or atom a, which we write as lm(�R,D) |= ∃̃ a, where ∃̃a existentially
quantifies over all free variables in a.

Much work on the implementation and optimization of CLP programs has
focused on answering such queries efficiently. In the following section, we leverage
this effort to check correctness properties of an example program, without the
need for procedure specifications or loop invariants.

3 Overview

To illustrate our method, consider the example program shown in Figure 1, col-
umn 1. This program is a variant of the locking example used by the BLAST
checker [18]. The procedures lock and unlock acquire and release the lock L, re-
spectively, where L = 1 if the lock is held, and is zero otherwise. The correctness
property we wish to check is that (1) the procedure lock is never called when
the lock is already held, and (2) the procedure unlock is never called unless the
lock is already held. These correctness properties are expressed as assertions in
the lock and unlock procedures. Hence, checking these properties reduces to

Program Transfer relations Error relations

lock() {
assert L = 0;

L := 1;

}

unlock() {
assert L = 1;

L := 0;

}

main() {
loop();

unlock();

}

loop() {
lock();

D := N;

unl();

if (N != D) {
loop();

} else {
// skip

}
}

unl() {
if (*) {

unlock();

// N++;

} else {
// skip

}
}

Tlock(L, N, D, L1, N, D)←
∧ L = 0
∧ L1 = 1

Tunlock(L, N, D, L1, N, D)←
∧ L = 1
∧ L1 = 0

Tmain(L, N, D, L2, N2, D2)←
∧ Tloop(L, N, D, L1, N1, D1)
∧ Tunlock(L1, N1, D1, L2, N2, D2)

Tloop(L, N, D, L4, N4, D4)←
∧ Tlock(L, N, D, L1, N1, D1)
∧ D2 = N1

∧ Tunl(L1, N1, D2, L3, N3, D3)
∧∨∧ N3 �= D3

∧ Tloop(L3, N3, D3, L4, N4, D4)
∨∧ N3 = D3

∧ L4 = L3

∧ N4 = N3

∧ D4 = D3

Tunl(L, N, D, L1, N1, D1)←
∨ Tunlock(L, N, D, L1, N1, D1)
∨∧ L1 = L
∧ N1 = N
∧ D1 = D

Elock(L, N, D)←
L �= 0

Eunlock(L, N, D)←
L �= 1

Emain(L, N, D)←
∨ Eloop(L, N, D)
∨∧ Tloop(L, N, D, L1, N1, D1)
∧ Eunlock(L1, N1, D1)

Eloop(L, N, D)←
∨ Elock(L, N, D)
∨∧ Tlock(L, N, D, L1, N1, D1)
∧ D2 = N1

∧∨ Eunl(L1, N1, D2)
∨∧ Tunl(L1, N1, D2, L3, N3, D3)
∧ N3 �= D3

∧ Eloop(L3, N3, D3)

Eunl(L, N, D)←
Eunlock(L, N, D)

Fig. 1. The example program and the corresponding error and transfer relations.

checking whether the example program goes wrong by violating either of these
assertions.

The example contains three other routines, which manipulate two additional
global variables, N and D. Thus, the state of the store is captured by the triple
〈L, N, D〉. The example uses the notation if (*) ... to express nondetermin-
istic choice.

Our method translates each procedure m into two CLP relations:

1. the error relation Em(L, N, D), which describes states 〈L, N, D〉 from which
the execution of m may go wrong by failing an assertion, and

2. the transfer relation Tm(L, N, D, L′, N ′, D′), which, when m terminates nor-
mally, describes the relation between the pre-state 〈L, N, D〉 and post-state
〈L′, N ′, D′〉 of m.

The transfer and error relations for the example program are shown in Fig-
ure 1, columns 2 and 3, respectively. The relation Elock says that lock goes
wrong if L is not initially 0, and Tlock says that lock terminates normally
if L is initially 0, where L = 1 and N and D are unchanged the post-state.
The relation Emain says that main goes wrong if either loop goes wrong, or
loop terminates normally and unlock goes wrong in the post-state of loop. The
other relation definitions are similarly intuitive. Automatically generating these
definitions from the program source code is straightforward.

We use these relation definitions to check if an invocation of main may go
wrong by asking the CLP query Emain(L, N, D). This query is satisfiable in the
case where L = 1, indicating that the program may go wrong if the lock is held
initially, and an inspection of the source code shows that this is indeed the case.

If we provide the additional precondition that the lock is not initially held,
then the corresponding CLP query

L = 0 ∧ Emain(L, N, D)

is still satisfiable. An examination of the satisfying CLP derivation shows that it
corresponds to the following execution trace: main calls loop, which calls lock,
which returns to loop, which calls unl, which calls unlock, which returns to
unl, which returns to loop, which returns to main, which calls unlock, which
fails its assertion, since there are two calls to unlock without an intervening call
to lock.

The reason for this bug is that the increment operation N++ in unl (which is
present in the original BLAST example) is commented out. After uncommenting
this increment operation, the modified transfer relation for unl is:

Tunl(L, N, D, L1, N2, D1)←
∨∧ Tunlock(L, N, D, L1, N1, D1)

∧ N2 = N1 + 1

∨∧ L1 = L

∧ N2 = N

∧ D1 = D

The above CLP query is now unsatisfiable, indicating that the fixed example
program does not go wrong and thus satisfies the desired correctness property.

4 The Source Language

This section presents the syntax and semantics of the imperative language that
we use as the basis for our formal development.

4.1 Syntax

A program is a sequence of procedure definitions. Each procedure definition con-
sists of a procedure name and a sequence of formal parameters, which are bound

in the procedure body, and can be α-renamed in the usual fashion. The procedure
body is an expression. Expressions include variable reference and assignment,
let-expressions, application of primitive functions and user-defined procedures,
conditionals, and assertions. To illustrate the handling of heap-allocated data
structures, the language includes mutable pairs, and provides operations to cre-
ate pairs and to access and update each field i of a pair, for i = 1, 2. Although
our language does not include iterative constructs such as while or for loops,
they can easily being encoded as tail-recursive procedures. In addition to lo-
cal variables bound by let-expressions and parameter lists, programs may also
manipulate the global variables �g. For simplicity, the language is untyped, al-
though we syntactically distinguish boolean expressions, which are formed by
the application of a primitive predicate to a sequence of arguments.

Programming Language Syntax
(programs) P ::= �D

(definitions) D ::= m(�x) {e}
(expressions) e ::= x | x := e | let x = e in e

| f(�e) | m(�e) | if p(�e) e e

| assert p(�e) | 〈e, e〉 | e.i | e.i := e

(procedure names) m

(global variables) �g

(special variables) �h = h.h1.h2

Throughout this paper, we assume the original program and the desired cor-
rectness property have already been combined into an instrumented program,
which includes assert statements that check that the desired correctness prop-
erty is respected by the program. We say an execution of the instrumented
program goes wrong if it fails an assertion because the original program fails the
desired correctness property. The focus of this paper is to statically determine
if the instrumented program can go wrong.

Notation We use �X to denote a sequence of entities, �X.�Y denotes sequence
concatenation, and ε is the empty sequence. We sometimes interpret sequences
as sets, and vice-versa. If M is a (partial) map, then the map M [X := Y] maps
X to Y and is otherwise identical to M , and the map M [−X] is undefined on
X and is otherwise identical to M . The operations M [�X := �Y] and M [− �X] are
defined analogously. We use �X = �Y to abbreviate X1 = Y1 ∧ . . . ∧ Xn = Yn.
We use e1 ; e2 to abbreviate let x = e1 in e2, where x is not free in e2.

4.2 Semantics

We formalize the meaning of programs using a “big step” operation semantics. A
store σ is a partial mapping from variables to values. The set of values includes
constants and maps. To represent pairs, the store σ maps three special variables,
h, h1, and h2, to maps. The map σ(h) describes which locations have been allo-
cated, and σ(h1) and σ(h2) describe the components of allocated pairs. For any
heap location l, if σ(h)(l) = 0 then the location l is not allocated, otherwise the

P � e : σ → σ′, v P � e : σ wr

P � x : σ → σ, σ(x)
P � e : σ wr

P � x := e : σ wr

P � e : σ → σ′, v
P � x := e : σ → σ′[x := v], v

P � e1 : σ wr

P � let x = e1 in e2 : σ wr

P � e1 : σ → σ′, v1

P � e2 : σ′[x := v1] wr

P � let x = e1 in e2 : σ wr

P � e1 : σ → σ′, v1

P � e2 : σ′[x := v1]→ σ′′, v2

P � let x = e1 in e2 : σ → σ′′[−x], v2

P � �e : σ wr

P � f(�e) : σ wr

P � �e : σ → σ′, �v
P � f(�e) : σ → σ′,Mf (f,�v)

P � �e : σ wr

P � m(�e) : σ wr

P � �e : σ → σ′, �v
m(�x) {e} ∈ P

�x ∩ dom(σ′) = ∅
P � e : σ′[�x := �v] wr

P � m(�e) : σ wr

P � �e : σ → σ′, �v
m(�x) {e} ∈ P

�x ∩ dom(σ′) = ∅
P � e : σ′[�x := �v]→ σ′′, v

P � m(�e) : σ → σ′′[−�x], v

P � �e : σ → σ′, �v
ifMp(p,�v) then i = 1 else i = 2

P � ei : σ′ → σ′′, v
P � if p(�e) e1 e2 : σ → σ′′, v

P � �e : σ wr

P � if p(�e) e1 e2 : σ wr

P � �e : σ → σ′, �v
ifMp(p,�v) then i = 1 else i = 2

P � ei : σ′ wr
P � if p(�e) e1 e2 : σ wr

P � �e : σ wr

P � assert p(�e) : σ wr

P � �e : σ → σ′, �v
Mp(p,�v) = false

P � assert p(�e) : σ wr

P � �e : σ → σ′, �v
Mp(p,�v) = true

P � assert p(�e) : σ → σ, 0

P � e1.e2 : σ wr

P � 〈e1, e2〉 : σ wr

P � e1.e2 : σ → σ′, v1.v2 σ′(h)(l) = 0
σ′′ = σ′[h := σ′(h)[l := 1], hi := σ′(hi)[l := vi]

i∈1,2]

P � 〈e1, e2〉 : σ → σ′′, l

P � e : σ wr

P � e.i : σ wr

P � e : σ → σ′, l
P � e.i : σ → σ′, σ(hi)(l)

P � e1.e2 : σ wr

P � e1.i := e2 : σ wr

P � e1.e2 : σ → σ′, v1.v2

σ′′ = σ′[hi := σ′(hi)[v1 := v2]]

P � e1.i := e2 : σ → σ′′, v2

P � �e : σ → σ′, �v P � �e : σ wr

P � ε : σ → σ, ε
P � e : σ wr

P � e.�e : σ wr

P � e : σ → σ′, v
P � �e : σ′ wr

P � e.�e : σ wr

P � e : σ → σ′, v
P � �e : σ′ → σ′′, �v

P � e.�e : σ → σ′′, v.�v

Fig. 2. Evaluation rules.

components of the pair at location l are given by σ(h1)(l) and σ(h2)(l), respec-
tively. This representation of pairs significantly simplifies the correspondence
proof between imperative programs and constraint logic programs.

The judgment P � e : σ → σ′, v states that, when started from an initial store
σ, the evaluation of expression e may terminate normally yielding a result value
v and resulting store σ′. The judgment P � e : σ wr states that, when started
from an initial store σ, the evaluation of expression e may go wrong by failing an
assertion. Similarly, the judgments P � �e : σ → σ′, �v and P � �e : σ wr describes
whether an expression sequence �e terminates normally, yielding value sequence
�v, or goes wrong, respectively. The rules defining these judgments are shown
in Figure 2. These rules rely on the function Mf : FnSym × Value∗ → Value
and the relation Mp ⊆ PredSym × Value∗ to provide the meaning of primitive
functions and predicates, respectively.

5 Translating Imperative Programs into CLP

We now describe the translation of imperative programs into CLP. At each step
in the translation, the environment Γ maps each program variable x into a CLP
term that provides a symbolic representation of the value of x. Given the initial
environment Γ for an expression e, the judgment

Γ � e→ w |n·Γ ′·t
describes the behavior of e. The wrong condition w is a constraint describing
initial states from which e may go wrong by failing an assertion. For example,
the wrong condition of assert x = 0 is Γ (x) 	= 0, i.e., the assertion goes wrong
if x is not initially 0. Similarly, the normal condition n describes the initial
states from which e may terminate normally. In this case, the environment Γ ′

symbolically describes values of variables in the post-state, and the term t is a
symbolic representation of the result of e. The judgment Γ � �e → w |n ·Γ ′ ·�t
behaves in a similar manner on expression sequences, which may go wrong or
may terminate normally producing a value sequence represented by �t.

The rules defining these judgements are shown in Figure 3. The rule [exp var]
states that the variable access x never goes wrong and always terminate normally
without changing the program state. The rule retrieves a symbolic representa-
tion Γ (x) for the value of x from the environment. The rule [exp assign] for an
assignment x := e determines a symbolic representation t for e, and updates
the environment to record that t represents of the current value of x. The rule
[exp let] states that let x = e1 in e2 goes wrong if either e1 goes wrong or if e1

terminates normally and e2 goes wrong.
Some translation rules are more complicated. For example, the rule [exp if]

for the conditional if p(�e) e1 e2 needs to merge the environments Γ ′
i produced by

the translation of ei, for i = 1, 2. To accomplish this merge, the rule determines
the set �y of variables assigned in either e1 or e2, and introduces an environment
Γ ′′ that maps �y to fresh variables. Then, having determined that the branch
ei of the conditional is executed, the rule asserts that the Γ ′′(�y) = Γ ′

i (�y), thus

Γ � e→ w |n·Γ ′ ·t Γ � �e→ w |n·Γ ′ ·�t

[exp var]

Γ � x→ false | true ·Γ ·Γ (x)

[exp assign]

Γ � e→ w |n·Γ ′ ·t
Γ � x := e→ w |n·Γ ′[x := t]·t

[exp let]

Γ � e1 → w1 |n1 ·Γ1 ·t1
Γ1[x := t1] � e2 → w2 |n2 ·Γ2 ·t2

Γ � let x = e1 in e2 → w1 ∨ (n1 ∧ w2) |n1 ∧ n2 ·Γ2[−x]·t2

[exp fn]

Γ � �e→ w |n·Γ ′ ·�t
Γ � f(�e)→ w |n·Γ ′ ·f(�t)

[exp call]

Γ � �e→ w |n·Γ ′ ·�t
z, �g′, �h′ fresh

w′ ≡ w ∨ (n ∧ Em(�t, Γ ′(�g), Γ ′(�h)))

n′ ≡ n ∧ Tm(�t, Γ ′(�g), Γ ′(�h), �g′, �h′, z)

Γ ′′ ≡ Γ ′[�g := �g′,�h := �h′]
Γ � m(�e)→ w′ |n′ ·Γ ′′ ·z

[exp if]

Γ � �e→ w |n·Γ ′ ·�t Γ ′ � ei → wi |ni ·Γ ′
i ·ti

z fresh �y = {y | Γ ′
1(y) �= Γ ′

2(y)}
Γ ′′(x) =

{
Γ ′

1(x) if x �∈ �y

fresh var if x ∈ �y

w′ ≡ w ∨ (n ∧ p(�t) ∧ w1) ∨ (n ∧ ¬p(�t) ∧ w2)

n′
1 ≡ n ∧ p(�t) ∧ n1 ∧ z = t1 ∧ Γ ′′(�y) = Γ ′

1(�y)

n′
2 ≡ n ∧ ¬p(�t) ∧ n2 ∧ z = t2 ∧ Γ ′′(�y) = Γ ′

2(�y)

Γ � if p(�e) e1 e2 → w′ | (n′
1 ∨ n′

2)·Γ ′′ ·z
[exp assert]

Γ � �e→ w |n·Γ ′ ·�t
Γ � assert p(�e)→ w ∨ (n ∧ ¬p(�t)) |n ∧ p(�t)·Γ ′ ·0

[exp pair]

Γ � e1.e2 → w |n·Γ ′ ·t1.t2
Γ ′′ ≡ Γ ′[hi := store(Γ ′(hi), l, ti)

i∈1,2, h := store(Γ ′(h), l, 1)]

l fresh n′ ≡ n ∧ select(Γ (h), l) = 0)

Γ � 〈e1, e2〉 → w |n′ ·Γ ′′ ·l

[exp field ref]

Γ � e→ w |n·Γ ′ ·t
Γ � e.i→ w |n·Γ ′ ·select(Γ ′(hi), t)

[exp field assign]

Γ � e1.e2 → w |n·Γ ′ ·t1.t2
Γ ′′ ≡ Γ ′[hi := store(Γ ′(hi), t1, t2)]

Γ � e1.i := e2 → w |n·Γ ′′ ·t2
[exps none]

Γ1 � ε→ false | true ·Γ ·ε

[exps some]

Γ � e→ w |n·Γ ′ ·t Γ ′ � �e→ w′ |n′ ·Γ ′′ ·�t
Γ � e.�e→ w ∨ (n ∧ w′) |n ∧ n′ ·Γ ′′ ·t.�t

� D→ �R � P → �R

[def]

Γ ≡ [�x := �x,�g := �g,�h := �h]

Γ � e→ w |n·Γ ′ ·t
�R =

{
Em(�x,�g,�h)← w

Tm(�x,�g,�h, Γ ′(�g), Γ ′(�h), t)← n

}

� m(�x) {e} → �R

[defs]

P = D1. · · · .Dn � Di → �Ri

� P → �R1. · · · . �Rn

Fig. 3. Translation rules.

recording that the representation of �y in the resulting environment Γ ′′ come from
the branch ei. This translation of conditionals avoids the exponential blow-up of
traditional VC generation algorithms [10], and is analogous to the compact VC
generation algorithm of ESC/Java [16].

Our translation for pairs relies on the primitive functions select and store,
where store(a, i, v) extends a functional map a at index i with value v, and
select(a, i) selects the element at index i from map a. These two functions
satisfy the select-of-store axioms:

select(store(a, i, v), i) = v
i 	= j ⇒ select(store(a, i, v), j) = select(a, j)

To aid in the translation, the environment Γ maps the special variables h, h1, h2

into CLP terms that symbolically model of the current state of the heap. The
rule [exp pair] for the pair creation expression 〈e1, e2〉 introduces a fresh vari-
able l and asserts that select(Γ (h), l) = 0, which means that the location l
is not yet allocated. The rule then updates the environment (1) to map h to
store(Γ (h), l, 1), indicating that location l is now allocated, and (2) to map
each hi to store(Γ (hi), l, ti), where the term ti represents the value of ei, for
i = 1, 2. Thus, the rule records the contents of the pair in the new terms for h1

and h2. The rules for accessing and updating pairs operate in a similar manner.
The most novel aspect of our translation concerns its handling of procedure

calls. Earlier approaches translated procedure calls using user-supplied specifi-
cations. However, since writing specifications for all procedures imposes a signif-
icant burden on the programmer, we use a different approach that leverages the
ability to define relation symbols recursively in CLP.

We translate each procedure definition m(�x) {e} into two rules. The first rule
defines an error relation Em that describes pre-states from which an invocation of
m may go wrong; the second rule defines a transfer relation Tm that, in situations
where m terminates normally, describes the pre-state/post-state relation of m.
The arguments to the error relation Em are the formal parameters �x, the global
variables �g, plus the three special variables �h = h.h1.h2 that model the heap. The
arguments to Tm are again the formal parameters �x, the globals �g, the special
variables �h, followed by �g′, which represents the post-state of the global variables,
followed by �h = h′.h1

′.h2
′, which represents the post heap state, followed by a

term representing the return value of m. The rule [exp call] for a procedure call
m(�e) generates a wrong condition w′ that uses Em to express states from which
the execution of m(�e) may go wrong, and generates a normal condition n′ that
uses Tm to describe how m(�e) may terminate normally.

5.1 Correctness of the Translation

Given an imperative program P , we translate it into error and transfer rela-
tions �R according to the translation rule � P → �R. For any expression e, the
judgement

Γ � e→ w |n·Γ ′·t

describes the behavior of that expression from any initial state σ that is com-
patible with Γ , i.e., where dom(Γ) ⊆ dom(σ) and lm(�R,D) |= ∃̃ (σ = Γ). We
use the notation σ = Γ to abbreviate

∧
x∈dom(σ) σ(x) = Γ (x), where σ(x) means

the ground term representing the value σ(x).
To determine if e goes wrong from σ (i.e., P � e : σ wr), we check

lm(�R,D) |= ∃̃ (σ = Γ ∧ w) .

Similarly, to check if e terminates normally, yielding post-store σ′ and result v,
we check

lm(�R,D) |= ∃̃ (σ = Γ ∧ n ∧ σ′ = Γ ′ ∧ v = t) .

Thus, to check if the program’s initial procedure main goes wrong, we use the
CLP query:

lm(�R,D) |= ∃̃Emain(�g,�h) .

If this query is satisfiable, the CLP implementation returns a satisfying assign-
ment for �g and �h, describing the initial state of an erroneous execution. If the
CLP implementation also returns a CLP derivation, then this derivation corre-
sponds in a fairly direct manner to a trace of the erroneous execution.

6 Applications

We next consider the example program shown in Figure 4, which, for clarity,
is presented using Java syntax. This class implements rational numbers, where
a rational is represented as a pair of integers for the numerator and denomina-
tor. The class contains a constructor for creating rationals and a method trunc
for converting a rational to an integer. The example also contains a test har-
ness, which reads in two integers, n and d, ensures that d is not zero, creates
a corresponding rational, and then repeatedly prints out the truncation of the
rational.

We wish to check that a division-by-zero error never occurs. We express this
correctness property as an assertion in the trunc method, and translate the
instrumented program into CLP rules. The CLP query Emain() is satisfiable,
indicating an error in the program. An investigation of a satisfying CLP deriva-
tion reveals the source of the error: the arguments are passed to the Rational
constructor in the wrong order. Note that since both arguments are integers,
Java’s type system does not catch this error.

After fixing this bug, the query Emain() is now unsatisfiable, indicating that
a division-by-zero error cannot occur. However, the CLP implementation that
we use, SICStus Prolog [27], requires several seconds to answer this query, since
its depth-first search strategy explicitly iterates through the loop in main 10,000
times.

To avoid this inefficiency, we are currently developing a CLP implementa-
tion optimized towards software model checking. This implementation uses lazy
predicate abstraction and counter-example driven abstraction refinement. Our

class Rational {

int num, den;

Rational(int n, int d) {
num = n;

den = d;

}

int trunc() {
assert den != 0;

return num/den;

}
}

public static void main(String[] a) {
int n = readInt(), d = readInt();

if(d == 0) {
return;

}
Rational r = new Rational(d,n);

for(int i=0; i<10000; i++) {
print(r.trunc());

}
}

Fig. 4. The example program Rational.

prototype implementation determines the unsatisfiability of the Rational ex-
ample in just two iterations. We are currently extending this implementation to
handle more realistic benchmarks.

7 Related Work

This paper can be viewed as a synthesis of ideas from extended static checking [8,
14] and model checking [5, 24, 3, 23]. An extended static checker translates the
given program into a combination of constraints over program variables, and
uses sophisticated decision procedures to reason about the validity of these con-
straints, thus performing a precise, goal-directed analysis. However, the transla-
tion of (recursive) procedure calls requires programmer-supplied specifications.
We build on top of the ESC approach, but avoid the need for procedure specifica-
tions by targeting the extended logic of CLP, in which we can express recursion
directly.

The depth-first search of standard CLP implementations [27] corresponds to
explicit path exploration, much like that performed by software model checkers,
such as Bandera [11]. However, whereas Bandera relies on programmer-supplied
abstractions to abstract (infinite-state) data variables, the CLP implementation
reasons about data values using collections of constraints, thus providing a form
of automatic data abstraction. The programmer-supplied abstractions of Ban-
dera do provide stronger termination guarantees, but may yield false alarms.

The software checkers SLAM [1] and BLAST [18] use a combination of predi-
cate abstraction [17] and automatic predicate inference to avoid false alarms and
the need for programmer-supplied abstractions, though they may not terminate.
These tools have been successfully

applied to a number of device drivers. Both tools abstract the given imper-
ative program to a finite-state boolean program, which is then model checked.

This paper suggests that the well-studied logic of CLP may also provide a suit-
able foundation for the development of such tools.

Delzanno and Podelski [7] also explore the use of CLP for model checking.
They focus on concurrent systems expressed in the guarded-command specifica-
tion language proposed by Shankar [26], which does not provide explicit support
for dynamic allocation or recursion. The performance of their CLP-based model
checking approach is promising.

Bruening [2] has built a dynamic assertion checker based on state-space ex-
ploration for multithreaded Java programs. Stoller [28] provides a generalization
of Bruening’s method to allow model checking of programs with either message-
passing or shared-memory communication. Both of these approaches operate on
the concrete program without any abstraction. Yahav [30] describes a method to
model check multithreaded Java programs using a 3-valued logic [25] to abstract
the store.

Abstract interpretation [6] is a standard framework for developing and de-
scribing program analyses. It provides the semantics basis for the abstractions
in the above model checking tools and it has been applied successfully in many
applications, including rocket controllers [29].

Instead of avoiding the need for loop invariants and specifications, another
approach is to infer such annotations automatically. The Houdini annotation
inference system [15, 13] re-uses ESC/Java as a subroutine in a generate-and-
test approach to annotation inference. Daikon uses an empirical approach to
find probable invariants [12].

Symbolic execution is the underlying technique of the successful bug-finding
tool PREfix for C and C++ programs [4]. For each procedure in the given
program, PREfix synthesizes a set of execution paths, called a model. Models
are used to reason about calls, which makes the process somewhat modular,
except that fixpoints of models are approximated iteratively for recursive and
mutually recursive calls.

8 Conclusion

This paper explores the connection between two programming paradigms: the
traditional imperative paradigm and the constraint logic programming paradigm.
We have expressed the correctness of imperative programs in terms of CLP sat-
isfiability, based on a novel, semantics-preserving translation from imperative
programs to CLP programs. The resulting CLP programs provide a clean way
to reason about the behavior and correctness of the original imperative program.

This connection has immediate practical applications: it enables us to use ex-
isting CLP implementations to check correctness properties of imperative pro-
grams. For depth-first CLP implementations, this approach yields an efficient
method for bounded model checking of software, using a combination of sym-
bolic reasoning for data values and explicit path exploration.

Finally, the logic of CLP is well-studied [19, 21, 20, 22], and may provide op-
timizations and implementation techniques such as tableaux methods and sub-

sumption [22], which offer the promise of complete model checking on certain
classes of infinite-state programs. More experience on practical examples is cer-
tainly necessary, and may provide intuition and motivation to develop specialized
CLP implementations optimized for software model checking.

References

1. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties

of interfaces. In M. B. Dwyer, editor, Model Checking Software, 8th International

SPIN Workshop, volume 2057 of Lecture Notes in Computer Science, pages 103–

122. Springer, May 2001.

2. D. Bruening. Systematic testing of multithreaded Java programs. Master’s thesis,

Massachusetts Institute of Technology, 1999.

3. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic

model checking: 1020 states and beyond. Information and Computation, 98(2):142–

170, 1992.

4. W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dynamic

programming errors. Software—Practice & Experience, 30(7):775–802, June 2000.

5. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons

using branching-time temporal logic. In Workshop on Logic of Programs, Lecture

Notes in Computer Science, pages 52–71. Springer-Verlag, 1981.

6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analyses of programs by construction or approximation of fixpoints. In Proceedings

of the Symposium on the Principles of Programming Languages, pages 238–252,

1977.

7. G. Delzanno and A. Podelski. Model checking in CLP. Lecture Notes in Computer

Science, 1579:223–239, 1999.

8. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking.

Research Report 159, Compaq Systems Research Center, Dec. 1998.

9. D. L. Detlefs, G. Nelson, and J. B. Saxe. A theorem prover for program analysis.

Manuscript in preparation, 2002.

10. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs,

NJ, 1976.

11. M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser,

and H. Zheng. Tool-supported program abstraction for finite-state verification. In

Proceedings of the 23rd International Conference on Software Engineering, 2001.

12. M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting

relevant program invariants. In Proceedings of the 22nd International Conference

on Software Engineering (ICSE 2000), Limerick, Ireland, June 2000.

13. C. Flanagan, R. Joshi, and K. R. M. Leino. Annotation inference for modular

checkers. Inf. Process. Lett., 77(2–4):97–108, Feb. 2001.

14. C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata. Extended

static checking for Java. In Proceedings of the Conference on Programming Lan-

guage Design and Implementation, pages 234–245, June 2002.

15. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java.

In J. N. Oliveira and P. Zave, editors, FME 2001: Formal Methods for Increasing

Software Productivity, volume 2021 of Lecture Notes in Computer Science, pages

500–517. Springer, Mar. 2001.

16. C. Flanagan and J. B. Saxe. Avoiding exponential explosion: Generating compact

verification conditions. In Conference Record of the 28th Annual ACM Symposium

on Principles of Programming Languages, pages 193–205. ACM, Jan. 2001.

17. S. Graf and H. Säıdi. Construction of abstract state graphs via PVS. In O. Grum-

berg, editor, Computer Aided Verification, 9th International Conference, CAV ’97,

volume 1254 of Lecture Notes in Computer Science, pages 72–83. Springer, 1997.

18. T. A. Henzinger, R. Jhala, and R. Majumdar. Lazy abstraction. In Proceedings of

the 29th Symposium on Principles of Programming Languages, January 2001.

19. J. Jaffar and J. L. Lassez. Constraint logic programming. In Proceedings of ACM

SIGPLAN Symposium on Principles of Programming Languages, pages 111–119,

Jan. 1987.

20. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of

Logic Programming, 19/20:503–581, 1994.

21. J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of constraint

logic programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

22. M. J. Maher. A logic programming view of CLP. In International Conference on

Logic Programming, pages 737–753, 1993.

23. K. L. McMillan. Symbolic Model Checking: An Approach to the State-Explosion

Problem. Kluwer Academic Publishers, 1993.

24. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors, Fifth International

Symposium on Programming, volume 137 of Lecture Notes in Computer Science,

pages 337–351. Springer-Verlag, 1982.

25. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

In Proceedings of the 26th Symposium on Principles of Programming Languages,

pages 105–118, 1999.

26. A. U. Shankar. An introduction to assertional reasoning for concurrent systems.

Computing Surveys, 25(3):225–302, 1993.

27. SICStus Prolog. On the web at http://www.sics.se/sicstus/.

28. S. Stoller. Model-checking multi-threaded distributed Java programs. In Proceed-

ings of the 7th International SPIN Workshop on Model Checking and Software

Verification, Lecture Notes in Computer Science 1885, pages 224–244. Springer-

Verlag, 2000.

29. M. Turin, A. Deutsch, and G. Gonthier. La vérification des programmes d’ariane.

Pour la Science, 243:21–22, Jan. 1998. (In French).

30. E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued

logic. In Proceedings of the 28th Symposium on Principles of Programming Lan-

guages, pages 27–40, January 2001.

