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Abstract. We analyze dynamic information-flow control for imperative
languages in terms of functional computation. Specifically, we translate
an imperative language to a functional language, thus accounting for the
main difficulties of information-flow control in the imperative language.

1 Introduction

Dynamic information-flow control appears to be increasingly popular, useful, but
intricate. These characteristics partly stem from the treatment of realistic lan-
guages, in particular with imperative features. (Dynamic information-flow con-
trol for the pure lambda calculus seems considerably simpler and less practically
relevant.) In this paper we aim to contribute to the understanding of dynamic
information-flow control, by translating imperative features to a functional cal-
culus. The translation accounts for difficulties of information-flow control in the
source language; information-flow control in the target language is comparatively
straightforward.

The rest of this introduction presents our goals and results in more detail,
putting them in the context of a long line of prior work.

Information-flow security

In the classic information-flow model of security [6, 7, 9], data is associated with
security levels, and then one aims to guarantee that information propagates con-
sistently with those levels. For example, for confidentiality policies, the security
levels may be “secret” and “public”, and then one requires, for instance, that
secret data is not disclosed on public output channels. For integrity policies,
similarly, the security levels may be “tainted” and “trusted”, and then trusted
outputs should not be computed from tainted inputs.

More precisely, a frequent, principled requirement is non-interference, which
basically means that events observable at certain security levels are not influ-
enced by events at certain other security levels. The events often correspond to
straightforward inputs and outputs. So, concretely, the non-interference prop-
erty implies that secret inputs do not influence public outputs, and that tainted
inputs do not influence trusted outputs. Note that the non-interference property
precludes partial flows of information. For example, given a secret integer input,



non-interference forbids revealing not only the entire integer but also its sign on
a public output channel.

The enforcement of information-flow rules can rely on a variety of mecha-
nisms. Since the early days of the subject, special architectures have been consid-
ered for this purpose. More commonly, the enforcement may be done in software,
particularly in operating systems and in programming languages.

Static and dynamic language-based information-flow control

Working within a programming language enables fine-grained tracking of infor-
mation flows. In this context, the enforcement may be done statically (e.g., at
compile-time) or dynamically (at run-time). Static and dynamic techniques may
also be combined. Sabelfeld and Myers [18] review the research on language-
based information-flow control as of 2003.

Although dynamic techniques are far from new, until recently they were
somewhat neglected in the programming-language research literature, because
of concerns that they could not be both sound and precise enough. In contrast,
flexible type systems were developed for static enforcement [13, 22], and led to
realistic programming languages such as Jif [14, 16] and FlowCaml [10, 17].

Nevertheless, various forms of dynamic information-flow control may be at-
tractive in practice, for instance in the context of widespread languages such
as Perl and JavaScript (which are light on static guarantees). Language-level
dynamic techniques also connect with dynamic tracking in operating systems,
where they have been prominent in recent research artifacts (such as Asbestos [15]
and HiStar [24]) and in deployed commercial systems (in SELinux and in aspects
of Windows, in particular).

Accordingly, we have seen renewed interest and substantial progress in re-
search on dynamic information-flow control in recent years [3, 11, 19, 20]. This
research has aimed to develop, then to use, flexible and efficient systems that sat-
isfy non-interference properties. For instance, this research effectively supports
promising uses of dynamic information-flow control in Web browsers [5, 8, 12, 21].
This research is often clever and intricate—so we do not attempt to give a com-
plete description here, but we focus on some of the intricacies below.

Imperative systems and the problem of sensitive upgrades

Whether static or dynamic, information-flow control accounts for a useful range
of realistic language features and computational phenomena. Even straightfor-
ward imperative features can be challenging. The following classic example il-
lustrates some of the difficulties:

Function f x x = trueH x = falseH

y := true; y = trueL y = trueL

z := true; z = trueL z = trueL

if (x) y := false; y set to falseH −
if (!y) z := false; − z set to falseL

!z; returns trueL returns falseL

Return value: trueL falseL
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The superscript H marks private data; similarly, the superscript L marks pub-
lic data. When (f trueH) is called, the value for the reference cell y must be
updated. Since the update to y is conditional on the value of x, information
about x’s private value leaks to y. If the value for y is set to falseH to capture
the influence of private data, an attacker can use y in a second conditional as-
signment statement to leak the value of x. Since y is falseH , the value for z

remains trueL, and therefore (f trueH) = trueL. When (f falseH) is called,
the value of y remains trueL. Therefore, z is set to falseL (since y is public),
and (f falseH) = falseL. Thus, if allowed to run to completion, this piece of
code leaks a secret input.

One sensible approach to preventing this leak is to forbid sensitive upgrades
[3, 23]. Specifically, programs are not allowed to write to locations that contain
low-security data within high-security contexts (e.g., after branching on some
secret). This approach can be realized either statically or dynamically:

– Statically, it seems fairly natural to require that each location has a fixed
security level, much like (in virtually all programming languages) it has a
fixed type, and to combine the security level with the type.

– Dynamically, on the other hand, the various realizations of this approach
introduce interesting twists, typically to enhance efficiency or flexibility.

Simple functional systems

Remarkably, these difficulties and the related complications do not seem to arise
in the context of pure functional languages.

In the pure lambda calculus, in particular, a traditional system of labels,
with extremely simple rules, suffices for sound information-flow tracking [2]. In
this system, each subexpression of a program may have a label that indicates
its sensitivity. Formally, if e is an expression and H is a label, then H : e is an
expression.

A basic rule permits lifting labels in order to permit function application:

(H :e1)(e2) → H : (e1 e2)

Here, e1 and e2 are arbitrary expressions. When e1 is a function of the form
(λx.e), this rule enables the subsequent, straightforward application of the β

rule (which returns the result of replacing x with e2 in e, as usual), underneath
the label H .

Analogously, for conditionals, labels may be lifted out of guards:

if (H :e1) then e2 else e3 → H : (if e1 then e2 else e3)

If conditionals are primitive, then so is the rule. If conditionals are encoded as
functions, then this rule is easily derived from the rule for application.
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Functional vs. imperative systems

This contrast between functional and imperative systems suggests a number of
questions:

– Are the difficulties really specific to imperative programming?
If so, perhaps the lambda calculus is not an appropriate core language for
understanding computational phenomena, at least not for security?

– On the other hand, since imperative programs can be translated to func-
tional programs, by passing stores as values, could the difficulties be ana-
lyzed and resolved by translation? Perhaps more than one translation should
be considered in order to account for some of the twists in information-flow
control?

For static information-flow control, such questions seem relatively simple, and
they have been at least partly resolved. In particular, one can translate vari-
ous static information-flow systems for imperative languages to the Dependency
Core Calculus (DCC) [1], which is a functional computational lambda calculus.
The present paper aims to address such questions for dynamic information-flow
control.

Contents of this paper

For this purpose, the paper defines a simple imperative language and a simple
functional language. Both have primitive rules for tracking flows of information.

– In the imperative language, the rules are analogous to those from the liter-
ature, and may be judged reasonably permissive.

– In the functional language, the rules amount to a mostly unsurprising man-
agement of labels, of the kind that we have shown for the lambda calculus.

Both sets of rules for tracking flows of information are sound, in the sense that
they yield non-interference properties. The paper shows how to account for the
imperative rules in terms of the functional rules, by translation.

There is a straightforward, naive translation from the imperative language to
the functional language (by passing stores, as indicated above). Although sound,
this translation is overly conservative. For instance, the translation of

if H :x then y:=0 else y:= 0

is roughly the function

(λσ. if H :x then 〈0, σ[y := 0]〉 else 〈0, σ[y := 0]〉)

which, when applied to a store σ0 yields

H :〈0, σ0[y := 0]〉

where σ0[y := 0] is the store that agrees with σ0 except that it maps y to 0. Note
that the entire resulting store is under the label H , so it is all tainted. Reading
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the contents of some unrelated location z after executing this program will yield
a result of the form H :v, always with a label H .

This paper defines a more sophisticated translation that addresses these dif-
ficulties. This translation includes a refined management of the store as a value.
It dynamically separates and recombines the parts of a store that are updated or
left unchanged in high-security contexts, without tainting the unchanged parts
in the process, and without requiring static information for distinguishing those
two parts of the store. Via this translation, the tracking for the imperative lan-
guage can be replicated by the tracking in the functional language.

Both translations can be written in monadic style, if one wishes, and arguably
the monadic style has certain benefits. However, we do not believe that monads
are the answer: the straightforward use of monads, by itself, does little to resolve
the problems that we tackle.

Variants and further work

Our languages have certain specific characteristics (often limitations), and con-
sidering other languages might be attractive in further work.

– For simplicity, our source language does not include dynamic allocation.
– Both our source language and our target language permit dynamic tests on

labels. Such tests are attractive because they make it easy to write certain
programs, and they preserve the main security properties of interest. On
the other hand, their inclusion means that our target language is not the
minimal labelled lambda calculus.

– We consider only two security levels, rather than a general lattice of security
levels. Although the case of two levels is both instructive and common in
practice, it seems interesting to generalize our results to arbitrary lattices.

– Finally, one may wonder about other language features, such as exceptions.

Our results are purely theoretical. However, analogous results might be of
practical value. In scenarios where one language is compiled to another, refined
translations such as ours may enable dynamic information-flow control to hap-
pen, soundly and flexibly, in the target language.

2 An Imperative Language with Information-Flow
Control

We consider an imperative language ImpFlow that supports information-flow
control. Its definition, which we give in this section, is along the lines of previous
work [3]. The language (see Figure 1) extends the lambda calculus with mutable
reference cells, a way of designating private expressions, and a way of testing for
private labels. Terms include variables (x), functions (λx.m), and function ap-
plications (m1 m2). To support imperative updates and illustrate the challenges
of implicit flows, ImpFlow includes terms for assignment (i:=m) and derefer-
encing (!i). Here, i denotes an address in the range of 1, ..., n. The term H :m
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marks the result of evaluating m as private. The term H? m tests if the result
of evaluating m is private.

The semantics for ImpFlow is defined in Figure 1. A value (λx.m)k combines
an abstraction (λx.m) with a label k, where k may be either L for public data
or H for private data. A program counter pc tracks the influences on the current
execution. A store (Σ) maps addresses (i) to values (w).

We define the operational semantics of ImpFlow via the big-step relation:

m,Σ ⇓pc w,Σ
′

This relation evaluates an expression m in the context of a store Σ and the
current label pc of the program counter, and it returns the resulting value w and
the (possibly modified) store Σ′.

When a function is evaluated via the [m-fun] rule, the program counter is
attached as the label of the function. The evaluation of a value w is similar, via
rule [m-val], and relies on an auxiliary operation to join a label onto a value:

(λx.m)k ⊔ pc
def
= (λx.m)k⊔pc

The rule [m-app] evaluates the body of the called function (λx.m)k with up-
graded program counter label pc⊔k, since the callee “knows” that that function
was invoked. As usual, we assume L ❁ H , and so, for example, L ⊔H = H .

The [m-label] rule for H : m evaluates the subexpression m and joins the
label H to the resulting value, marking the result as private. The [m-pred] rule
evaluates an expression to a value and returns true (Church-encoded) if either
the program counter or the value’s label is private. Otherwise, it returns false.

Mutable reference cells must be handled carefully in order to guarantee non-
interference. The [m-deref] rule reads a value from the store and returns it,
joining the program counter to the value. The real complexity lies in handling
updates to the store. Much as in several previous systems, the [m-assign] rule uses
the no-sensitive-upgrade check [3, 23], which forbids updates to public reference
cells when in a private block of code. Here the function label extracts the label
from a value:

label( (λx.m)k )
def
= k

3 Non-Interference in ImpFlow (Start)

We briefly consider information-flow guarantees satisfied by ImpFlow.
For this purpose, we consider two ImpFlow values to be equivalent modulo

under labels if they only differ under H superscripts. More formally, the equiv-
alent modulo under labels relation on ImpFlow values, terms, or stores is the
congruence closure of the rule:

(λx.m1)
H ∼ul (λx.m2)

H

The key property of the ImpFlow semantics is termination-insensitive non-
interference: if two computations from equivalent initial states terminate, then
they yield equivalent results.
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Figure 1: The Imperative Language ImpFlow

Syntax:

m ::= Term

x variable
(λx.m) abstraction
m1 m2 application
i:=m assignment
!i dereference
H :m high expression
H? m high test
w values

x, y, z Variable

Runtime Syntax:

w ∈ Value ::= (λx.m)k

k, pc ∈ Label ::= L | H
Σ ∈ Store = Addr → w
i ∈ Addr = {1, ..., n}

Evaluation Rules: m,Σ ⇓pc w,Σ′

w,Σ ⇓pc w ⊔ pc,Σ
[m-val]

(λx.m), Σ ⇓pc (λx.m)pc, Σ
[m-fun]

m1, Σ ⇓pc (λx.m)k, Σ1

m2, Σ1 ⇓pc w2, Σ2

m[x := w2], Σ2 ⇓pc⊔k w,Σ′

m1 m2, Σ ⇓pc w,Σ′
[m-app]

m,Σ ⇓pc w,Σ′

H :m,Σ ⇓pc w ⊔H,Σ′
[m-label]

!i, Σ ⇓pc Σ(i) ⊔ pc,Σ
[m-deref]

m,Σ ⇓pc w,Σ′

pc ⊑ label(Σ′(i))

i:=m,Σ ⇓pc w,Σ′[i := w]
[m-assign]

m,Σ ⇓pc (λx.m′)k, Σ′

If pc = H or k = H
then b = true

else b = false

H? m,Σ ⇓pc bpc, Σ′
[m-pred]

Standard Encodings:

true
def
= (λx.(λy.x))

false
def
= (λx.(λy.y))

if e1 then e2 else e3
def
= (e1 (λd.e2) (λd.e3)) (λx.x)
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Theorem 1 (Termination-insensitive non-interference for ImpFlow).
Suppose m1 ∼ul m2 and

m1, Σ ⇓pc w1, Σ1

m2, Σ ⇓pc w2, Σ2

where w1, w2 are public Booleans (trueL or falseL). Then w1 = w2.

As usual, the theorem could be refined to say that the final stores Σ1 and Σ2

are related, and it could also be generalized to allow different but related initial
stores and to apply to non-Boolean results. Such changes are fairly routine, and
we avoid them for simplicity.

Theorem 1 can be proved directly. (See for example Austin and Flana-
gan [3] for analogous results). Below, we study how to obtain non-interference
for ImpFlow via a translation from ImpFlow into a functional language. We pro-
ceed in this manner not so much because the direct proof would be hard, but
rather in order to give evidence that the translation is helpful and sensible. The
resulting indirect proof is remarkably simple.

4 A Functional Language with Information-Flow Control

Next we consider a functional language called FunFlow with information-flow
control. FunFlow is an extension of the lambda calculus (see Figure 2). It includes
variables (x), functions (λx.e), function applications (e1 e2), a mechanism for
specifying high expressions (H :e), and label reflection (H? e). Unlike ImpFlow,
this language is purely functional and does not include reference cells. It also
leaves implicit the label for low-security data: H is the only label.

Though this language is minimal, additional constructs can be encoded, as
usual. Figure 2 details the constructs employed in our translation. Boolean values
(true and false) and conditional evaluation (if e1 then e2 else e3) are Church-
encoded in the usual way. Tuples (〈e1, ..., en〉) contain a list of expressions (and
are used when translating stores from ImpFlow to FunFlow, which we discuss
in more depth in Section 6). There are operations for projecting the ith value
from a tuple (e.i) and setting the value at the ith position (e[i := e′]). The let
construct includes a variant (let 〈x1, x2〉 = e1 in e2) that deconstructs pairs.

We formalize the operational semantics of FunFlow via the small-step rela-
tion:

e1 → e2

This relation evaluates an expression e1 and returns a new expression e2. In-
stead of using a program counter to track the current influences on execution,
the semantics for FunFlow divides evaluation contexts (E) into private contexts
(ContextH), which have an enclosingH : , and public contexts (ContextL). Values
in FunFlow are either functions (λx.e) or labeled values (H :v).

The rule [e-beta] applies β-reduction, replacing occurrences of the specified
variable with the given value. The rule [e-lift] handles the application of a
private function H :v to an argument v′ by moving the entire application under
the H , yielding H : (v v′).
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Figure 2: FunFlow Language

Syntax:

e ::= Term

x variable
(λx.e) abstraction
e1 e2 application
H :e high expression
H? e high test

x, y, z Variable

Runtime Syntax:

v ∈ Value ::= (λx.e) | H :v
E ∈ Context ::= E e | v E | H :E | H? E | •

ContextH = E1[H :E2]
ContextL = Context / ContextH

Evaluation Rules: e → e′

E [(λx.e) v] → E [e[x := v]] [e-beta]
E [(H :v) v′] → E [H : (v v′)] [e-lift]

E [H? (H :v)] → E [true] [e-pred-true1]
E [H? (λx.e)] → E [true] [e-pred-true2]

if E ∈ ContextH
E [H? (λx.e)] → E [false] [e-pred-false]

if E ∈ ContextL

Standard Encodings:

true
def
= (λx.(λy.x))

false
def
= (λx.(λy.y))

if e1 then e2 else e3
def
= (e1 (λd.e2) (λd.e3)) (λx.x)

〈e1, ..., en〉
def
= (λf.(f e1..en))

e.i
def
= e (λx1..xn.xi)

e[i := e′]
def
= e (λx1..xn.(λf.f x1..xi−1 e′ xi+1..xn))

let x = e1 in e2
def
= (λx.e2) e1

let 〈x1, x2〉 = e1 in e2
def
= let x = e1 in

let x1 = x.1 in

let x2 = x.2 in e2 for x 6∈ FV (e2)

e1 ; e2
def
= let x = e1 in e2 for x 6∈ FV (e2)
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Label reflection determines if a value is private, either by an explicit label
(rule [e-pred-true1]) or if it is in a private context (rule [e-pred-true2]). When
the value is not explicitly H-labeled and is in a public context, then the result
is false (rule [e-pred-false]).

For consistency with prior work, there are significant differences in the formal
semantics of ImpFlow and FunFlow. The semantics of ImpFlow follows that
of Austin and Flanagan [3]; it is a big-step semantics with universal labeling,
where every value has exactly one associated label. In contrast, the semantics of
FunFlow follows that of prior work on labeled lambda calculus [2]; it is a small-
step semantics with no pc label, and with sparse-labeling, where values may have
zero or multiple enclosing labels.

5 Non-Interference in FunFlow

We consider two FunFlow expressions to be equivalent modulo under labels if
the only difference between the two expressions is in their private components.
More formally, the relation e1 ∼ul e2 is defined as the congruence closure of

H :e1 ∼ul H :e2

If two expressions are equivalent modulo under labels, evaluating them pro-
duces values that are equivalent modulo under labels, assuming both evaluations
terminate. It is possible that only one of the computations will diverge, thereby
leaking one bit of information. This notion is formalized below:

Theorem 2 (Termination-insensitive non-interference for FunFlow).
If e1 ∼ul e2 and e1 →∗ v1 and e2 →∗ v2, then v1 ∼ul v2.

This non-interference proof follows from the following lemma that relates each
evaluation step of e1 to a corresponding computation (possibly divergent) of e2:

Lemma 1. If e1 ∼ul e2 and e1 → e′1, then either e2 →∞ or there exists e′2 such
that e2 →∗ e′2 and e′1 ∼ul e

′

2.

The proof of this lemma is via a case analysis of e1 → e′1.

6 Translating Imperative Information-Flow Control to
Functional Information-Flow Control

We next explain how to translate ImpFlow programs into FunFlow. Our trans-
lation preserves semantics (at least for properly terminating programs). It also
preserves information-flow guarantees, as we show in the next section. Of course,
other translations may be invented, possibly with somewhat different properties
and making different trade-offs. For instance, it may be viable to define a trans-
lation that passes two stores, basically one for each level but with “low writes”
modifying both stores. Our translation, instead, occasionally creates two stores
but then combines them into a single one.
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Figure 3: Translation Rules

Term Translation Rules: J•K : m → e

JxK = λσ.〈x, σ〉 [tr-var]
J(λx.m)K = λσ.〈(λxσ′.JmK σ′), σ〉 [tr-lam]
JH :mK = λσ.let 〈x, σ′〉 = JmK σ in 〈H :x, σ′〉 [tr-hi]
JH? mK = λσ.let 〈x, σ′〉= JmK σ [tr-pred]

in 〈if H? x then JtrueLKval else JfalseLKval, σ
′〉

J!iK = λσ.〈σ.i, σ〉 [tr-deref]
Ji:=mK = λσ.let 〈x, σ′〉 = JmK σ [tr-assign]

in 〈x, σ′[i := x]〉
JwK = λσ.〈JwKval, σ〉 [tr-val]

Jm1 m2K = λσ.let 〈x1, σ1〉= Jm1K σ in [tr-apply]
let 〈x2, σ2〉= Jm2K σ1 in
let 〈x, σ′〉= x1 x2 σ2 in

if H? x1

then 〈x,merge σ2 σ′〉
else 〈x, σ′〉

Value Translation Rules: J•Kval : w → v

J(λx.m)LKval = (λxσ.JmK σ) [tr-lam-lo]
J(λx.m)HKval = H : (λxσ.JmK σ) [tr-lam-hi]

Store Translation Rules: J•Kst : w → v

JΣKst = 〈JΣ(i)Ki∈1..n
val 〉 [tr-store]

Auxiliary Definition:

merge = (λσσ′.〈(if H? (σ.i) then σ′.i else σ.i)i∈1..n〉)
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The translation is defined in Figure 3 by three mutually recursive functions,
JmK, JwKval, and JΣKst, which translate ImpFlow terms (m), values (w), and
stores (Σ) into FunFlow. The translation JΣKst converts an ImpFlow store Σ

into a FunFlow n-tuple by translating each contained value. The value transla-
tion J(λx.m)kKval maps an ImpFlow value to a FunFlow function that adds an
additional parameter σ for the threaded store, as follows:

(λxσ.JmK σ)

The value translation in turn calls the expression translation function JmK. If
the ImpFlow value is H-labeled, then the translation wraps the above FunFlow
value in an enclosing H : via the rule [tr-lam-hi].

The expression translation function JmK converts an ImpFlow expression m

into a FunFlow expression of the form (λσ.e), where σ represents the encoding of
a store. The result of applying this function (λσ.e) to an encoded store results in
a pair 〈v, σ′〉 where v represents a value (λxσ.e′) and σ′ represents the possibly
modified store.

The [tr-var] rule is one of the simplest translations and illustrates the design.
The function JxK = (λσ.〈x, σ〉) takes the store σ and returns a pair of a variable
x and the unmodified store σ. ImpFlow functions are translated by the rule
[tr-lam] in a similar manner. The resulting FunFlow function takes an encoded
store σ and returns a pair of a function and the store σ. The returned function
(λxσ′.JmK σ′) applies the translated function body to store σ′.

The translation of H :m, via the [tr-hi] rule, takes the expression m resulting
in the pair 〈x, σ′〉, and then returns the pair 〈H : x, σ′〉 where x is labeled as
private. Critically, the store σ′ is not labeled as private. Likewise, the translation
of H? m converts the expression m to a function that returns the pair 〈x, σ′〉
via the [tr-pred] rule. It performs label reflection on x and then either returns
(appropriately translated versions of) true or false.

The translations for operations on mutable reference cells are fairly straight-
forward. The translated function for dereferencing i returns the ith element of
the store tuple, as indicated by the rule [tr-deref]. The [tr-assign] rule for
i:=m translates the right-hand side m, resulting in a function that will return
a pair 〈x, σ′〉 when it is applied to store σ. This pair is returned, except that
position i in σ′ is replaced with x.

The translation of a function application (m1 m2) is subtle and requires some
care. A naive approach is to thread the store through m1, m2, and the callee in
the standard manner:

Jm1 m2K = λσ.let 〈x1, σ1〉 = Jm1K σ in [tr-apply-naive]

let 〈x2, σ2〉 = Jm2K σ1 in

let 〈x, σ′〉 = x1 x2 σ2 in

〈x, σ′〉

Unfortunately, this translation results in making the entire store private when-
ever a private function is applied, as discussed in the introduction. For example,
J(λx.x)H wK σ →∗ H :〈JwKval, σ〉.
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The [tr-apply] rule applies a more intricate translation in cases where the
target function x1 is private (that is, when H? x1 is true). This translation
determines the stores σ2 and σ′ before and after the call to x1, and then combines
these two stores via the auxiliary function merge σ2 σ′. Any entry σ2.i that is
public should not be updated during the call, according to the no-sensitive-
upgrade rule, so in this case (merge σ2 σ′).i returns σ2.i. Conversely, for private
entries σ2.i, (merge σ2 σ′).i can safely return the private value σ′.i.

Note that this transformation ignores updates to public entries in the store
in a manner that is somewhat analogous to the no-sensitive-upgrade rule, which
forbids such updates. Both approaches guarantee non-interference. We can for-
malize the same behavior for the ImpFlow semantics as follows:

m,Σ ⇓pc w,Σ
′

pc 6⊑ label (Σ′(i))

i:=m,Σ ⇓pc w,Σ
′
[m-assign-ignore]

Critically, the translation preserves equivalent modulo under labels.

Lemma 2. If m1 ∼ul m2, then Jm1K ∼ul Jm2K.

Consequently, if m1 ∼ul m2 and

Jm1K JΣKst →
∗ 〈v1, σ1〉

Jm2K JΣKst →
∗ 〈v2, σ2〉

then v1 ∼ul v2. That is, implementing ImpFlow via our translation to FunFlow
preserves termination-insensitive non-interference.

It is not obvious how the semantics via translation to FunFlow corresponds to
the big-step operational semantics of ImpFlow from Figure 3, particularly given
the difference between the two languages: imperative vs. functional, universal
vs. sparse labeling, and the no-sensitive-upgrade check vs. the merge function.

We aim to establish that the translation preserves semantics. We might con-
jecture a correspondence property of the form:

If m,Σ ⇓L w,Σ′ then JmKJΣKst →∗ 〈v, σ〉 where v = JwKval and σ =
JΣ′Kst.

Unfortunately this correspondence does not hold, since v and JwKval may have
syntactic differences in labels that are not observable. That is, a label H that is
nested under another label H is redundant. Therefore we define a ∼lul relation
that determines if two expressions are equivalent modulo labels under labels. This
relation relies on a ∼l relation, which compares two expressions and tests if they
are equivalent modulo labels. The rules for both relations are given below.
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x ∼lul x
[beq-var]

e ∼lul e
′

(λx.e) ∼lul (λx.e
′)

[beq-fun]

e ∼lul e
′

H? e ∼lul H? e′
[beq-pred]

e1 ∼lul e
′

1 e2 ∼lul e
′

2

e1 e2 ∼lul e
′

1 e′2
[beq-app]

e ∼l e
′

H :e ∼lul H :e′
[beq-label]

x ∼l x
[beq-h-var]

e ∼l e
′

(λx.e) ∼l (λx.e
′)

[beq-h-fun]

e ∼l e
′

H? e ∼l H? e′
[beq-h-pred]

e1 ∼l e
′

1 e2 ∼l e
′

2

e1 e2 ∼l e
′

1 e′2
[beq-h-app]

e ∼l e
′

e ∼l H :e′
[beq-h-right]

e ∼l e
′

H :e ∼l e
′

[beq-h-left]

If two expressions in FunFlow are equivalent modulo labels under labels, then
evaluation maintains this property, as formalized by the following lemma.

Lemma 3. If e1 ∼lul e2 → e3 then there exists e4 such that e1 →∗ e4 ∼lul e3.

The ∼ul relation includes strictly more terms than the ∼lul relation, since it
accepts all terms that vary under H .

Lemma 4. (∼lul) ⊆ (∼ul)

We define a new relation that combines the small-step evaluation relation for
FunFlow with the equivalent modulo labels under labels relation. This relation
⇒ enables us to add and remove redundant labels as necessary to obtain the
desired correspondence sketched above.

(⇒)
def
= (→) ∪ (∼lul)

Lemma 5. If e1 ⇒
n e2 then there exists e3 such that e1 →∗ e3 ∼lul e2.

Evaluation in a high context does not affect public reference cells.

Lemma 6. If m,Σ ⇓H w,Σ′ then for all i such that Σ(i) 6= Σ′(i), Σ(i) and
Σ′(i) are both high.

If a program does not modify public reference cells in private blocks of code,
then the merge operation has no effect.

Lemma 7. Suppose for all i with Σ(i) 6= Σ′(i) we have that both Σ(i) and Σ′(i)
are high. Then merge JΣKst H :JΣ′Kst ⇒

∗ JΣ′Kst.

We now show the correctness of the translation. If a program of the source
language executes successfully, then the translation also executes successfully
and exhibits the same behavior.

Theorem 3. If m,Σ ⇓pc w,Σ
′ then E [JmK JΣKst] ⇒

∗ E [〈JwKval, JΣ
′Kst〉] for all

E ∈ Contextpc.

Proof. The proof is provided in a related technical report [4].
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7 Non-Interference in ImpFlow (Continued)

Showing the correctness of the translation and the non-interference property of
FunFlow enables a short proof of non-interference for ImpFlow. This proof gives
evidence that the translation is helpful and sensible. Albeit indirect, it is pleas-
ingly simple. We now prove non-interference in the source language (Theorem 1).
The proof relies on the correctness of the translation of ImpFlow programs that
run to completion, and the non-interference property of the FunFlow semantics.

Proof (of Theorem 1). By Lemma 2, Jm1K JΣKst ∼ul Jm2K JΣKst.
By Theorem 3, JmiK JΣKst ⇒

∗ 〈JwiKval, JΣiKst〉 for all i.
Hence by Lemma 5, for all i there exists vi such that
JmiK JΣKst →

∗ vi ∼lul 〈JwiKval, JΣiKst〉.
By Theorem 2, v1 ∼ul v2, so by Lemma 4, Jw1Kval ∼ul Jw2Kval.
Note that JtrueLKval 6∼ul JfalseLKval, hence w1 and w2 are not distinct public
Booleans, so w1 = w2. ⊓⊔

8 Conclusion

This paper aims to further understanding of dynamic information flow in a lan-
guage with imperative updates through translation to a purely functional core.
A naive translation is unnecessarily restrictive, but through careful handling of
stores, a translation can preserve the flexibility of the source language. Reasoning
about the translation and the non-interference properties of the target language
enables a simple proof of non-interference in the source language.

Both the source language and the target language embody fairly standard
ideas present in the literature. We hope that our results thus shed some light on
other languages. Nevertheless, we recognize that not all variants of the languages
will necessarily lend themselves easily to analogous treatments. The detailed
consideration of those variants may be a worthwhile subject for further research.
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