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Abstract

Protein Sequence Alignment Reliability: Prediction and Measurement

by

Melissa Suzanne Cline

Protein sequence alignments are one of the most fundamental sources of information in

bioinformatics, with applications in structure prediction, homology modeling, prediction of func-

tional residues, phylogenic analysis, secondary structure prediction, and gene prediction. In blind

prediction experiments involving the best methods in the world, Hidden Markov Models (HMMs)

have been shown to be very e�ective alignment methods. However, all alignment methods { in-

cluding HMMs { make mistakes. Since mistakes in alignments yield mistakes in their application,

prediction and removal of suspect alignment regions would improve the reliability of the many

applications of alignments.

Useful prediction of reliable alignment regions requires optimized alignments, an objec-

tive function, and meaningful inputs. We have identi�ed numerous factors that yield better align-

ments with HMMs, optimized our methodology, and benchmarked against the respected aligner

CLUSTALW. We have developed an alignment quality measure that produces a score that is

meaningful, comprehensive, and optimizable. Pairwise contact potentials, a popular source of in-

formation not used by HMMs, would seem to be useful indicators of HMM alignment reliability.

However, our statistical analysis of pairwise contact potentials found them signi�cant yet weak.

Even �-strand contacts, the class we found most informative, did not yield enough information to

merit application. Finally, we developed a system that examines alignments predicted by HMMs

and estimates the reliability of each alignment column. When we trim our best alignments accord-

ing to this reliability estimate, we remove 70% of the positions more than slightly misaligned and

58% of the over-aligned positions, while retaining 86% of those aligned accurately.
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Chapter 1

Introduction

In the words of protein structure prediction expert David Jones, \As the familiar joke goes, there

are really only three things that govern the overall accuracy of comparative modeling: alignment

quality, alignment quality, and... alignment quality" [85]. Protein sequence alignments are one of

the most important sources of information in bioinformatics, with applications in tertiary structure

prediction, homology modeling, secondary structure prediction, predition of functional residues,

phylogenic analysis, and gene prediction. Any mistake made in the alignment step will yield

mistakes in its application. Yet alignment quality has not been studied thoroughly, owing in part

to historical diÆculties in measuring overall alignment quality.

This dissertation focuses on alignments produced by hidden Markov models (HMMs).

Given a sequence family alignment, typically consisting of a sequence of known structure plus its

homologs, or evolutionary relatives, HMMs pro�le the patterns of conservation and variation that

characterize the sequences in the family. Given a new sequence, and given a library of sequence

family alignments, HMMs predict which family the new sequence is most closely related to, and

produce an alignment of the sequence to this family. In blind experiments of the best methods

currently available, HMMs have proven successful at protein structure prediction [128, 87, 109].

In this thesis, we introduce and validate a comprehensive measure of overall alignment
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quality, which we apply in detailing improvements to HMM alignment methods. We quantify the

impact of various factors that inuence the accuracy of HMM-generated alignments, and bench-

mark the best methods against the respected aligner CLUSTALW [180, 65, 82]. We then consider

factors which might indicate reliable regions within an alignment. Pairwise contact potentials,

which validate predicted substructures within threading algorithms, would appear to be useful for

identifying suspect regions in alignments produced by a sequence-based method. However, we show

that the information available through contact potentials is weak, and would probably not be use-

ful for identifying questionable alignment regions. Yet there is information already encoded within

an alignment that is useful for identifying such regions. We describe a method that predicts if a

region within an alignment is reliable. When regions predicted as unreliable are removed, overall

alignment quality is increased by 15%, where the greatest possible improvement is 50%.

1.1 Motivation

Predicting a protein's structure from its amino acid sequence is a problem of great scienti�c

importance. As the major genome projects progress, and as protein sequencing methods continue to

out-pace structure determination methods, it has become a problem of great practical importance.

While this problem is not yet solved, we have a partial solution. If two protein sequences are

at least 30% identical, they tend to have similar structures [160, 154]. Sensitive methods such as

hidden Markov models (HMMs) can successfully predict strutural similarity can when the sequence

similarity is less-pronounced [93]. The power of this partial solution should not be underestimated;

a researcher is approximately 20 times more likely to have a novel sequence \under the microscope"

than a sequence of novel structure [84].

The �rst and most fundamental step in analysis of a new protein sequence (target sequence)

is to search the protein databases for homologs of the sequence and to align the sequence to these

homologs [174]. If some homolog of known structure is found, then the structure of the target
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sequence can be predicted according to its alignment to this template sequence. Next, the target

sequence is added to the multiple alignment of the template and its homologs. Such alignments have

been used to predict functional residues [134], to locate genes in newly-sequenced genomes [102],

to predict the secondary structure of the target sequence [152], and to detail the evolutionary

relationships between the target sequence and homologs [167]. As all these analyses build o� the

alignment, they are dependent on alignment accuracy. Mistakes in the alignment are known to lead

to mistakes in the secondary structure prediction [137] and suspicious predictions of evolutionary

relationships [45]. If the goal of target sequence analysis is structure-based drug design, the next

step is to build a homology model, a three-dimensional model of the structure of the target sequence.

The homology model is computed from the template sequence structure and the alignment of the

target and template sequences and its accuracy depends strongly on the accuracy of the alignment.

Alignment errors are the most frequent and serious source of errors in homology modeling [173].

Sequence analysis begins with alignment, and success in all later steps depends on success in the

alignment step.

Given the importance of the alignment step, care should be taken in selecting the align-

ment algorithm and its parameters. Factors that stand to improve the quality of HMM-generated

alignments include the size and variation of the sequences used to generate the HMM, methods for

aligning these input sequences, and weighting methods to factor out redundancy.

Unfortunately, no alignment method is free of mistakes. When the sequences to align are

somewhat diverged, even alignments generated by the best methods tend to contain inaccurate

regions [127]. While a partially correct alignment can yield useful information, a scientist using an

alignment would like to know which regions can be trusted and which should be removed.

However, to what extent does removal of suspect regions improve an alignment? At the

extreme, one could remove everything except regions of very strong conservation. The result would

be that the portions of the target sequence still aligned are probably aligned correctly, but with

so much of the target sequence not aligned, the alignment would be of little value. Before one
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can develop an e�ective system to remove questionable alignment regions, one must have a scoring

system to indicate when the removal has yielded an overall improvement.

Once the means are in place to measure alignment quality improvement, factors to indi-

cate questionable alignment regions must be identi�ed. One traditional rule of thumb state that

alignments are less likely to be accurate in long loop regions. Another states that protein fami-

lies tend to have regions of strong conservation and regions of greater variation, and one should

question the alignment in the less-conserved regions [35] or where the target sequence aligns with

decreased probability [165]. A body of work in sub-optimal alignments suggests studying many

di�erent alignments of the same sequences; certain subsequences will tend to be aligned to the

same subsequences in most cases, and those alignment regions should be trusted [188].

Many successful threading algorithms are based on the principle that certain types of

amino acids are frequently found in proximity to certain other types of amino acids, and the

quality of a predicted structure can be assessed in part by observing the types of amino acids

found close to each other in the predicted structure, and assessing the statistical likelihood of these

pairings [184, 126]. Particularly for alignments produced with no structural information, these

pairwise contact potentials would seem to be useful for alignment validation. Yet the e�ectiveness

of pairwise contact potentials has been debated [179], so they should be studied further before

application.

1.2 Thesis

Almost any pairwise sequence alignment will contain regions of greater and lesser reliabil-

ity. The reliability of a region can be estimated by studying the alignment. By using these signals,

one can obtain a subalignment containing the reliable regions and omitting many of the suspect

regions.
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1.3 Contributions and organization

This dissertation presents the following contributions. Chapter 4 presents and validates

an alignment scoring scheme which can be used to measure e�ectively improvements in alignment

quality when suspect regions are removed. This measure is then used as a tool for improving

alignments generated by SAM-T98 [93], an optimized hidden Markov model methodology.

When the ultimate goal is generating the most accurate alignment possible, little is to be

gained by starting with alignments produced by anything but the best methods available. As such,

in Chapter 5, we document contributions to the task of optimizing HMM alignments and identi-

fying factors which yield better alignments. Speci�c factors explored include sequence weighting

schemes [89], the choice between global and local alignment [9], and the e�ects of posterior de-

coding [70]. Where certain alignment errors are suspected to result from shortcomings in certain

parameters, we document e�orts in optimizing those parameters. Of particular interest here are

�elds in the transition regularizers, the HMM equivalent of gap costs, which de�ne in part where

an HMM will open or extend gaps [52].

Any thorough comparison of alignment methods should include some external and rec-

ognized method as a benchmark. In Chapter 6, we study the literature on sequence alignment

methods, and compare the quality of the SAM alignments from Chapter 5 with those from the

popular alignment program CLUSTALW [180, 65, 82]. We generate this comparison carefully, by

comparing the alignments to structural alignments by three di�erent structural aligners and by

measuring the comparison over an impartial validation set.

A particular factor which could suggest alignment reliability is pairwise contact potentials,

statistical propensities indicating if two amino acids would be stable in proximity to each other.

Such potentials have a long history in validating predicted substructures in threading algorithms.

When a source of information is not used to build alignments, it can be e�ective as an objective

quality assurance measure. Thus, pairwise contact potentials should be e�ective for validating



6

alignments built without structural information. However, as the information represented by pair-

wise contact potentials is a subject of controversy, we performed a statistical analysis on how much

information they carry, and found that the information they carry is too weak to suggest that they

would be e�ective. This analysis is summarized in Chapter 7. Yet one particular class of con-

tacts appears to be more informative: contacts between interacting �-strand residues. Chapter 8

summarizes explorations by myself, Albion Baucom, and Lydia Gregoret in building a beta sheet

contact potential function.

Chapter 9 describes a method to improve predicted alignments by identifying and remov-

ing suspect regions. Starting with alignments built with the best HMM methodology we have today,

we estimate the reliability of alignment columns, remove any columns which are suÆciently suspect,

and measure the resulting change in alignment accuracy. With a carefully-validated experimental

process, we estimate prediction models on one dataset, search for e�ective prediction thresholds

on a second dataset, and measure overall e�ectiveness of the method using a third dataset. We

measure change in alignment quality by comparing the alignments before and after trimming to

structural alignments. To reduce the chance that the results might somehow be dependent on one

structural alignment method, we measure performance relative to three structural aligners. Our

best methods yield a 4% improvement in the quality of alignments built with our best method, and

a 15% improvement on alignments built by a more commonly-used method. In this latter case, the

alignment trimming removes 70% of the positions more than slightly misaligned and 58% of the

over-aligned positions, positions aligned in regions where the sequences have no actual structural

similarity, while retaining close to 90% of the accurate positions { on pairs of structures representing

a very challenging alignment test.
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Chapter 2

Biological background

Bioinformatics is a �eld that bridges many disciplines including biology, chemistry, physics, mathe-

matics, and computer science. The important background material is similarly broad, and much of

it would not be known by an average computer scientist. This chapter is not a comprehensive in-

troduction to molecular biology. Instead, this chapter was written to provide the average computer

scientist with enough biochemical background to read and assess this thesis.

To augment this background chapter, Appendix A contains a glossary of biological terms

relevant to this thesis.

2.1 What is a protein?

Proteins are basic building blocks of life. Each protein is a macromolecule built by linking

together amino acids into contiguous chains. Proteins are produced in the cell according to a

pattern speci�ed by the organism's DNA, with RNA serving as an intermediate speci�cation.

Amino acids are the subunits of proteins. There are twenty di�erent types of amino acids

found in proteins. All consist of a central carbon (the alpha carbon or C�) bonded to a hydrogen,

an amino group, a carboxyl group, and a side chain as shown in Figure 2.1. The side chain refers
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Amino Acid Three-letter code One-letter code
Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid Asp D
Cysteine Cys C
Glutamic acid Glu E
Glutamine Gln Q
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val V

Table 2.1: The twenty types of amino acids found in proteins

to a set of atoms connected to the alpha carbon.. Each type of amino acid has a di�erent side

chain, and the side chain gives each amino acid its distinguishing characteristics. Most amino acid

side chains consist of a beta carbon or C� connected to the alpha carbon, with additional atoms

connected to the beta carbon. The twenty amino acids found in proteins are listed in Table 2.1,

along with the three-letter and one-letter codes often used in place of their full names.

When two or more amino acids combine to form a protein, or more technically a polypep-

tide chain, a condensation reaction takes place. The net result is the production of a water molecule

and a connection between the carbonyl carbon of the preceding amino acid and the amino nitrogen

of the following amino acid, forming a peptide bond. The process is then repeated to extend the

chain. A short polypeptide is illustrated in Figure 2.2. The start of a protein is referred to as

the N terminus, and the end as the C terminus. The series of N , C�, and C 0 atoms is referred to

as the backbone. Once amino acids have joined to form a protein, they are technically no longer

amino acids in the chemical sense, and are usually referred to as residues. The length of a protein
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Figure 2.2: A simple polypeptide chain of three amino acids

is measured in residues, with lengths varying from approximately 50 to 2000 residues.

2.2 Protein structure

Proteins in nature assemble themselves into neat, compact structures. The structure of a

protein is somehow speci�ed by its amino acid sequence, in a manner only partly understood.

2.2.1 Classes of protein structure

The structure of a protein is de�ned at four levels: primary, secondary, tertiary, and

quaternary structure.
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Primary structure

The primary structure of a protein refers to its amino acid sequence. The one-letter code

is normally used when describing the amino acid sequence, yielding a string built from an alphabet

of twenty letters. It is always represented in a standard direction, from the amino (N) terminus to

the carboxyl (C) terminus, as shown in Figure 2.2.

Secondary structure

In proteins, regions of amino acids within the protein chain will tend to arrange themselves

into regular formations. These patterns are referred to as secondary structure, and can be recognized

by the angles and hydrogen bond patterns between the backbone atoms. Secondary structure is

usually divided into three classes: �-helix, �-sheet, and loop.

In an �-helix, the amino acids arrange into a tight spiral, making a complete turn every

3.6 residues. In a �-sheet structure, the amino acids assemble into �-strands: short, fairly at

segments. These �-strands form a �-sheet, a somewhat at and even surface, by establishing

regular patterns of hydrogen bonds between amino acids in adjacent �-strands. �-sheets can be

either parallel or antiparallel. In antiparallel �-sheets, the protein chain doubles back on itself,

often making a short turn called a �-turn, and forms an alternating pattern. If one thinks of a

protein chain as pointing from N to C terminus, adjacent �-strands point in opposite directions.

In parallel �-sheets, the �-strands all point in the same direction relative to the N and C termini.

Figure 2.3 shows an example of an antiparallel �-sheet and an �-helix.

Loop, also known as random coil, is the all other category of secondary structure. In

general, loops are not structured in the way that �-helices or �-sheets are; they are the portion of

the protein that resembles \cooked spaghetti". They can be exible or rigid, and usually serve as

connectors between �-helices and �-strands.

Sometimes, the term \secondary structure" is used to refer to the portions of the protein

for which the secondary structure is structured: �-helix and �-sheet. In particular, the term
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secondary structural elements refers to the non-loop regions of the protein.

Tertiary structure

Tertiary structure or fold refers to the three-dimensional structure of the protein, con-

taining secondary structural elements as sub-units. Protein structures are generally compact and

orderly. Proteins are said to fold into their tertiary structures, a verb which suggests order in the

�nal structures, whether or not the process is orderly. The word fold is also used to refer to a

protein's structural family: proteins with the same fold are proteins with similar structures.

Protein structures occasionally contain compact modules called domains. A domain can

be thought of as an independently-folding section of the protein.

Quaternary structure

Certain protein chains form stable structures in isolation, and others exist only in a three-

dimensional complex with other protein chains. The quaternary structure refers to the assembling

of individual protein substructures into three-dimensional structures.

2.2.2 Methods of determining protein structure

Three-dimensional protein structures are determined by two methods: x-ray crystallogra-

phy and NMR spectroscopy. Protein structures can be determined to a �ne detail, describing the

relative position of every single atom within the protein.

X-ray crystallography is the predominant method of protein structure determination. The

process begins by growing crystals of a puri�ed protein sample. Once the crystals have grown

suÆciently large, X-ray beams are applied to the crystal, and the structure is determined by

studying the di�raction pattern. While this process might sound simple in a brief summary, it

is not. Growing protein crystals requires skill, can easily take months, and is not feasible for all

proteins. Obtaining a structure from the di�raction pattern amounts to �nding a model of the
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Figure 2.3: Schematic models of an antiparallel �-
sheet (top) and an �-helix (left). Images from The
ESG Biology Hypertextbook at http://esg-www.mit.
edu:8001/esgbio/
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structure which best explains the data, and is as complex a process as any method of protein

structure prediction. A recent innovation known as molecular replacement uses the structure of a

protein with a known structure and a similar sequence to reduce the number of free variables in

the modeling process. While this procedure is only viable when such a related protein exists, the

high rates growth of the protein structure databanks suggest that this technique will become more

common over time.

Nuclear Magnetic Resonance (NMR) spectroscopy does not require protein crystals, but

\merely" a highly concentrated and puri�ed sample of the protein in question, at a slightly lowered

pH. The protein is then put in a strong magnetic �eld, and subjected to radio frequency (RF)

pulses. This puts the nuclei of certain atoms of the protein in an excited state, and as they

return to equilibrium, they emit RF radiation. Structural information can then be inferred from

the frequencies and intensities of the emitted radiation and from coupling between the frequencies

of individual nuclei. Like crystallography, determining the structure from the observed data is a

complex modeling process itself, and the technique is not viable on all proteins. Certain proteins

are not stable in concentrated solutions at lowered pH. In general, NMR spectroscopy is not viable

on larger proteins due to technical limitations.

Both structure determination methods require months or years of work, and are not

viable for certain proteins. For this reason, predicted structures are often used as a substitute for

determined structures, especially for time-sensitive work such as structure-based drug design.

The Protein Data Bank (PDB) is the world's central repository of determined protein

structures [13]. As of February 22, 2000, the PDB contains structural data for approximately

10,000 proteins. While this might sound like an impressive amount of data, the 10,000 structures

represent less than 3,000 signi�cantly-di�erent structures.
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2.2.3 Characteristics of protein structures

The �rst salient point about the structure of a protein is that it is somehow speci�ed by

the amino acid sequence. This has been shown in studies where proteins are denatured, or forced to

lose their structure by application of strong chemical or physical forces such as high temperature or

low pH. After the denaturing forces are removed, proteins tend to revert to their original structure.

As the amino acid sequence is the only source of information to survive the denaturing process, the

structural information must be somehow speci�ed by the sequence. This discovery earned a Nobel

prize for Christian An�nsen in 1972 [4].

Protein sequences are comprised of amino acids, and amino acids are distinguished by their

side chains. Most proteins exist in an aqueous solution within the cell, and certain amino acid side

chains will tend to interact with the water molecules. Amino acids with such side chains are referred

to as hydrophilic or polar. Their interaction with water often involves forming hydrogen bonds, a

weak bond established when a partially negatively-charged atom in one molecule interacts with a

partially positively-charged hydrogen of another molecule. Hydrophobic amino acids, in contrast,

lack the atomic structure that would enable them make hydrogen bonds with water. Much as oil

and water separate within a bottle, hydrophobic amino acids will tend to cluster together away

from the water, while hydrophilic amino acids will tend to be located where they can interact with

water. When hydrophobic molecules pack together, away from the water, they are said to share

hydrophobic bonds. Thus, proteins will tend to organize themselves to bury the hydrophobic regions

of the sequence within their interior, and to place the polar regions on the surface near the water

or solvent. These hydrophobic forces are considered by most to be the dominant e�ect in protein

folding [34], though some researchers consider hydrogen bonds to be just as important [139].

Another characteristic of protein structures is patterns of amino acid interaction that they

exhibit. Amino acids are said to interact if they are close in the structure (within approximately

eight angstroms) with no other molecules in between them. Pairwise interactions (involving two



15

amino acids) have been studied at length, and show that there are de�nite patterns in pairwise

preferences that amino acids exhibit. This suggests that protein structures might make small ad-

justments to accommodate the more favorable pairwise interactions. The most obvious pairwise

preference is that cysteines tend to interact with other cysteines. Two cysteines can form disul�de

bonds, strong bonds between two sulfur atoms. Disul�de bonds stabilize proteins structures sig-

ni�cantly, and only cysteines are able to form them. Another obvious pairwise preference involves

amino acid charge. Certain amino acids carry a formal unit charge: some positive, some negative.

As one would expect, charged amino acids interact frequently with amino acids of opposite charges

and infrequently with those of the same charge.

While certain forces stabilize protein structures, including those discussed above, certain

other forces destabilize protein structures. When stabilizing forces are balanced against the desta-

bilizing ones, proteins are only marginally stable. As most proteins are also short-lived within the

cell, this marginal stability allows the cell to better adapt to changing conditions. One e�ect of this

marginal stability is that when proteins are mutated, either in the laboratory or by evolutionary

forces, the vast majority of mutants are not stable. Some positions are more tolerant to mutation,

particularly those in loops on the surface of the protein. Yet sometimes, a change in just one critical

residue can render a protein unstable.

2.3 Protein function

Most proteins are highly specialized. Each protein interacts with one particular compound

within the cell, such as some other protein or a particular region of DNA. Proteins identify their

target for interaction by their complementing shape, similar to three-dimensional jigsaw puzzle

pieces, and by favorable interactions between residues on the interacting surfaces. Typically, only

a small, localized portion of the protein is directly involved with the interaction. This portion is

known as the functional site, and residues within the functional site are called functional residues.
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The interaction between a protein and its target compound is also known as docking.

Protein structure and function are closely-related, since a protein's function is dependent

on the three-dimensional structure of its functional site. Even though this might be a small portion

of the protein, the rest of the protein plays an indirect role in its function by providing a structural

framework for the active site. Mutants which alter the structure of a protein usually have an

adverse e�ect on the protein's functionality.

2.4 Protein homology

Most proteins are not unique. Proteins in nature tend to fall within families, with the

members of the family having similar amino acid sequences. Such families of similar proteins are

said to be homologs.

First, proteins are often highly conserved or unchanged in evolution. A protein from a

human might very closely resemble the corresponding protein in Escherichia coli, even though

human and E. coli are quite di�erent life forms. When two proteins are very closely related, and

perform the same function, they are said to belong to the same subfamily.

Second, proteins performing similar functions are often found to be similar proteins. It is

said that nature is a tinkerer, not an inventor [81]. Small changes in functionality are accommo-

dated by adapting existing proteins. If two proteins have similar sequences and perform di�erent

functions, they are said to be of the same family or superfamily, depending on the level of similarity.

When one compares a protein to a homolog or family of homologs, di�erences that might

appear include replacement of one or more residues (substitution), removal of one or more residues

(deletion), or addition of one or more residues (insertion). Sequence alignments, discussed in depth

later in this thesis, represent pairs or families of sequences to best show their similarity. Alignments

are tables, with each row representing one sequence and with the columns representing regions of

correspondence. Figure 2.4 shows an example of an alignment of four sequences.
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VPINVSCTGSPQCIKPCKDAG−MRFGKCMNRKCHCTPk
XFTNVSCTTSKECWSVCQRLHNTSRGKCMNKKCRCYS.

−−MCMPCFMAKKCRDCCG−−−−−GNGKCFGPQCLCNR.
−−−−−−−INHSACAAHCLLRG−NRGGYCNKGVCVCRN.

Figure 2.4: Example of a multiple alignment

When two homologous sequences are aligned, and a region of one sequence is deleted in

the other, dashes in the relevant columns are used to indicate the deletions. Deletions are often

called gaps. Figure 2.4, shows a long gap at the beginning of the fourth aligned sequence. Insertions

are the analog to gaps: a region added to one sequence relative to the other. Figure 2.4 shows

an insertion at the far right of the alignment, denoted by the K in lowercase, and the dots that

serve as spacers in the other sequences. The term indel refers to either an insertion or deletion:

something present in one sequence and absent in the other. When comparing two sequences, one

can use deletions to represent any region contained in one sequence and not the other. However,

when comparing a sequence to a family of homologs, it can be easier to think of a region as added

to the sequence in question rather than deleted from all the other sequences. Sometimes, whether

something is inserted by one sequence or deleted from the others is a question of what is the frame

of reference. In Figure 2.4, there is a column containing and N in the �rst sequence and gaps in

all other sequences. Turning this N into an insertion would be just as legitimate a representation.

Indels and gaps can be used to indicate minor changes between two protein sequences, or more

extensive changes when one protein contains a major region that corresponds to nothing in the

other.

Pairwise alignments contain two sequences, and multiple alignments contain many se-

quences. Similarity between two proteins is generally measured in percent identity, the percentage

of alignment columns in which the two proteins have the same residue.
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2.4.1 Proteins with similar sequences tend to have similar structures

Given that protein structure is somehow speci�ed by protein sequence, one might expect

that proteins with similar sequences have similar structures. With a few exceptions [32], this is

true. Sequences with as low as 30% identity usually have very similar three-dimensional structures

[158, 154]. The opposite is not true. Two proteins can have very di�erent sequences, but nearly

identical structures [51].

2.4.2 Evolutionary changes between proteins

When evolution substitutes one amino acid within a protein for another, not all substi-

tutions are equally likely. Certain pairs of amino acids tend to substitute for each other more

frequently. For example, replacement of a hydrophobic residue by another hydrophobic residue is

common; replacement of a hydrophobic residue by a polar residue is less common.

Within any protein structure, only certain changes might be permitted. In the tightly-

packed interior of the protein, a residue might be replaced by only residues of similar size and

shape. While insertions and deletions might be accommodated near the surface of the protein,

indels in the core are far more rare.

Finally, certain positions are so critical to the structure or function of a protein that they

cannot tolerate any mutation. Generally, if a certain residue does not change within a family of

proteins, one can infer that it cannot be changed. Such a residue is said to be conserved within the

family. If changes are permitted, but only changes that preserve some amino acid property, that

property is said to be conserved. Residues important for stabilizing a protein structure tend to be

conserved within the protein superfamily. Functional residues tend to be conserved within protein

subfamilies, but vary between di�erent subfamilies [134].
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2.4.3 Remote homology and structural homology

While similar sequences tend to fold into similar structures, proteins with similar struc-

tures do not always have similar sequences. There are many examples of proteins with very similar

structure with little or no sequence homology [51, 68, 73]. Such cases are referred to as structural

homologs. In cases where the sequence similarity is weak but discernible, such proteins are referred

to as remote homologs. The range of homology that typi�es remote homologs is referred to as the

twilight zone. This range is typically described in terms of percent identity, the number of alignment

positions in which both sequences have residues of the same amino acid type, in proportion to the

length of the sequences. By common estimates, two sequences are in the twilight zone when they

are less than 25% identical [154, 182].

While protein structure prediction algorithms can accurately predict homology even in

the twilight zone, structural homology is generally ascertained by direct comparison of protein

structures. A family of algorithms called structural aligners compare the structures of two proteins

by superimposing portions of the structures, and searching for a superposition that best highlights

any similarity between the two structures. From this structural superposition, a structural alignment

can be derived to show how the two sequences should be aligned according to the similarity of

their structures. While some systems merely build pairwise structural alignments, others organize

protein structures into families and hierarchies. Examples of the former include the Yale aligner [50]

and CE [161]. Examples of the latter include FSSP [68], VAST [51], and CATH [136]. The

SCOP database [73] also organizes proteins according to structural similarity, and is probably the

most widely-respected structural classi�cation system at this time. However, unlike the previous

systems, which rely on an automated method for detecting structural similarity, SCOP relies on the

encyclopedic protein knowledge and photographic memory of a single individual: Alexey Murzin.

While structural classi�cation by human inspection might sound eccentric, Murzin's method should

not be taken lightly; in the CASP2 blind structural prediction experiment, Murzin's \knowledge-
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Figure 2.5: As new protein structures are added to the Protein Data Bank (PDB), the rate at which
novel folds have been found has decreased steadily over recent years. Currently, approximately one tenth
of new structures submitted to the PDB represent a novel fold. Source: the Protein Data Bank (PDB) at
http://www.rcsb.org/pdb/.

based" method outperformed the best automated methods in the world [109].

One fact supporting structural homology is that the number of distinct protein structures

seems to be limited in nature. For any given protein sequence, the number of conformations it can

adopt is limited by biochemical and biophysical forces. While the number of physically-possible

conformations increases exponentially with respect to sequence length, it is orders of magnitude

smaller than the number of geometrically-feasible arrangements of the protein's atoms. As new

protein structures are obtained, the frequency with which new structures are discovered has steadily

decreased over the years, as seen in Figure 2.5. As seen in this �gure, when a new protein structure

is determined, the odds that it will be from a novel fold are approximately one in ten. Cyrus Chothia

once projected that the total number of distinct folds in natures was only a few thousand [26]. This

estimate has since gone up with discoveries of novel folds, but the number of distinct folds in nature

is still believed to be very small compared to the number of proteins.
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2.5 Overview of protein structure prediction

The fact that protein sequences and protein structures both occur in families makes protein

structure prediction a viable pursuit. Depending on the protein in question (the target protein) and

the extent of its relationship, if any, to proteins of known structure, structure prediction methods

can yield structural models that fall within a few Angstroms root-mean-squared deviation of the

actual structure. Recent growth in accurate, fast, automated structure prediction algorithms has

made predicted structures viable alternatives to obtaining actual structures.

Protein structure prediction methods fall into two major categories: those which assume

that the protein is similar in structure to some protein of known structure (fold recognition meth-

ods), and those which do not (ab initio methods). Ab initio methods estimate protein structure by

searching for a conformation that minimizes biophysical and biochemical forces. A major drawback

of these methods is computational complexity, with the huge number of potential conformations

to explore. A second problem is the diÆculty of accurately estimating the forces de�ning protein

structure. In the most recent CASP contest, ab initio methods yielded viable predictions only for

very short proteins [127]; when the protein had a structural homolog, fold recognition methods

performed much better than ab initio methods [128].

Compared to ab initio methods, fold recognition makes structure prediction closer to a

multiple-choice question than an essay question. Fold recognition methods predict the structure of a

protein by searching the protein structure databases for a fold family that best �ts the protein, and

then describing which portions of the protein will adopt which portions of the fold. The drawback of

fold recognition methods is that they are only viable for proteins with homologs of known structure,

and their e�ectiveness is limited by the extent of the structural similarity. However, as \structure

space" becomes more densely-populated, this limitation should become less stringent.

Fold-recognition methods fall into two major classes: threading and homology recognition.

Threading predicts the structure of the target sequence by identifying a template sequence, a
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sequence predicted to be of similar structure, and �nding some mapping of the target sequence

onto the template structure that minimizes estimated biophysical energy. While this process can

be augmented by information on homologs of the template sequence, the emphasis is on a favorable

match between the target sequence and the template structure. For contrast, homology recognition

methods predict structure on the basis of similarity of the target sequence to a template sequence

and its homologs. The process might be augmented by structural information, but the emphasis is

on sequence similarity. The drawback of such methods is that their e�ectiveness is limited by the

extent of the similarity, though accurate predictions can be made well into the twilight zone [92].

A major drawback of threading methods is their computational complexity. As evidence of this

point, threading groups do not tend to o�er web server interfaces for their methods; no threading

groups competed in the �rst CAFASP contest of protein structure prediction servers [46].

Still another distinction between protein structure prediction methods concerns the level

of detail of the prediction. The methods discussed to this point generally yield low-resolution

structure predictions. Homology recognition methods generally predict an alignment, detailing

portions of the template structure and target structure predicted to be similar. This level of

resolution is equivalent to predicting the location of the backbone atoms of the target protein.

Threading algorithms rarely predict more than the approximate location of the center of the amino

acid side chains. Homology modeling, in contrast, yields a very high-resolution model, detailing the

position of every atom in the structure of the target protein. Homology modeling methods usually

start with an alignment or other low-resolution model and re�ne the structure progressively. As

such, the quality of a homology model depends strongly on the quality of the starting alignment;

errors in the starting alignment are the most frequent and most serious source of errors in homology

modeling [173]. For this reason, homology modeling methods are usually only applied to fairly close

homologs, for which an accurate alignment can be predicted with high con�dence.

A �nal class of structure prediction algorithms are docking prediction algorithms. Rather

than predicting the structure of the target protein, they study the target protein and the compound,
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protein, or nucleic acid with which it interacts, predict the functional site of the target protein,

and predict the nature and orientation of the interaction.

2.6 Structural genomics

Anyone who reads newspapers is probably aware that the human genome is expected to

be fully sequenced quite soon. Yet the average newspaper reader might not be aware that this is

merely one of many genome projects underway. According to The Institute for Genomic Research

(TIGR) at http://www.tigr.org/, there are over thirty microbial organisms with fully-sequenced

genomes, and genome projects are underway for over one hundred microbial organisms.

Once a genome is fully sequenced, the next step is to identify the genes and the proteins

that they code for. Gene prediction systems can predict which sections of DNA code for genes with

over 90% accuracy [103]. Once predicted genes have been identi�ed, the next steps involve identi-

fying and characterizing the proteins that might be expressed, or produced from these genes, and

the circumstances through which each protein is expressed. The recently-coined term proteomics

describes characterization of the protein output and expression patterns of a particular genome.

Most protein science research has followed a \top-down" approach, where proteins are

chosen for study typically on the basis of their biochemical role. Therefore, some functional in-

formation on a protein has usually been available when protein scientists set out to analyze it.

Genomic and proteomic e�orts, in contrast, have given way to a \bottom-up" approach, whereby

proteins are identi�ed for investigation by the fact that they seem to be expressed, and thus proba-

bly have a biochemical function, but nothing more is known about them. As of April, 2000, of the

1644 genes identi�ed in the Haemophilus inuenzae genome, 691 code for \hypothetical proteins":

proteins with no homologs of known structure or function [24]. These numbers are typical; as new

genomes are analyzed, approximately one third of the proteins encoded by the DNA tend to be hy-

pothetical [44]. Elucidating the function of these hypothetical proteins represents an exciting new
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scienti�c challenge, as knowledge of the full repertoire of the proteomic information of a functional

life-form is quite likely to yield major breakthroughs in scienti�c and medical research. Cross-

genomic studies reveal that hypothetical proteins are often conserved among several organisms. In

other words, many life-forms have a portion of their genetic code that we cannot yet elucidate,

and the portions we cannot yet elucidate is similar for many life-forms. This is a clear signal from

nature on what gaps of information to �ll in next.

The goal of structural genomics is to provide structural information for the complete

protein repertoire of a genome, whether the information is experimentally-determined structures

or plausible homology models. This structural information can aid in the determination of function

where unknown, or can yield insights to biological mechanisms where the function is known. A

major prerequisite for this goal is determination of the structure of one member of each sequence

family. While structure determination remains no trivial task, determining the structure of a

hypothetical protein can yield some of the greatest rewards for the e�ort, in terms of scienti�c

progress. Databases such as PRESAGE [16] have been created to support this e�ort by identifying

good candidates for structure determination and listing updates on experimental status.

The day might not be far o� when every new protein has a homolog of known structure.

Advent of that day represents \the slow death of the (natural) protein folding problem" [3], as

ascertaining the structure of a novel protein will become a task of fold recognition and homology

modeling. Meanwhile, this vision demands that the research community prepare for such a day

by creating highly accurate and automated methods for fold recognition, sequence alignment, and

homology modeling.
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Chapter 3

Background on sequence

alignment algorithms

The focus of this thesis is on improving alignments produced by hidden Markov models (HMMs).

To assess the work in the later chapters, the reader should have some understanding of HMMs

and other alignment algorithms. The necessary background is provided in this chapter. Section 3.1

gives a brief introduction to HMMs. An overview of alignment methods is given in Section 3.2. This

overview describes various classes of alignment algorithms: pairwise methods (Section 3.2.1); pro�le

methods (Section 3.2.2), and multiple alignment methods (Section 3.2.3). Finally, Section 3.2.4

reviews the literature comparing di�erent alignment methods.

3.1 Brief primer on HMMs

Hidden Markov models (HMMs) are statistical models with a long history of successful

application to speech recognition [149]. To an average person, a spoken word is a series of syllables.

To a linguist, each syllable can be further subdivided into a series of frames, units of 10 to 20

milliseconds in length. When sequences of frames are assembled into words, certain characteristics
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of each sequence will characterize each word. Other characteristics will vary between speakers,

particularly those related to accent and cadence of speech. HMMs construct a generalized pro�le

of each word, in which the more salient or distinguishing characteristics are expected with high

probability. Then, when a speaker utters a word, the word is recognized by comparing its sequence

of frames against the HMMs for various words to see which it matches best.

The problem of homology detection compares favorably to that of speech recognition.

Members of a protein family share certain characteristics, such as presence of conserved motifs. In

other respects, such as precise location of the conserved motifs within the protein sequence, there

can be marked di�erences between members of the same family. The goal of HMMs for sequence

analysis is to model each protein family in such a way that the distinguishing characteristics are

expected with high probability while variation is permitted in the more varying characteristics.

Then, when a new and potentially homologous sequence is presented to the model, the model

estimates the likelihood that the sequence is a new homolog, given the characteristics that most

directly de�ne the protein family.

The use of HMMs for sequence analysis was pioneered in 1993 at an esteemed institution

within the University of California system [100], with related publications from other institutions

following shortly afterwards [7, 43]. Since then, HMMs have proven e�ective at protein structure

prediction in blind experiments in two CASP contests [94, 92]. HMMs have been applied to

related sequence analysis problems including recognizing protein structure based on secondary

sequence [48], gene prediction [103], motif detection [23], motif assembly [59], and have been the

subject of a couple of reviews [42, 40].

Figure 3.1 depicts an HMM, along with the path taken through the model by two sequences

and the alignment generated subsequently. There are three types of states in an HMM: match,

insert, and delete states. The three types of states are represented with squares, diamonds, and

circles respectively. There is a one-to-one correspondence between columns in an alignment and

match and delete states in an HMM. When a sequence enters a match state, it aligns its next
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residue in the corresponding alignment column. It enters a delete state if it has no appropriate

residue to align to the column; using the delete state is equivalent to opening or extending a gap

in the alignment. At each column of the alignment, the sequence must enter either the match or

delete state. In addition, between alignment columns, it can enter the insert state and emit one or

more residue. Entering the insert state is equivalent to inserting residues between columns of the

alignment.

The path that a sequence will take through the model is determined by a series of costs. At

each match column, each amino acid can be emitted, or aligned to the column, according to a cost

computed from the probability of aligning each amino acid at that column. Similarly, at each insert

state, there is a cost table reecting the probability of inserting each amino acid at the respective

alignment position. Finally, the model can move between states according to a predetermined set

of transitions, each with its own cost. At each match or delete state, the sequence can move, or

transition, to the match or delete state of the next column, or to the insert state before the next

column. At each insert state, the model can remain in the insert state and insert an additional

residue, or can move to the next match or delete state.

The parameters in an HMM are estimated according to a training alignment or seed align-

ment. In the SAM [78] HMM software package, the modelfromalign module estimates an HMM

according to a training alignment. HMM training typically involves various mechanisms for making

a more general model. Such mechanisms include sequence weighting, column regularizers, and tran-

sition regularizers. Biological databases are notoriously redundant, and sequence weighting seeks

to address this by giving each sequence a weight according to its distinctiveness in the alignment.

Column regularizers compute an amino acid probability distribution for each column according to

the data seen in the column and to patterns of amino acid conservation. Dirichlet mixtures [166, 91]

are typically used for this purpose. Transition regularizers are systems of pseudocounts applied to

the model such that no matter what appears in the alignment, all transitions have a cost that is

�nite, and hopefully sensible.
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Figure 3.1: Example of a hidden Markov model, showing the path taken through the model to emit
the A and B sequences, where A = a1,a2,a3,a4,a5 and B = b1,b2,b3,b4,b5. Capitalization is used to
distinguish letters generated from match states (squares) from those generated by insert states (diamonds).
Circles represent delete states.

Other SAM modules of interest are summarized as follows. Align2model aligns a se-

quence to a model. By default, the alignment is estimated by the Viterbi algorithm, a dynamic

programming algorithm for �nding the lowest-cost path through the model that accounts for all

residues in the sequence. Alternatively, the alignment can be determined by the posterior decoding

algorithm. The two algorithms di�er in how they estimate the cost of using each node in the

model. While the Viterbi algorithm estimates the cost according to the single lowest-cost path

to that node, posterior decoding estimates it according to all paths through the model. Posterior

decoding requires more computing resources, but can yield more accurate alignments. When there

are new homologs to align to a protein family, they can be aligned by �rst estimating a model from

the existing protein family alignment, then using align2model to align these sequences plus the

new homologs to the model. Hmmscore yields the overall cost of aligning a sequence to a model.

This overall cost reects the likelihood that the sequence is homologous to the training sequences.

HMMs can also be used to align unaligned sequences, or to re-estimate an existing alignment. This

is done with the buildmodel module, which uses the forward-backward algorithm.
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3.2 Review of sequence alignment algorithms

The �eld of sequence alignment has a long history, but since there are a number of recent

reviews [170, 5, 55, 39], I shall only touch on the major points.

Sequence alignment methods fall into two major categories: pairwise methods, which

work with only two sequences, and multiple sequence methods, which can work with more than

two sequences. Multiple sequences methods in turn fall into two categories: pro�le methods and

multiple alignment estimation methods. Pro�le methods can add new sequences to an existing

alignment, but do not otherwise modify the alignment. Multiple alignment estimation methods

build or re-estimate a multiple alignment. Even when the goal is to merely add new sequences to

an existing alignment, multiple alignment methods are worth considering for the following reason:

every sequence added to the alignment represents added information. This added information

might help to suggest a better overall alignment. While re-estimating a curated multiple alignment

such as a Pfam [172] alignment might not be sensible, re-estimation of an automatically-generated

alignment might be worthwhile when one adds new sequences.

3.2.1 Pairwise alignment methods

Of the many varieties of sequence alignment algorithms, pairwise algorithms are the sim-

plest. The classic is the Needleman-Wunsch algorithm [130]. Given a system of substitution costs

and gap costs, this algorithm uses dynamic programming to �nd the lowest-cost global alignment

of the two sequences. The Smith-Waterman algorithm [171] �nds the optimal local alignment of

two sequences by a variation of this method. The alignment is permitted to start and end in the

middle of the sequences by omitting low-scoring regions.

Heuristic algorithms, another class of pairwise alignment algorithms, do not promise opti-

mal pairwise alignments but o�er greater eÆciency. Examples of such algorithms are FASTA [148]

and BLAST [2]. Central to both of them is the idea that most alignments contain short regions of
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high identity or similarity, that such regions can be identi�ed quickly, and that a larger alignment

can be assembled from these short matches. FASTA divides the target sequence into small k-tuples,

segments of one or two residues in length. It compares each k-tuple to equal-sized stretches in the

template sequence, looking for identically-matching segments. Next, it derives ungapped a set of

local alignments from the list of k-tuple matches by looking for diagonals with non-overlapping

k-tuple matches. Finally, it combines various ungapped local alignments into a gapped global

alignment by applying a system of gap penalties. BLAST divides the target sequence into short

\neighborhood words", three residues in length by default. It then scans the template sequence for

matches scoring above some threshold value, using a substitution matrix to score potential matches.

When an acceptable match is found, the algorithm seeks to extend it in both directions, stopping

according to a scoring heuristic. The most familiar version of BLAST generates only ungapped

alignments, but can report multiple matches of the same sequence. Updated versions can generate

gapped alignments, but retain the focus on generating short matches with strong signals. Because

of their eÆciency, heuristic algorithms are used widely as �lters for database searches: given a

search sequence, they scan the protein databases for potential matches. These potential matches

are then analyzed by a more sensitive method, or by a human.

3.2.2 Pro�le alignment methods

Pro�le methods represent the next level of complexity in alignment algorithms. Given an

alignment assumed to be reasonably accurate, the algorithm constructs a pro�le of the alignment. In

general, this pro�le consists of a system of gap costs and a set of costs for aligning each of the twenty

amino acids to each alignment column. These latter costs are derived from each column's amino

acid probability distribution. The probabilities are derived from a system of sequence weighting,

column regularizing, and the amino acids observed in each column. Sequence weighting accounts

for the fact that biological databases are skewed toward the proteins most heavily studied, and

that this skew tends to be reected in protein family alignments. To tone down this skew, a weight
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is assigned to each aligned sequence according to its uniqueness within the alignment. Sequence

weights generally range between 0 and 1, with weights close to 0 assigned to the sequences that

more closely resemble others in the alignment. When the amino acid counts are then gathered at

each column, they are scaled according to the sequence weights. Column regularizers then work

to derive meaningful amino acid probability distributions from the weighted counts given amino

acid substitution patterns and conservation of residues or biochemical properties. Some examples

include Dirichlet mixtures [166] and data-dependent pseudocounts [176].

Pro�le methods were pioneered by Gribskov et. al [57]. Contemporary examples of

systems that use pro�le information include TOPITS [151], GenThreader [86], PSI-BLAST [1],

SAM-T98 [93] and CLUSTALW [82, 180]. This thesis emphasizes SAM-T98 and CLUSTALW.

SAM-T98 is a fold recognition method built on iterative searches with the SAM hidden Markov

model software. SAM and hidden Markov models are described in Chapter 5. The pro�le alignment

functionality of CLUSTALW is described below.

The most familiar functionality in CLUSTALW is multiple alignment estimation, but it

does provide functionality to align sequences to an existing pro�le. When used in this mode,

it begins by calculating a phylogenic tree for the aligned sequences, using the neighbor-joining

method [157]. The weight of each sequence is calculated according to the length of the branches in

the tree from the root to the sequence. When a branch leads to more than one sequence, its weight

is divided evenly between them. All sequence weights are normalized so that the largest sequence

weight is 1. CLUSTALW has been described as \shamelessly ad-hoc" [38]; one can appreciate this

description when looking at the intricate rules that CLUSTALW uses to set gap penalties. The

rules are summarized as follows. [65].

1. Initial gap opening and gap extension penalties are set by the user or from default values.

2. If an alignment column contains gaps, its gap opening penalty is scaled down by 0.3 times

the fraction of sequences with gaps in that column and its gap extension penalty is divided
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by two.

3. If a column contains no gaps, but is within 8 residues (by default) of a column that contains

gaps, its gap opening penalty is modi�ed as follows: gopen = gopen �
�
2 + 8�D�2

8

�
, where

D is the distance to the gap.

4. If the column is amid a stretch of �ve or more hydrophilic residues according to any of the

aligned sequences, its gap opening penalty is scaled down by 0.3.

5. Internal to the program is a set of amino acid gap priors, representing the likelihood with

which each of the twenty amino acids is adjacent to a gap. If the column does not contain

a gap or a stretch of �ve or more hydrophilic residues, its gap opening penalty is scaled

according to the sequence-weighted average of the gap priors of the residues aligned.

Additionally, the user can specify a secondary structure mask, indicating the secondary structure of

one of the aligned sequences. If a secondary structure mask is provided, the gap opening penalties

are scaled according to a constant value for each secondary structure class, with special constant

scale values for positions near the end of an �-helix or �-strand. This complicated-sounding set of

rules has four aims: to decrease gap penalties where gaps already occur; to increase gap penalties

near existing gaps; to decrease gap penalties near stretches of hydrophilic residues; and to scale

gap penalties according to the amino acids aligned.

3.2.3 Multiple alignment estimation methods

Given a pool of sequences, multiple alignment estimation methods search for an alignment

to maximize the overall homology. This is no simple task, and it has been addressed by many

di�erent types of methods.

Two-dimensional dynamic programming algorithms were described in Section 3.2.1. N-

dimensional dynamic programming algorithms seek to simultaneously align N sequences. The com-

putational complexity of this task is proportional to N (2L)
N

, where N is the number of sequences
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to align and L is the length of the alignment. Given the exponential complexity, this is not done

for more than 3 or 4 sequences [55]. There are methods that use approximations to reduce the

complexity, the best-known of which is MSA [111]. However, even with approximations, MSA

cannot align more than 10 sequences.

Progressive methods estimate the alignment in an agglomerative manner, starting by

aligning two sequences. Next, either pro�le methods are used to align a third sequence to the pair,

or two other sequences are aligned. The process is repeated until all sequences are aligned. After

each step, the resulting alignment is �xed: once two sequences are aligned to each other, their

alignment is not altered. The order in which sequences are aligned is typically decided on the basis

of pairwise similarity. The multiple alignment estimation algorithm of CLUSTALW is a progressive

method [82].

The advantage of progressive methods is that they generally yield sensible alignments

while making eÆcient use of computing resources. The drawback is that they cannot recover from

mistakes made early in the process. This is the motivation behind iterative re�nement methods.

Iterative re�nement methods are essentially extensions of progressive methods. The di�erence is

that they re-estimate the alignment as it is built, typically by removing certain sequences from

the alignment, and then aligning them back in. PRRP is an example of such a method. It aligns

sequences progressively according to a predicted evolutionary tree, and periodically reassesses both

the evolutionary tree and the alignment under construction. Iterative re�nement methods can

generate excellent alignments, but they require more computing resources than progressive methods.

Finally, stochastic alignment methods modify parts of the alignment according to some

probability function, assessing the value of the modi�cations according to some objective function.

As is true with most applications of stochastic methodology, the drawback of stochastic alignment

methods is they do not guarantee an optimal solution { even according to their own objective

functions. However, they can build excellent alignments. One example of such a method is SAGA-

COFFEE [133], a genetic algorithm for estimating multiple alignments. The objective function for
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SAGA-COFFEE is weighted similarity between the multiple alignment and a library of pairwise

alignments of the same sequences, with the weights assigned according to pairwise sequence simi-

larity. As a genetic algorithm, it starts with an initial population of alignments, and the population

is changed gradually according to a rough simulation of evolution. In this simulation, each member

of the population is measured according to its �tness, or by the objective function. Death occurs at

random, and with a greater frequency among the less-�t members. In contrast, more �t members

have a greater probability of \breeding", creating new alignments that share most of their charac-

teristics. Mutation occurs at random during breeding, with mutation events including movement

of a gap or a block. While this method is not without computational overhead, one advantage is

that it lends itself well to parallelization.

Hidden Markov models (HMMs) for multiple alignment estimation are another stochastic

methods. To estimate a multiple alignment, HMMs start with an initial alignment and re�ne it over

a number of iterations. In each iteration, for each sequence in the alignment, they �rst estimate

the probability with which each residue might align to each column given all possible alignments

of the sequence to the model. Then, they determine an alignment, or a path through the model,

which aligns the residues of the sequence with greatest probability. Simulated annealing is used

to avoid local minima. Random noise is injected into the model according to some probability.

This amount of noise is high early in training. As training progresses and the model converges, the

amount of noise injected is decreased.

3.2.4 Comparison of alignment methods

Given various options of alignment methods, we return to the central question: once a

fold is identi�ed, what is the best way to align the target and template sequences? To answer this

question, one might be tempted to turn to the results of the CASP contests. However, human

intervention plays a signi�cant role in many contest teams. Some of the teams that achieved the

best alignment results stated openly that their methods involved manual re�nement [11, 99, 92],
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though one particular HMM team was forced to admit that their human intervention had not

improved their alignments in general [92].

To separate the e�ects of human intervention from automated methods, the CASP3 con-

test included CAFASP1, a contest on automated servers [46]. However, the CAFASP1 contest did

not address alignment quality.

When reading the literature comparing various sequence alignment methods, the unequiv-

ocal rule is that if the comparison involves a method developed by the authors, their method will

be among the best. Exceptions to this rule are as follows. First, if there are various tests with no

overall winner, the tests on which the authors' method performed best will later be deemed the

most signi�cant. Second, if the comparison involves two or more methods by the authors, their

early methods are permitted to fail on the condition that their re�ned methods are successful. This

situation cries out for a blind prediction experiment on alignment quality. Unfortunately, there is

no such experiment at this time, so we must content ourselves with papers in which the authors'

method will invariably be described as the best.

Gotoh [54] compared the performance of three alignment methods on their ability to align

two sequences consistently with their structural alignments. The test set consisted of approximately

50 protein families, each consisting of from 2 to 10 sequences, each with at least two members of

known structure, and covering the range from 10% to 50% average identity. The three methods

tested were Needleman-Wunsch pairwise alignment, CLUSTALW multiple alignment, and PRRP

multiple alignment. Both CLUSTALW and PRRP are described in Section 3.2.3. For all meth-

ods, he experimented with various gap parameters and substitution matrices. Accuracy of the

alignments produced were evaluated in a global manner: the number of pairs of residues aligned

correctly as a proportion of the number of residues in the two sequences. PRRP performed better

than CLUSTALW, which in turn performed better than Needleman-Wunsch. As sequence identity

decreased, the gap in performance increased in both cases. Gotoh interpreted these results to say

that while iterative methods are not as simple as progressive alignment methods, the extra com-
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plexity is justi�ed. The accuracy of the multiple alignment methods increased as the number of

sequences increased. All methods were very sensitive to the choice of gap parameters, although

none were especially sensitive to the choice of substitution matrices.

Two years later, Notredame et al [133] compared CLUSTALW and PRRP to a number of

other methods for multiple alignment estimation. Other methods evaluated were SAM, described

earlier; PILEUP [64], an early variation on the CLUSTALW algorithm; SAGA-COFFEE, the

authors' genetic algorithm for multiple alignment estimation, described in Section 3.2.3; and SAGA-

MSA, a related genetic algorithm that uses as an objective function similarity with alignments

produced by the N-dimensional dynamic programming algorithm MSA. All methods were run with

default parameters, with the exception that a Dirichlet mixture was used as a column regularizer

for SAM. Nonetheless, SAM would probably not fare well in such an analysis, as its performance

is quite sensitive to parameter settings and the default values are often not the best.

The test set for this study was eleven alignments from 3d ali [147], a database of multiple

alignments combining structural alignments with sequence-based alignments of close homologs. The

test cases were selected such that each had at least �ve sequences, with a consensus length of 50 or

greater. In addition, the authors removed from consideration four alignments which CLUSTALW

could reproduce with 95% or greater identity and three alignments which neither CLUSTALW

nor SAGA-COFFEE could reproduce with any accuracy. The remaining eleven alignments had

average identities ranging from 17 to 61%. Methods were not evaluated relative to the entire 3d ali

alignment; rather, they were evaluated on the positions for which the secondary structure was

conserved within the 3d ali alignment. All methods were scored according to the proportion of

residue pairs in such columns that they aligned accurately.

As might be expected, SAM fared the worst in this analysis. It had the worst performance

in 10 out of 11 cases; in the eleventh case, its score was the second-best, but all methods were close

in score. Its performance was less horrible in cases where the alignments had the greatest number

of sequences, probably reecting that the version of SAM used had no default sequence weighting.
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The methods that performed the best were PRRP and SAGA-COFFEE, with SAGA-COFFEE

performing better in cases with lower average identity. CLUSTALW, SAGA-MSA, and PILEUP

yielded similar performance measures in most cases. The authors interpreted these results as

support for the complexity of stochastic methods for multiple alignment.

Most recently, Thompson et. al [182] compared the performance of PRRP, CLUSTALX [82],

PILEUP, and SAGA-COFFEE with six other methods: MULTALIGN [10], MULTAL [178], PIMA [169],

DIALIGN [125] and HMMT [41]. CLUSTALX is simply the CLUSTALW program with an X-

windows interface. MULTALIGN, MULTAL, PILEUP, and CLUSTALW are progressive global

aligners; their main di�erences concern the order in which they add sequences to the alignment.

HMMT is part of the HMMER HMM package. PIMA is a local aligner with Smith-Waterman

pairwise alignment, secondary structure-dependent gap parameters, and progressive alignment con-

struction. DIALIGN constructs multiple sequence alignments from local alignments based on com-

parisons between diagonals, subsequences of potential alignment, rather than individual residues.

The authors do not state what parameter settings were used, but they probably used default pa-

rameters. The authors of this paper have worked with the authors of the previous paper, and one

might guess that their methods were similar to those of their colleagues.

All methods were tested on the BAliBASE alignment benchmark set [181]. BAliBASE

is a set of 142 multiple alignments, curated according to the literature on the respective protein

families and to various structural aligners. The alignments are annotated with core regions, regions

over which the alignment is judged most reliable by the curators. Most results in this study were

measured over the core regions only; I shall indicate the exceptions. Two measures of alignment

accuracy were collected: the number of pairs of residues aligned accurately, and the number of

columns in which all residues were aligned accurately. BAliBASE is divided into �ve subsets, with

each subset representing a distinct class of alignment test.

The �rst test involved alignment of families of sequences of equidistant homology: less than

25%, between 20 and 40%, and greater than 30%. All methods achieved close to 100% accuracy in
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the two latter cases, with one exception. That exception was HMMT. The most likely explanation

is the same as that for the poor performance of SAM in the previous study: default parameter

settings. On the �rst set, the best methods dropped to just below 70% accuracy while HMMT

achieved approximately 0% accuracy. The best results were achieved by PRRP, CLUSTALW, and

SAGA-COFFEE, with global methods generally performing better than local methods.

The second test involved alignments in which there was one orphan, divergent family

member. Alignment accuracy was measured over all columns rather than just the core regions,

and was measured for the overall alignment and for alignment or the orphan only. In general,

the presence of the orphan had little negative impact on overall alignment quality. In terms

of accurate alignment of the orphan, the poorest performance was seen by HMMT, and global

methods generally performed better than local ones. What methods performed best overall is not

entirely clear; the text states that PRRP was outperformed by CLUSTALW and SAGA-COFFEE,

while the accompanying �gure shows SAGA-COFFEE outperformed by CLUSTALW and PRRP.

The third test involved alignment of equidistant subfamilies of closely-related sequences.

The results of this test were consistent with those of the �rst test.

While the �rst three tests involved alignment of sequences of approximately the same

length, the fourth test involved alignment with large N-terminal and C-terminal extensions. The

ranking of methods on this test was rather di�erent from those for the previous tests: local methods

performed best by far, with DIALIGN performing the best overall. CLUSTALW, SAGA-COFFEE,

and PRRP showed equally-poor performance, and no results were shown for HMMT.

The �nal test involved alignments with large internal insertions. The best performance

was achieved by the local method DIALIGN, with CLUSTALW, SAGA-COFFEE, and PRRP also

generating strong results.

In summary, the authors observed that best performance was achieved by global methods,

though DIALIGN seemed to o�er some promising innovations. Iterative and stochastic re�nement

methods yielded better performance than most progressive alignment methods, though the authors
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noted the extra computational overhead required by these methods. No particular explanation was

given for the success of CLUSTALW over other progressive aligners. Finally, the authors noted

that while many methods could align moderate homologs very accurately, no methods achieved

the same accuracy on remote homologs, with a dividing line of approximately 20% identity. The

authors pointed that this is the area where the next generation of improvements must be made.

Bri�euil et al [19] compared the performance of MATCH-BOX, their local multiple align-

ment method, with six other multiple alignment methods for which there are web servers. All

methods were run with default parameters, although MATCH-BOX was tested at three di�er-

ent reliability thresholds. The methods tested were CLUSTALW, MSA [111], and PIMA [169],

described earlier; MAP [72], a global aligner that estimates multiple alignments through an itera-

tive pairwise method; Block Maker [61], a local aligner that uses the Motifj algorithm to identify

and merge conserved motifs; and MEME [6], a motif-based local multiple aligner. Their own

method, MATCH-BOX [33], generates local multiple alignments by a method of iterative scanning

for signi�cant motif matches. A match is considered signi�cant according to statistics estimating

the probability that the score would be achieved by random chance, and an alignment region is

regarded as signi�cant if all sequences contain signi�cant matches in the same region.

All methods were tested on 20 families, each of which included at least three sequences of

known structure. Reference alignments were produced by Insight cand Homology c, commercial

products distributed by Molecular Simulations of San Diego, CA. The methods were tested on

their accuracy on recovering structurally-conserved regions (SCRs), regions where the structural

alignments superimposed the C� residues with an RMS deviation of 1.8 angstroms or less. Predicted

SCRs were de�ned as ungapped regions in the multiple alignment, as estimated by each method.

All methods were scored according to the speci�city and sensitivity with which they reproduced

the SCRs. Speci�city is the number of correctly predicted residue pairs as a fraction of the number

predicted, and sensitivity is the number of correctly predicted residue pairs as a fraction of the

number of correct pairs.
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In their results, the global alignment methods were characterized by an inverse relationship

between speci�city and sensitivity. On families for which the average identity was 10% or better,

the global methods all achieved strong sensitivity and respectable speci�city, indicating that they

aligned the SCRs correctly but tended to align too much. Below 10% average identity, all exhibited

a marked decrease in both sensitivity and speci�city. Of all the global methods, MAP showed least

degradation in performance. In contrast, performance of the local aligners was not greatly a�ected

by the similarity of the sequences aligned. In general, these methods did not have the sensitivity

of the global methods { not surprisingly. Their speci�city results were scattered across a wide

range, with the exception of those for MATCH-BOX. At the most stringent reliability level, the

MATCH-BOX alignments achieved very high speci�city and low sensitivity. This indicates that

what was aligned tended to be correct, but that not much was aligned. As they dropped the

reliability threshold, the results exhibited an increase in sensitivity with a decrease in speci�city.

At the lowest level of reliability, the results appeared almost but not quite as good as those for

MAP.

In a second test, the authors tripled the size of the alignments by adding two very close

homologs for each original sequence. When their tests were repeated with the additional homologs,

MEME showed a signi�cant increase in sensitivity, MATCH-BOX showed a signi�cant increase in

speci�city, and the remaining methods were not greatly a�ected. Therefore, the authors cautioned

that adding additional homologs does not necessarily improve alignment accuracy, and can unfairly

overload someone else's server.

More recently, MATCH-BOX was compared to other methods by Hudak and McClure [77].

This paper evaluates methods on their accuracy at aligning conserved motifs. These motifs are

identi�ed by a combination of expert analysis and laboratory work to identify the structurally or

functionally-important residues. All methods are carefully optimized prior to testing. In previous

studies, McClure and co-authors had found that contrary to expectation, global methods often

perform better than local methods [119] and SAM performed well [118]. In this most recent study,
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the authors compared seven di�erent multiple alignment methods on their alignment of conserved

motifs in the reverse transcriptase family.

The methods tested by Hudak and McClure were SAM [78], MATCH-BOX [33], PIMA [169],

Block Maker [61], and MEME [6], described earlier; ITERALIGN [20], an iterative motif detection

and alignment method; PROBE [132], a local aligner that identi�es matches with Smith-Waterman

alignments and assembles them into a multiple alignment with Gibbs sampling. In contrast to the

authors of the previous study, Hudak and McClure did not observe strong performance with Match-

Box. Perhaps this is due to a slightly di�erent de�nition of the portions of the sequence of interest,

or perhaps it is due somehow to the reverse transcriptase family. They found that while all methods

were able to detect the conserved Motif IV, only ITERALIGN, MEME, SAM, and PROBE were

able to detect the entire series of motifs, with PROBE achieving the best performance overall.

While there have been some studies on the accuracy of multiple alignment estimation

methods, few authors have touched on pro�le alignment methods. One exception is the work

of Sauder, Arthur, and Dunbrack [159]. This team is best known for their work on homology

modeling [37] and their goal was to evaluate methods according the utility of their alignments for

homology modeling. Homology modeling places two contradictory demands on alignment methods.

First, alignments should be accurate, as alignment errors represent the most serious class of errors

in homology modeling [85]. Second, alignments should be long, because any region that is not

aligned represents a region that is not modeled. Therefore, they evaluated predicted alignments

according to three criteria: speci�city, sensitivity, and length.

Their assessment was far larger than any of the related work. Their test set involved all

pairs of structures related by SCOP [73] at the family or superfamily level. In later analysis, they

excluded immunoglobulins, which dominate all of the protein databases. Even focusing on non-

immunglobulin pairs, they had a test set of 10,665 data points, nearly all of which had a sequence

identity of 25% or less. Structural alignments for all pairs were obtained from the CE structural

aligner [161], and were compared to structural alignments from FSSP where available. Results of
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this comparison were used as an accuracy target, to determine if there is still room for improvement

in the methods.

The sequence alignments methods tested were BLAST, PSI-BLAST, CLUSTALW, and

PSI-BLAST �ltered by ISS [145]. Alignments were generated with each method as follows. With

CLUSTALW, the authors generated a multiple alignment of the template sequence, target sequence,

and all members of the template sequence's family according to SCOP. The pairwise alignment of

the template and target sequence was extracted and scored. BLAST alignments were obtained by

searching a database of SCOP sequences with the target sequence, and extracting the alignment

of the template sequence. PSI-BLAST alignments were generated by seeding a PSI-BLAST query

with the target sequence, and gathering homologs through four iterations of searches against the

non-redundant database. A matrix of posteriors for each column was then extracted, and used

with BLAST to search the database of SCOP sequences. PSI-BLAST with ISS performed two

such PSI-BLAST searches: one seeded with the target sequence, and one with the template se-

quence. All intermediate sequences common to both resulting alignments were identi�ed. A set of

template-target alignments were obtained from the template-intermediate and intermediate-target

alignments by using the intermediate sequence to infer a template-target alignment. The longest

such alignment was used as the �nal alignment. All methods were optimized on a subset of the

data.

Because the focus of the article was alignment quality and not fold recognition, the authors

did not address fold recognition accuracy; with the BLAST methods, they ignored cases in which

the desired pair was not reported because the hit was not signi�cant. At the 20-25% identity level,

nearly all SCOP structure pairs were reported, even by BLAST. At 10-15%, BLAST aligned 8%

of the structure pairs, PSI-BLAST 17%, and PSI-BLAST with ISS 38%. As CLUSTALW has no

fold recognition component, it aligned 100% of all structure pairs. This fact must be remembered

later when the authors report that the results obtained with CLUSTALW in this range were not

very good. Better-performing methods were BLAST with 28% sensitivity, PSI-BLAST with 40%,
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and PSI-BLAST with ISS at 46%. Nothing was reported regarding the relative accuracy of the

methods for the subset of the structure pairs that they all aligned. However, in regards to both

fold recognition and alignment accuracy, PSI-BLAST with ISS achieved better performance than

PSI-BLAST alone, which in turn achieved better performance than BLAST. The lengths of the

alignments produced followed the same rank order, indicating that this rank order reects the value

of the alignment method for homology modeling.

In summary, there have not been many statistical analyses comparing the quality of align-

ments produced by various methods. This body of literature is not only small, it is contradictory.

However, there seem to be a few consistent lessons. First, methods that estimate or use multiple

alignments generate more accurate pairwise alignments than pairwise methods do. Second, many

methods will generate accurate alignments when the level of homology is 20% or better; the real

challenge is accuracy below this threshold. Third, if the objective is to estimate a multiple align-

ment, iterative re�nement or stochastic methods often require more computational resources than

progressive methods, but their overhead seems to be worthwhile. Fourth, global methods can work

as well as local methods, even if the scoring system favors short, accurate alignments.
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Chapter 4

Measurement of alignment quality

This chapter describes the shift score, a score developed to measure the quality of a predicted align-

ment in relation to a structural alignment of the same sequences. Section 4.1 provides background

information and introduces the terminology used later in this chapter. Related work is described

in Section 4.2. Section 4.3 describes the calculation of the shift score, and Section 4.4 validates

it by comparing it with other popular alignment quality measures. Section 4.5 provides examples

produced by a companion visualization program. Certain issues should be considered whenever

one uses structural alignments to measure alignment quality; Section 4.6 discusses those issues and

how we have addressed them.

Closely related to the shift score is the optimal subalignment score, the score of the best

portion of the alignment. Optimal subalignments are calculated from predicted alignments using

a simple greedy algorithm, as discussed in Section 4.3.

4.1 Background and terminology

Sequence alignments fall into two major classes depending on the number of sequences

aligned. Pairwise alignments contain two sequences while multiple alignments contain more than
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two. Similarly, alignment quality measures can involve all sequences in the alignment, or can focus

on two sequences in particular. Such pairwise alignment quality measures can be made on multiple

alignments, with sequences other than the two sequences of interest ignored. The measure discussed

in this chapter is a pairwise quality measure.

In pairwise alignment quality measures, the two sequences studied are referred to as the

template and target sequences. In a structure prediction scenario, the template sequence would

have a known structure, and the target would be a sequence of unknown structure aligned to the

template. More generally, for the sake of testing an alignment program, the algorithm cannot use

information pertaining to the structure of the target sequence, even if known. Structure of the

template sequence, in contrast, can �gure into the alignment algorithm.

The most common application for alignment quality assessment is in experiments where

alignment methods are being re�ned, tested, or optimized. Such experiments typically involve com-

paring one alignment with another which is trusted or considered correct. This second alignment is

referred to as the reference alignment. Frequently, reference alignments are structural alignments,

alignments produced by tools that study the template and target sequence structures to identify

regions of correspondence. The alignment under test is referred to as the candidate alignment. The

candidate alignment is sometimes also referred to as the predicted alignment, because it represents

a prediction of the structural similarity between the template and target sequences.

Consider Figure 4.1 and the pair of residues C and M aligned in the reference alignment.

In the candidate alignment, target residue M is aligned to template residue A rather than C. The

shift of M is de�ned as -2, the number of positions between A and C in the template sequence.

Note that the shift can be positive or negative, depending on the direction of the shift. A positive

shift moves residue M closer to the C-terminus of the sequences, or to the right in Figure 4.1. If

a residue is not aligned in either alignment, its shift is unde�ned. Hence, in Figure 4.1, no shift is

listed for target residues L, O, or P.

Because shift is measured in sequence positions rather than alignment columns, the shift
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Candidate alignment
Residue

Reference alignment
Shift

Basic depiction of alignment shift

target    LMNOP--QR

aligned to in

template  ABCD--EFG
target    L-MNOPQR-

template  -AB-CDEFG

Reference Candidate

Q               E                     F             +1
R               F                     G             +1

M               C                     A             -2
N               D                     B             -2

Target
aligned to in

Template residue Template residue

Figure 4.1: Illustration of the shift of a single residue. Shift is measured for target residues aligned in
both alignments, and refers to the number of template residues between its position in the two alignments.

of a residue is not a�ected by lengths of gaps between its two positions. For example, residue M in

Figure 4.1 has shifted by two sequence positions and three alignment columns, yet we consider its

shift to be two sequence positions.

If the target and template sequences are swapped, the shift measures can change radi-

cally due to di�erences in the lengths of any unaligned segments. If the reference and candidate

alignments are swapped, shift measures will merely change in sign.

4.2 Related work

There are a number of scenarios in which a quanti�er of alignment quality is vital. One is

a CASP contest [127], in which there are many di�erent alignments of the same sequence and the

best must be chosen objectively. Another scenario is in re�ning methods for generating alignments;

over a test set of hundreds of alignments, one must determine which methods produce the best

alignments consistently. The �rst scenario requires that alignments that are better from a biological

standpoint receive better scores. The second requires that the score be uniformly interpretable over

a wide range of alignment length and quality.
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In recent years, much work has gone into the assessment of predictive alignment methods

[117, 54, 21, 119, 19, 118] and many measures have been proposed [133, 115, 153, 120, 189, 143],

but no single measure has emerged as a complete measure of alignment quality.

One of the most intuitive and popular measure is the number of residues aligned correctly.

Yet by itself this measure has no meaning; to know if it reects a good alignment, one must know

the number of residues aligned or the length of the structural alignment. In the CASP3 assessment,

S0, the number of residues aligned correctly was reported together with both lengths: structural

alignment length L1 and predicted alignment length Lx [104]. Alignment quality assessment re-

quires mentally absorbing all three numbers simultaneously, which might be acceptable for selecting

the better predictions from a small pool of candidates but is not viable for characterizing the overall

performance of an alignment method.

A related quantity is the fraction of residues aligned correctly. This quantity is easier to

interpret, as meaningful information can be gleaned without comparing two numbers, and it has

been used extensively in the literature [117, 19, 133, 182, 17, 159]. However, one must decide which

alignment length to use in the denominator: the length of the predicted alignment or the length of

the structural alignment. Many authors address this by reporting two values: the fractions relative

to the lengths of the predicted alignment and structural alignment respectively. Fraction relative

to predicted alignment and fraction relative to structural alignment have appeared with various

labels: alignment speci�city and alignment sensitivity [117], con�dence and power [19], and Fm

and Fd [159]. Yet as often noted, there tends to be a tradeo� between the two measures, with

neither capturing all of the relevant information. A very short but accurate alignment will have

excellent alignment speci�city but poor alignment sensitivity. An alignment that aligns the correct

regions accurately but aligns too much will have excellent alignment speci�city but poor alignment

sensitivity.

Many popular measures involve similar tradeo�s. Measures which reward short, accurate

alignments include the CASP2 measures [115] alignment speci�city, mean RMS deviation, and mean
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shift error. Measures which reward alignments that contain accurate alignments but align too much

include the CASP2 measures alignment sensitivity, alignment length, and coverage, the number of

target sequence residues aligned in the candidate alignment divided by the number aligned in the

reference alignment. Alignment quality assessment often involves regarding one measure in the

context of another, a process that is controversial at best [109].

Hubbard sought to diminish this controversy during CASP3 assessment by providing a

visualization for RMS deviation and coverage [74]. In his analysis, he started with a very low

threshold for RMS deviation, generated a superposition between portions of the predicted and

actual structures which fell below the RMS deviation threshold, and measured coverage. He then

increased the threshold slightly, generated a new substructure superposition, and measured cover-

age. This process was repeated for RMS deviation thresholds of up to 10 angstroms. This yielded

a curve identifying what proportion of the prediction fell within certain accuracy tolerances. For

instance, a prediction that was correct for one section and incorrect for another would show a

gradual climb followed by a distinct bend and a far steeper climb. To put the curve into perspec-

tive, graphs were assembled showing the curve for all predictions on the same target, with the

curve for the prediction in question highlighted. These graphs avoid the philosophical pitfall of

which method to reward: one which knows its weaknesses and does not predict unless it can do so

with con�dence, or one which attempts the diÆcult portions of the problem. However, as stressed

by Hubbard himself, the graphs serve as a qualitative tool for prediction assessment and do not

generate a comprehensive measure of prediction ranking.

A number of studies [177, 119, 118, 19] score alignments by their accuracy on conserved

motifs in the relevant protein families. These motifs contain the residues most important for the

structure or function of the protein. While one can argue that these regions are the most important

portion of the structure prediction, they are simply a portion. Other regions, including the more

variable regions important for evolutionary analysis, are not considered. The value of such analysis

depends on the objective. If the goal is to select an alignment method for prediction of functional
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residues, this might be the appropriate type of test. If the goal is to re�ne an existing alignment

method, other tests would be more appropriate.

Another family of measures [120, 189] measure the importance of each position in the

alignment by comparing the alignment score with the score of the best alignment that does not

include that position. While this measure is excellent for reporting the importance of a position

within the prediction, it does not report the position's accuracy. Further, it requires access to the

alignment tool and its intermediate results.

Another factor that can cloud alignment quality measurement is the choice of parameters

such as distinguished alignment or sequence. For instance, mean shift error is sensitive to the choice

of sequence over which shift is measured. Because shift is de�ned for residues which are aligned to

other residues in both alignments, the number of positions for which a shift measure is available

will depend on the choice of distinguished sequence.

We propose a measure that includes penalties for aligning too much, aligning too little,

and aligning inaccurately. This measure, referred to as the shift score, is based on shift error.

It requires no structural information, and is easy to compute. It compares two alignments in a

symmetric fashion, so no distinguished alignment or sequence is required. With a simple greedy

algorithm, it can be optimized to produce an optimal subalignment, the subalignment that would

be produced if the alignment method did not align too much.

We have applied the shift score in a number of investigations. First, we have used it to

re�ne our methods for producing alignments from hidden Markov models [93]. This application

requires a single measure that is meaningful over a wide spectrum of alignment quality and penalizes

all types of alignment errors we wish to minimize. Second, we have developed a tool to predict

when a method has aligned too much and to generate a trimmed alignment. Here, we have used

the optimal subalignment as our prediction target.

Section 4.3 describes the calculation of the shift score, and Section 4.4 presents results

describing the correlation of the shift score to the CASP2 alignment quality measures. Finally, in
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Section 4.5, we display some examples of the output of our alignment comparison tool: an accom-

panying visualization tool that reports the shift score and depicts the shift of each residue. This

tool, and the source code, are available on the World Wide Web at http://www.cse.ucsc.edu/

research/compbio/HMM-apps/compare-align.html.

4.3 Calculation of the shift score

For some pair of sequences A and B aligned in alignments X and Y , the shift score is

computed as follows.

� = small-valued algorithmic parameter, typically set to 0:2

jX j = Number of aligned residue pairs in alignment X

Xi = Aligned residue pair i in alignment X

s(ri) = Subscore for residue ri

=

8>><
>>:

1+�
1+jshift(ri)j

� � if shift(ri) is de�ned

0 otherwise

9>>=
>>;

Xi(A) = The sequence A residue aligned in column Xi

cs(Xi) = Column score for column i in alignment X

=

8>>>>>><
>>>>>>:

s(Xi(A)) + s(Xi(B))

if column Xi aligns some residues Xi(A) and Xi(B)

0 otherwise

9>>>>>>=
>>>>>>;

shift score =

PjXj
i=1 cs(Xi)

jX j+ jY j

While this de�nition emphasizes alignment X , the score is symmetric with respect to the alignment

emphasized. To see this, recall that for any residue in either sequence, shift is de�ned if and only

if the residue aligns to some residue in both alignments. Whether or not shift is de�ned for any
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given residue is thus independent of the choice of alignment emphasized. Shift is symmetric with

respect to labelling of reference and candidate alignment. If some residue is shifted by k positions

under one alignment labelling, it will be shifted by �k positions under the other labelling. As this

measure uses only the magnitude of shift, each column score cs(Xi) will be consistent across both

labellings.

The s(xi) terms range from �� to 1:0. They are positive for small shifts, or shifts of zero

(where s(xi) == 1:0). For large shifts, they approach ��. Table 4.1 shows the relation between

jshift(xi)j and s(xi) as a function of � and for � = 0:2. Residues shifted by four or fewer residues

(approximately one turn of a helix or less) contribute to the score, while residues shifted by more

than �ve residues decrease the score. In general, s(xi) is positive for shifts of less that 1
�

and

negative for shifts of greater than 1
�
.

The shift score is also a number between �� and 1.0. If the two alignments are identical,

their shift score is 1.0. If one alignment is a subalignment of the other, then all the s(ix) terms

are 1 for the residue pairs aligned in the subalignment and 0 for the residue pairs excluded from

the subalignment. Coverage, de�ned as the number of target residues aligned in the candidate

alignment divided by the number aligned in the reference alignment, is related to the shift score as

shown with B representing a subalignment of A:

shift score =
2 jBj

jAj+ jBj
(4.1)

=
2cov

1 + cov
(4.2)

The shift score does not depend on the assignment of target and template sequence, or

reference and candidate alignment. Because the shift score includes alignment length, shift error,

and coverage information, it does not need to be viewed in the context of other alignment statistics.

4.3.1 Optimizing the shift score

The shift score can be optimized by the following greedy algorithm:
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jshift(xi)j s(xi) s(xi) with � = 0:2
0 1 1:00

1 1
2 �

�
2 0:40

3 1
4 �

3�
4 0:10

5 1
6 �

5�
6 0:00

7 1
8 �

7�
8 �0:05

1 0� � �0:20

Table 4.1: Illustration of the relation between absolute shift and the shift score term s(ix) as a function
of � and for � = 0:2.

repeat {

old_score = shift_score(reference,candidate)

remove from the candidate the column with the largest column score

new_score = shift_score(reference,candidate)

} while (new_score > old_score)

reinstate the last column removed from candidate

This algorithm produces a version of the candidate alignment with the most inaccurate

regions removed. Columns will be removed or retained according to the following points:

� Columns that are aligned accurately or with small shifts of 1 to 2 residues will always be

retained.

� Columns containing residues with shifts of �ve or greater, or residues not aligned in the

reference alignment will always be removed.

� Other columns might be removed or retained according to the overall alignment accuracy. In

an accurate alignment, positions with moderate shifts of 3 or 4 residues will be removed.In a

mostly inaccurate alignment, such positions will be retained.

4.4 Comparison with the CASP2 assessment measures

We compared the shift score to the following alignment quality measures used in CASP2

fold recognition assessment [117]: alignment speci�city (ASpc), alignment sensitivity (ASns), align-
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ment speci�city � two residues (ASp2), alignment speci�city � four residues (ASp4), alignment

contact speci�city (ACSpc), mean RMS deviation (ARms), mean shift error (Shft), and coverage

(Covr). Alignment sensitivity (ASns) is de�ned as the number of residues aligned correctly divided

by the length of the reference alignment. Alignment speci�city (Aspc) is the number of residues

aligned correctly divided by the length of the candidate alignment. Asp2 and Asp4 extend align-

ment speci�city by computing the number of residues with no more than small shifts of two and

four residues, respectively divided by the length of the candidate alignment. Alignment contact

speci�city and sensitivity are similar to alignment speci�city and sensitivity, but use the number

of contacts correctly predicted rather than the number of residues correctly aligned. Further detail

can be found on the CASP2 automatic evaluation data web site [116].

For our comparison, we downloaded from the CASP2 web sites [116] alignments that had

been submitted to the fold recognition section of the CASP2 contest. We scored these candidate

alignments relative to those produced by the three structural aligners used in CASP2 assessment:

DALI [69], SSAP [135], and VAST [51]. We then compared the shift score to the results in the

alignment model table in the automatic evaluation data web site. When CASP2 predictors sub-

mitted more than one di�erent alignment of some target-template prediction, the alignment model

table reports one set of scores weighted by the probability the predictors assigned to each align-

ment. To simplify our analysis, we limited ourselves to cases where the predictors had submitted

only one alignment of the target and template. We investigated 156 alignments compared to the

three structural aligners for a total of 325 data points.

For the CASP2 contest, fold recognition assessment featured a myriad of alignment qual-

ity measures. Fewer evaluation measures were used in assessment of the CASP3 predictions. Most

assessment focused on RMS deviation, percentage of residues aligned correctly, and the percent-

age aligned within four positions of correct /citeCASP3-assess-livermore. No new measures were

introduced, aside from the visualization quantities LCS and GDT. The remaining measures are all

very similar to measures used in the CASP3 assessment. Therefore, we did not repeat this analysis
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Measure Description Correlation coeÆcient r
ASpc Alignment speci�city 0:974
Asp2 ASpc � two residues 0:957
ASns Alignment sensitivity 0:947
Asp4 ASpc � four residues 0:936
ACSpc Alignment contact speci�city 0:854
ARms Mean RMS deviation �0:758
ACSns Alignment contact sensitivity 0:737
Covr % Coverage 0:397
Shft Mean shift error �0:346

Table 4.2: Correlation between the shift score and other alignment measures, as seen on 156 fold recog-
nition alignments submitted to the CASP2 contest.

with the CASP3 measures.

Table 4.2 shows the correlation of the shift score to the CASP2 assessment measures.

The shift score correlates very well to alignment speci�city and sensitivity and correlates well to

alignment contact speci�city and sensitivity and to RMS deviation. Its weak correlation to coverage

and mean shift error is not surprising. If an alignment is very short but accurate, its mean shift

error will be low but its shift score will be small. Coverage reects alignment length but not

accuracy.

Alignment sensitivity (ASns) and alignment speci�city (ASpc) are of special interest be-

cause of their importance in the CASP2 assessment [115]. Figure 4.2 details their comparison to the

shift score. These scatterplots show strong diagonal lines with some outliers. One outlier circled

on both graphs has values of 0.447 for shift score, 11.3 for ASns, and 19.1 for ASpc. Its values

for ASp2 and ASp4 of 36.0 and 39.4 suggest that while the alignment did not align many residues

correctly, many were aligned with only a small error. This accounts for the high shift score relative

to both ASpc and ASns. The other circled outlier has values of 72.6 for ASns, 30.6 for ASpc, and

0.144 for a shift score. It aligned many residues correctly, but aligned far too much; the length of

the candidate alignment was more than twice the length of the reference alignment. Its mean shift

error of 0.144 suggests that though many residues had shifts of zero, some had very large shifts. Its

low shift score results from penalties incurred by these greatly-misaligned positions, plus the large
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Figure 4.2: Comparison between shift score, alignment speci�city (left), and alignment sensitivity (right),
calculated on 156 fold recognition alignments submitted to the CASP2 contest. The points discussed in
Section 4.4 are circled. Alignment sensitivity is the number of correctly aligned residues divided by the
length of the reference alignment, and alignment speci�city is the number of correctly aligned residues
divided by the candidate alignment length.

amount of over-alignment. Other outliers with lower shift scores than expected from ASns are also

a result of overaligning. To sum up, for most alignments tested, ASpc, ASns, and the shift score

were consistent with each other. Where they disagreed, the shift score seems to provide the better

indicator of alignment quality.

4.5 Alignment comparison visualization

We conclude by showing some sample alignments, their shift scores, and their optimal

subalignments. This alignment comparison visualization tool and its software is available on

the World Wide Web [113] at http://www.cse.ucsc.edu/research/compbio/HMM-apps/

compare-align.html.

Figures 4.3 and 4.4 compare FSSP structural alignments [69] with predicted alignments.

The FSSP alignments are shown, and used as the reference alignments. The candidate alignments

are not shown, but are reected in the shift lines. All shift scores shown below are computed with

� = 0:2.

In Figure 4.3, the CASP2 target T0031 is aligned to the structure 1try. Much of the
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Figure 4.3: FSSP alignment of T0031 with 1try compared to a predicted alignment. This alignment
achieves a shift score of 0.594 and obtains an optimum shift score of 0.718 by removing the 71 columns
indicated with dotted lines. The large di�erence between the these scores is from a few positions shifted
by a large number of residues.
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alignment is good, as represented by the large number of shifts of zero, yet there are a few positions

with shifts as large as 18. When these positions are omitted, the shift score improves substantially.
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Figure 4.4: FSSP alignment of T0004 compared with two predicted alignments. The upper alignment
achieves a shift score of 0.716, and optimum shift score of 0.761 with 11 fewer columns. The lower alignment
achieves a shift score of 0.648, and an optimum shift score of 0.687 with 11 fewer columns. Dotted lines
indicate the columns removed to obtain optimal subalignments.

Figure 4.4 compares two di�erent candidate alignments. The upper alignment is slightly

better and receives the higher shift score.

4.6 Issues concerning structural alignments as alignment

standards

The shift score measures the quality of a predicted alignment by comparing it with a \gold

standard". In some cases, curated alignments such as the BAliBASE alignment test set [181] serve
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as the gold standard. Sadly, curation remains a labor-intensive task, and only a small proportion

of the remote homology pairs known have curated alignments available. For this reason, the more

common alternative is to use structural alignments as a gold standard, as they are derived by auto-

mated methods and available for more remote homology pairs. Structural alignments are derived

by comparing the three-dimensional structures of two protein sequences, and by determining an

optimal superposition, a superposition of the two structures which minimizes their inter-structural

distance by some objective function such as the atomic distance between the backbone atoms.

However, for each \best" superposition, there are typically several other superpositions

which are reasonable, and score only slightly lower than the one chosen [199]. At times, two

superpositions can yield very di�erent alignments, but be very close in score. Therefore, one can

say that consistency between a predicted and a structural alignment indicates a good prediction,

but one cannot say that lack of consistency indicates a poor prediction.

Furthermore, the \optimal" superposition chosen by each structural alignment will de-

pend on its objective function, and di�erent structural aligners will tend to �nd di�erent optimal

superpositions [53]. For example, VAST [51] looks for a superposition that minimizes RMS de-

viation between superimposed segments of at least a certain length, while DALI [69] looks for

long regions of no more than a certain RMS deviation. As such, DALI alignments tend to be

large compared to VAST alignments, even though the algorithms are similar in other respects. In

general, when two structures are very similar, most structural aligners will yield consistent align-

ments. However, when the structures are not so close, each di�erent structural aligner might yield

a di�erent structural alignment [114]. This problem can be addressed by comparing each predicted

alignment to structural alignments from a number of di�erent structural aligners, as was done in

CASP2 [117]. When various structural alignments di�er, one should judge a predicted alignment

according to the structural alignment to which it bears most similarity. Similarity to one structural

alignment indicates that the predicted alignment shares some features with a signi�cant structural

superposition, according to some de�nition of \signi�cant".
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The �rst problem, that the \best" superposition is not uniquely de�ned, is somewhat

more diÆcult to address. For CASP3 assessment [104], the Sippl group generated a number

of di�erent structural superpositions for each target and template structure. Each superposition

produced was the most optimal of a cluster of related superpositions. Each prediction was judged

according to its similarity to the best superposition, and to whichever superposition it resembled

most. This solution addresses the problem e�ectively, but requires access to a structural aligner

that will produce alternative superpositions. The Sippl aligner, in its publicly-available form, does

not appear to do this. An alternative is to use a jury of structural alignments from di�erent

aligners, assume they will cover the space of reasonable superpositions, and accept a small amount

of experimental error where they will not.

Still another alternative is to emphasize a single structural aligner, and accept the exper-

imental error due to the factors described here. This can be a reasonable choice for tasks such

as parameter optimization, where one is comparing two sets of similar predicted alignments. In

such a case, a better score for one method indicates that the method produces alignments more

similar to those produced by some structural aligner. While those structural alignments are not

the only \gold standard", they are a reasonable one. Therefore, when we have applied the shift

score to optimization of HMM parameters, we have focused on comparison to alignments produced

by DALI [69].

When one is comparing alignments produced by two or more distinct methods, accepting

this experimental error is less reasonable. When there is less similarity between the alignment

methods, one can expect less similarity between the alignments produced. Structural alignments

from one tool might not be suÆcient as a standard for correctness, because one algorithm might tend

to produce alignments more similar to one structural aligner. For example, consider an alignment

method that emphasizes short regions that can be aligned with high con�dence. It would be no

surprise if its predicted alignments show more similarity to structural alignments from a method

such as VAST that emphasizes accuracy at the expense of length. As such, for certain investigations,
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we have used a small jury of structural alignments and judged each alignment according to its best

score from the jury. We have used three aligners: DALI [69], VAST [51], and the Yale aligner [50].

All three aligners met the following criteria:

Availability: Either the tool itself or an extensive alignment database is available to the public

free of charge.

Reputation: If some method is not accepted by the research community, results obtained with

that method will not be accepted. The aligners chosen are published aligners from reputable

labs.

Performance: Early structural aligners could only �nd similarity in structures that were very

close [66], and hence would not provide useful structural superpositions when similarity is not

immediately apparent. The aligners chosen can �nd structural similarity in distant structural

homologs, and provide meaningful numbers reecting on the signi�cance of the structural

superpositions found.

Another application for which additional sets of structural alignments are useful is iden-

tifying suspect alignment regions. If removing suspect alignment regions yields an improved shift

score relative to one structural aligner, critics might say that the alignments are not improved

so much as made more similar to structural alignments produced by one method. If the shift

score increases relative to a variety of structural aligners, then improvement is demonstrated more

convincingly.
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Chapter 5

Producing better alignments with

SAM and SAM-T98

Chapter 4 described the shift score, a score which represents many facets of alignment quality

with a single number. This chapter describes our use of the shift score in optimizing methods for

producing alignments with the SAM HMM software package [78]. Optimization is a thankless task:

journal papers are not written on optimization e�orts. However, if one's ultimate goal is to improve

alignments, one should start with the best alignments possible.

5.1 Experimental framework

All investigations described in this chapter were designed to follow a framework of align-

ment for fold recognition. We assume that we are given a target sequence of unknown structure,

and some template sequence thought to be homologous. Our task is then to align the template and

target sequences, using some variation of the approach listed below.

1. Select some seed alignment containing the template sequence and some set of homologs.
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2. Build a weighted model of the seed alignment.

3. Align the template and target sequences to the model.

The predicted alignment is then judged against a structural alignment of the same sequences.

The data used for these investigations is a set of 170 pairs of remote homologs, identi�ed

by Spencer Tu. These remote homolog pairs were chosen by the fact that a simple method such

as BLAST [2] cannot recognize them as homologs, but a more sophisticated method can. The

remote homolog pairs are listed in Table 5.1, along with their Z-score and the percent identity of

their FSSP structural alignment [69].

For each investigation and each pair of remote homologs, two alignments were built: using

the �rst sequence as the template and the second as the target, and using the second as the template

and �rst as the target. When the alignment method used the structure of the template sequence

in some way, we used the mean of the two shift scores as the data point for the pair. When the

alignment method used no structural information, we had various choices on how to interpret the

results for each pair.

1. One can randomly choose one of the two sequences as the seed. The data representing this

choice is the average of the two shift scores.

2. If one has prior knowledge of which seed will work better, the corresponding data is the better

of the two shift scores.

3. Most often, one bases the decision on external factors, such as identifying the assignment of

target and template for which the target sequence aligns to the template model with a higher

hmmscore. We simulated this process by identifying the assignment that yielded the better

hmmscore, and using the shift score corresponding to that assignment.

Unless otherwise noted, we used the �rst approach. Here, the score reported for each

remote homology pair was the average of the shift scores resulting from the two assignments of
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Structure 1 Structure 2 DALI Zscore % Identity Structure 1 Structure 2 DALI Zscore % Identity

1aac 2azaA 7.1 23 1aba 1grx 7.2 25
1aba 1kte 8.5 27 1aozA 1rcy 8.8 17
1arb 1svpA 8.7 10 1arb 1try 19.2 16
1arb 2sga 12.7 8 1bbt1 1pov1 10.5 18
1bbt1 1pvc1 7.1 16 1bcfA 1dat 18.9 17
1bcfA 1ryt 17.8 16 1bfg 2i1b 14.6 14
1bjmA 1hnf 9.0 17 1bjmA 1tit 7.7 11
1bjmA 1tlk 8.9 20 1cd8 1vcaA 14.7 17
1cdy 1cid 11.4 17 1cdy 1hilB 10.4 23
1cdy 1hnf 12.5 16 1cdy 1mlcB 11.5 19
1cdy 1neu 9.6 27 1cdy 1ospH 9.7 17
1cdy 1wit 7.0 14 1cdy 8fabB 12.0 21
1cnv 1ctn 14.4 14 1cnv 1nar 20.0 13
1cnv 2ebn 12.5 14 1cvl 1broA 12.1 16
1cvl 1din 8.7 16 1cvl 1ede 9.9 11
1cvl 1gpl 6.9 12 1cvl 1tca 14.9 14
1cvl 1yasA 13.7 16 1drw 1bmdA 6.7 13
1drw 1gypA 6.0 13 1drw 1xel 11.2 18
1drw 2cmd 8.6 13 1eaf 3cla 16.3 20
1ede 1din 11.8 13 1ede 1gpl 8.4 10
1ede 1tca 12.8 11 1ede 1thtA 14.9 11
1efm 1hurA 9.8 17 1fc1A 1hnf 6.1 18
1fc1A 1tit 6.0 9 1fc1A 1tlk 7.4 14
1fc1A 1vcaA 7.8 12 1forL 1hnf 8.8 11
1forL 1tlk 9.3 21 1forL 1wit 6.2 8
1frpA 1imbA 19.4 12 1gal 1aa8A 12.1 10
1gal 1fcdA 9.4 13 1gal 1gnd 7.0 8
1gal 1nhp 9.2 12 1gal 1pbe 11.8 8
1gal 1trb 10.4 10 1gal 2tmdA 7.7 16
1gal 3grs 11.4 22 1gal 3ladA 6.9 14
1gky 1kinA 7.2 16 1gky 1ukz 11.0 20
1gky 1zin 10.3 16 1gpl 1broA 9.5 11
1gpl 1yasA 8.1 9 1hbq 1bebA 13.6 19
1hbq 1epaA 14.9 22 1hbq 1mup 13.8 15
1hdcA 1lehA 6.5 13 1hdcA 1qorA 8.4 12
1hdcA 1xel 19.8 16 1hdcA 2cmd 9.9 12
1hdcA 2ohxA 8.3 19 1kay 1glcG 12.3 14
1kay 2btfA 25.2 13 1lfb 1octC 7.6 22
1lfb 1yrnB 6.3 19 1mfa 1hnf 10.3 13
1mfa 1tlk 9.7 15 1mtyB 1mhyD 24.9 11
1mucA 4enl 23.3 16 1mup 1bbpA 12 10
1nar 1ctn 19.4 16 1nar 2ebn 15.5 12
1nfkA 1nfa 6.7 22 1nhp 1aa8A 9.1 17
1nhp 1gnd 7.7 15 1nhp 1pbe 10.5 13
1nhp 3cox 8.5 17 1omp 1pot 15.7 17
1omp 1sbp 14.0 12 1prs 1amm 10.4 15
1prs 2bb2 10.6 26 1prs 4gcr 9.8 20
1psdA 1hrdA 8.3 9 1psdA 1hyhA 6.3 9
1psdA 1lehA 12.9 12 1psdA 2ohxA 9.1 11
1psdA 2pgd 8.6 13 1psdA 2tmdA 6.2 13
1ptvA 1vhrA 12.6 14 1pvc1 1bbt3 10.3 17
1pvc1 1pvc3 9 9 1sbp 1pot 22.5 14
1tca 1broA 16.3 14 1ten 1cfb 11.2 15
1ten 3hhrB 11.5 20 1thx 1kte 6.8 14
1tlk 1bec 10.6 11 1tlk 1cdy 9.9 16
1tlk 1hilB 9.4 16 1tlk 1hnf 10.0 16
1tlk 1ieaA 6.6 10 1tlk 1mlbA 11.4 16
1tlk 1mlcB 10.0 15 1tlk 1neu 10.3 19
1tlk 1ospH 8.4 15 1tlk 1ospL 8.7 17
1tlk 1tcrA 11.1 17 1tlk 1tetL 9.6 19
1tlk 8fabB 10.1 21 1ukz 1kinA 9.2 13
1xel 1aa8A 6.7 17 1xel 1bmdA 8.6 10
1xel 1cydA 17.9 13 1xel 1dhr 15.9 14
1xel 1enp 16.1 10 1xel 1eny 17.0 9
1xel 1fds 20.0 19 1xel 2cmd 9.6 14
1xyzA 1eceA 14.8 12 1xyzA 1pbgA 12.6 9
1xyzA 2myr 12.7 10 1ycc 1cyj 6.8 17
1ycc 2mtaC 6.2 14 1ytw 1vhrA 12.9 7
256bA 1cpq 6.3 6 2aaa 1eceA 10.7 9
2azaA 1plc 7.1 17 2cmd 1aa8A 6.2 21
2cmd 1cydA 8.5 12 2cmd 1dhr 8.2 8
2cmd 1fds 8.2 11 2gdm 1ash 11.5 13
2hbg 1ash 14.4 13 2mnr 4enl 21.5 16
2pgd 1dxy 7.0 17 2pgd 1gdhA 8.0 10
2phlA 1pmi 13.4 7 2por 2omf 21.5 15
2rn2 1rthA 8.6 22 2sas 2scpA 14.8 17
2sga 4ptp 12.3 19 3cox 1aa8A 10.8 12
3cox 1fcdA 7.9 12 3cox 1gal 25.6 17
3cox 1gnd 7.2 8 3cox 1pbe 11.6 11
3cox 1trb 12.7 12 3cox 2tmdA 8.0 18
3cox 3grs 8.8 17 3cox 3ladA 9.5 21
3grs 1aa8A 8.5 12 3grs 1fcdA 20.4 16
3grs 1pbe 11.4 11 3grs 2tmdA 12.2 20
3ladA 1aa8A 8.7 17 3ladA 1pbe 6.6 15
4ptp 1arb 15.9 15 8fabB 1hnf 8.0 14

Table 5.1: Pairs of remote homologs used to re�ne SAM and SAM-T98 alignments
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template and target sequence. The shift score reported for each experiment was the average of the

170 mean values. In a few cases, we chose one of the two shift scores to represent the pair, typically

the shift score of the alignment with the better hmmscore. In those cases, the second alignment

was ignored, and the score reported was an average of the 170 selected scores. These cases are all

carefully noted in the text.

Unless otherwise noted, all results were obtained with SAM version 3.1B, and all local

alignments reect the optional parameter setting �mtrans = 1.0.

5.1.1 What is a good shift score?

To put the results shown here into perspective, we should discuss the range of shift scores

expected for a hard fold-recognition alignment. This is illustrated in Figure 5.1, which shows a

histogram of the shift scores of fold-recognition alignments submitted to the CASP2 contest. The

histogram reects 77 alignments, most of the fold-recognition alignments for which some correct

structure was predicted. These predicted alignments were compared to structural alignments pro-

duced by DALI [69], SSAP [135], and VAST [51]. Some structural alignments were not available for

all targets, but I used all structural alignments available. This yielded a total of 325 data points.

As is evident in Figure 5.1, a large fraction of the alignments had a shift score of zero

or less, indicating that the sequences were entirely misaligned. On the other extreme, there was

one alignment that received three scores of 0.9 or greater. This alignment was actually for a

homology-modeling target that proved hard to align, and fold-recognition teams were invited to

submit alignments. Overall, the 325 data points had a mean shift score of 0.187. In general, for

alignment problems of comparable diÆculty to a CASP2 fold-recognition target, a shift score of 0.7

or greater reects an excellent alignment, and a shift score of 0.4 or greater is quite respectable.
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Figure 5.1: Histogram of the shift scores of 156 alignments submitted to the fold recognition section of
the CASP2 contest, representing most of the alignments for which a reasonable structure was predicted.
These 156 alignments were compared to up to three structural alignments for a total of 325 data points.

5.2 Selection of building method

Our �rst question concerns the choice of weighted build method. Sequence weighting

is a vital component of any pro�le-based method, as sequence databases exhibit quite a bit of

redundancy. In fold recognition, we have found our best results empirically by weighting according

to a speci�c target savings over the background entropy [93]. The magnitude of the target savings

indicates how much of the signal in the model is derived from the training data, rather than the

priors. At the extremes, a savings of zero indicates that all of the information is derived from the

priors, and a very large savings indicates that almost all of the information is derived from the

training alignment. Here, we explore what target savings achieves the best alignment quality. The

families of build methods tested are listed below.

Heniko� weighting: The relative weights for each sequence are set according to the Heniko�

weighting scheme [62]. The sequence weights are scaled up or down to achieve a target

savings. The target savings is expressed as the average number of bits saved over the columns

of the alignment, relative to the entropy of the background distribution. Examples include

fh0.5, which saves an average of half a bit relative to background, and fh0.3, which saves an

average of three-tenths of one bit relative to background.
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Target99 seed alignment FSSP seed alignment
Method Global Local Global Local

fh0.3 0.323 0.364 0.398 0.394
fh0.5 0.335 0.364 0.439 0.414
fw0.3 0.321 0.361 0.421 0.396
fw0.5 0.343 0.368 0.463 0.409
fw0.7 0.352 0.356 0.462 0.403
fw1.0 0.354 0.337 0.458 0.399
w0.4 0.349 0.372 0.434 0.419
w0.5 0.356 0.368 0.447 0.415
w0.6 0.359 0.364 0.454 0.411
w0.8 0.361 0.346 0.449 0.402
w1.0 0.351 0.334 0.447 0.397

Table 5.2: Average shift score as a function of weighted build method, for both FSSP and target99
alignments, and for both global and local alignment. Within each column, the build method achieving the
best score is shown in bold.

Entropy weighting: The relative sequence weights are set according to the columns of the seed

alignment. The sequence weights are then scaled to achieve a �xed target savings. An example

of this family is w0:5, which attempts to save half a bit relative to the background entropy.

Fw0:5 is also an entropy-weighting build, and di�ers from w0:5 in its choice of column

regularizer. Note that the fw builds and the fh builds use the same column regularizer.

To determine what building methods perform best, we aligned the remote homology pairs

listed in Table 5.1 using eleven weighted building methods: the Heniko� weighting methods fh0:3

and fh0:5, and the entropy weighting methods fw0:3, fw0:5, fw0:7, fw1:0, w0:4, w0:5, w0:6,

w0:8, and w1:0. Table 5.2 summarizes the results of these building methods, two choices of seed

alignment, and both global and local alignment. While there is no one build that scores best in all

cases, w0:5 performs well most consistently. Beyond that, two trends are visible. First, entropic

weighting appears to perform better than Heniko� weighting. Second, the best overall setting for

target savings seems to be at just under half a bit for local alignments and half a bit or slightly

higher for global alignments.
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Global alignment Local alignment
Shift Optimal Shift Optimal

Seed Method Score Subalignment Score Subalignment
Target99 fh0.3 0.323 0.506 0.364 0.448
Target99 fh0.5 0.335 0.505 0.364 0.444
Target99 fw0.3 0.321 0.503 0.361 0.447
Target99 fw0.5 0.343 0.514 0.368 0.451
Target99 fw0.7 0.352 0.504 0.356 0.434
Target99 fw1.0 0.354 0.482 0.337 0.407
Target99 w0.4 0.349 0.529 0.372 0.463
Target99 w0.5 0.356 0.530 0.368 0.457
Target99 w0.6 0.359 0.523 0.364 0.450
Target99 w0.8 0.361 0.506 0.346 0.421
Target99 w1.0 0.351 0.480 0.334 0.402
FSSP fh0.3 0.398 0.574 0.394 0.473
FSSP fh0.5 0.439 0.598 0.414 0.480
FSSP fw0.3 0.421 0.591 0.396 0.476
FSSP fw0.5 0.463 0.614 0.409 0.480
FSSP fw0.7 0.462 0.608 0.403 0.467
FSSP fw1.0 0.458 0.602 0.399 0.459
FSSP w0.4 0.434 0.595 0.419 0.495
FSSP w0.5 0.447 0.602 0.415 0.483
FSSP w0.6 0.454 0.601 0.411 0.475
FSSP w0.8 0.449 0.593 0.402 0.462
FSSP w1.0 0.447 0.588 0.397 0.455

Table 5.3: Comparison of global and local alignment for the indicated build methods and seed alignments.
Two sets of results are shown for each combination: the alignment shift score, and the shift score of the
optimal subalignment. The best build for each category is shown in boldface.

5.3 Global versus local alignment

Table 5.3 summarizes results comparing global with local alignment. The table lists both

the mean shift shift score and optimal subalignment score, so that we can better judge the behavior

of the alignment method.

Here, the choice of alignment algorithm depends on the full experimental framework. In

terms of shift score, local alignment generally performs better. However, global alignments tend to

have a signi�cantly better optimal shift score. This tells us that global alignment is more prone to

overalignment { a result that makes intuitive sense { but that they contain more accurate regions

than local alignments do. So, global alignment is the better choice if the objective is to accurately

align as many positions as possible, or if there is a good system on hand to remove overaligned
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regions. But, if overall alignment quality is the objective, or if the alignment must have a minimum

of inaccurate regions, local alignment is typically the better choice.

5.4 Selection of the seed alignment

Previously, I have listed results with two di�erent seed alignments: FSSP and Target99.

Here, I address the choice of seed alignment more thoroughly.

The seed alignment serves as the basis for the alignment modeling process. The target and

template sequence are aligned by building a model from the seed alignment, and aligning the two

sequences to the model. It would be far simpler to align the two sequences using simple dynamic

programming, but we would not expect the good results because simple dynamic programing uses

less information. The missing information is the homologs of the template sequence. The seed

alignment, the alignment of the template sequence and its homologs, provide a much richer char-

acterization of the sequence family than the template sequence can alone. So, the seed alignment

is truly at the heart of this process. Therefore we experimented with each of the seed alignments

described below.

FSSP: The homologs are the structural homologs of the template sequence as identi�ed by DALI,

excluding the target sequence. The FSSP alignment is built as a concatenation of pairwise

alignments; each homolog is aligned to the template sequence by DALI Thus, the columns

of an FSSP alignment represent corresponding positions in the proteins' three-dimensional

structures. However, the homologs are frequently distant sequence homologs, and the se-

quence homology signal in FSSP alignments is weak. Compounding this issue, the FSSP

database uses a somewhat generous cuto� for structural similarity. As a result, FSSP align-

ments include sequences that are weak homologs at best. To reduce this noise, we removed

from the alignments any sequences with a DALI Zscore of less than 7.0.

FSSP-cheat: A FSSP-cheat alignment di�ers from the FSSP alignment in that it includes the
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target sequence. Since FSSP-cheat alignments contain the \correct answer", structural align-

ments of the template and target sequences, FSSP-cheat results represent an upper bound,

the best one could expect to do with a set of informed homologs.

Target98: These alignments are generated by running SAM-T98 with the template sequence as a

seed. Compared to FSSP alignments, these alignments tend to be larger and the homologs

tend to be closer sequence homologs.

Target98-FSSP: These alignments are generated by running SAM-T98 with the template's FSSP

alignment (excluding the target sequence) as a seed.

Target99: These alignments were generated by running SAM-T99, an improved version of the

SAM-T98 process with the template sequence as a seed.

Template sequence: The alignment consists of the template sequence with no homologs, and

reect the performance that might be obtained with a simple pairwise method. When results

obtained with these seed alignments are contrasted with others, the contrast indicates how

much signal was derived from the homologs in the other seed alignment.

Table 5.4 shows results obtained with each of the seed sequences for three selected build

methods. Not surprisingly, the strongest results are those obtained with the FSSP-cheat seed

alignments, and the weakest are those obtained with the template sequence only. Results obtained

with the template sequence only are the worst by a wide margin, indicating how little information

is shared between the template and target sequences. What is more surprising is the consistency of

the results. In all categories and for all weighted builds, the ranking of seed alignment according to

score is the same. FSSP alignments perform best of the non-cheating methods, with Target99 seed

alignments yielding the next-best results. This suggests the value of the structural information

encoded in the FSSP alignment.

The take-home message here is that once the fold has been identi�ed, the best align-

ments can usually be obtained by aligning the target sequence to the template's FSSP alignment.
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Global alignment Local alignment
Shift Optimal Shift Optimal

Seed Method Score Subalignment Score Subalignment
Template sequence w0.4 0.144 0.323 0.141 0.160
Target98 w0.4 0.309 0.483 0.351 0.406
Target98-FSSP w0.4 0.337 0.500 0.367 0.428
Target99 w0.4 0.349 0.529 0.372 0.463
FSSP w0.4 0.434 0.595 0.419 0.495
FSSP-cheat w0.4 0.698 0.823 0.706 0.801
Template sequence w0.5 0.154 0.333 0.139 0.155
Target98 w0.5 0.315 0.478 0.347 0.401
Target98-FSSP w0.5 0.342 0.494 0.360 0.417
Target99 w0.5 0.356 0.530 0.368 0.457
FSSP w0.5 0.447 0.602 0.415 0.483
FSSP-cheat w0.5 0.725 0.837 0.729 0.814
Template sequence w0.8 0.163 0.344 0.138 0.151
Target98 w0.8 0.325 0.450 0.313 0.355
Target98-FSSP w0.8 0.331 0.439 0.336 0.382
Target99 w0.8 0.361 0.506 0.346 0.421
FSSP w0.8 0.449 0.593 0.402 0.462
FSSP-cheat w0.8 0.746 0.843 0.746 0.819
Template sequence fw0.5 0.121 0.293 0.123 0.143
Target98 fw0.5 0.307 0.467 0.339 0.389
Target98-FSSP fw0.5 0.320 0.471 0.348 0.405
Target99 fw0.5 0.343 0.514 0.368 0.451
FSSP fw0.5 0.463 0.614 0.409 0.480
FSSP-cheat fw0.5 0.717 0.830 0.715 0.801

Table 5.4: Shown are results comparing the shift score and the score of the optimal subalignment for
various seed alignments. For each weighted build and column, the best score of the non-cheating seeds is
shown in boldface.
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Direction chosen Build Global Local
Random w0.4 0.349 0.372

Better standard HMMscore w0.4 0.357 0.408
Better reversed-sequence HMMscore w0.4 0.380 0.410

Best of the two w0.4 0.417 0.450
Random w0.5 0.356 0.368

Better standard HMMscore w0.5 0.370 0.403
Better reversed-sequence HMMscore w0.5 0.388 0.399

Best of the two w0.5 0.430 0.445
Random w0.8 0.361 0.346

Better standard HMMscore w0.8 0.391 0.391
Better reversed-sequence HMMscore w0.8 0.393 0.390

Best of the two w0.8 0.436 0.427
Random fw0.5 0.343 0.368

Better standard HMMscore fw0.5 0.409 0.371
Better reversed-sequence HMMscore fw0.5 0.371 0.410

Best of the two fw0.5 0.445 0.430

Table 5.5: Shift score shown as a function of method for choosing the alignment direction: choosing one
direction at random, using whichever direction achieves the better standard or reversed-sequence HMM-
score, and selecting the direction with the better alignment | assuming prior knowledge of that direction.
For each category, the best score that does not require prior knowledge of the best direction is shown in
boldface. All results were obtained with Target99 seed alignments.

When the FSSP alignment is very small, and the model might not be suÆciently general, the best

alternative might be the next-best method: using a Target99 seed alignment.

5.5 Selecting alignment direction with HMMscore

For each target-template pair, their alignment can be approached in two directions: align-

ing the target sequence to the template sequence and homologs, or aligning the template sequence

to the target sequence and homologs. This process is not symmetric, and one direction will produce

a more accurate alignment. One approach is to use the alignment from whichever direction yields

the better, or lower, hmmscore. Here, we study if that approach is e�ective.

Table 5.5 lists the results that could be expected for two building methods and four

approaches for choosing the better alignment direction.

Random: This approach corresponds to selecting one direction at random. The results reect the

average of the shift scores of both directions.
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Better standard HMMscore: This approach consists of comparing the score with which the

target aligns to the template model to the score with which the score with which the template

aligns to the target model, and selecting whichever alignment yields the higher score. The

scoring method used is simple null scores adjusted by sequence length [8].

Better reversed-sequence HMMscore: This approach is the same as the last, except that

rather than using the standard HMMscore, it uses the reversed-sequence HMMscore [93].

This score consists of the simple null score minus the score achieved by reversing the sequence

and aligning it to the model.

Best of the two: This approach assumes prior knowledge of which direction will yield a better

alignment, and selects that alignment. Results obtained with this approach represent an

upper bound, the best performance that could be obtained with any selection method.

Looking at Table 5.5, we see that a signi�cant gain in performance could be realized by

selecting the better direction. Selecting a direction using either HMMscore achieves much of that

gain. The choice between standard HMMscore and reversed-sequence HMMscore is less clear, as

neither one yields better performance with consistency. However, either of these options generate

better results than selecting a direction at random.

Note that the Table 5.5 shows results obtained for Target99 seed alignments only, and

not for FSSP seed alignments. Target99 alignments require no structural information, while all

FSSP alignments require that the structure of the seed sequence is known. As the structure of the

target sequence is not known, it has no FSSP alignment. Hence, choosing the direction is not an

option with FSSP seed alignments.

5.6 Posterior decoding

When aligning a sequence to a HMM, the standard approach is to use the Viterbi algo-

rithm. In short, the Viterbi algorithm �nds the best path through a model given a table representing
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Shift Optimal

Seed Build Align. Algorithm Score Subalign.

Target99 w0.4 Global Viterbi 0.349 0.529

Target99 w0.4 Local Viterbi 0.372 0.463

Target99 w0.4 Global -adp4 Posterior Decoding 0.359 0.542

Target99 w0.4 Global -adp5 Posterior Decoding 0.370 0.541

Target99 w0.4 Local -adp5 Posterior Decoding 0.398 0.525

Target99 w0.5 Global Viterbi 0.356 0.530

Target99 w0.5 Local Viterbi 0.368 0.457

Target99 w0.5 Global -adp4 Posterior Decoding 0.366 0.545

Target99 w0.5 Global -adp5 Posterior Decoding 0.377 0.543

Target99 w0.5 Local -adp5 Posterior Decoding 0.395 0.513

Target99 w0.8 Global Viterbi 0.361 0.506

Target99 w0.8 Local Viterbi 0.346 0.421

Target99 w0.8 Global -adp4 Posterior Decoding 0.363 0.520

Target99 w0.8 Global -adp5 Posterior Decoding 0.378 0.521

Target99 w0.8 Local -adp5 Posterior Decoding 0.386 0.478

Target99 fw0.5 Global Viterbi 0.343 0.514

Target99 fw0.5 Local Viterbi 0.368 0.451

Target99 fw0.5 Global -adp4 Posterior Decoding 0.347 0.524

Target99 fw0.5 Global -adp5 Posterior Decoding 0.363 0.525

Target99 fw0.5 Local -adp5 Posterior Decoding 0.388 0.506

FSSP w0.4 Global Viterbi 0.434 0.595

FSSP w0.4 Local Viterbi 0.419 0.495

FSSP w0.4 Global -adp4 Posterior Decoding 0.461 0.628

FSSP w0.4 Global -adp5 Posterior Decoding 0.483 0.624

FSSP w0.4 Local -adp5 Posterior Decoding 0.486 0.602

FSSP w0.5 Global Viterbi 0.447 0.602

FSSP w0.5 Local Viterbi 0.415 0.483

FSSP w0.5 Global -adp4 Posterior Decoding 0.465 0.624

FSSP w0.5 Global -adp5Posterior Decoding 0.486 0.620

FSSP w0.5 Local -adp5 Posterior Decoding 0.491 0.598

FSSP w0.8 Global Viterbi 0.449 0.593

FSSP w0.8 Local Viterbi 0.402 0.462

FSSP w0.8 Global -adp4 Posterior Decoding 0.469 0.620

FSSP w0.8 Global -adp5 Posterior Decoding 0.488 0.613

FSSP w0.8 Local -adp5 Posterior Decoding 0.484 0.579

FSSP fw0.5 Global Viterbi 0.463 0.614

FSSP fw0.5 Local Viterbi 0.409 0.480

FSSP fw0.5 Global -adp4 Posterior Decoding 0.470 0.627

FSSP fw0.5 Global -adp5 Posterior Decoding 0.491 0.623

FSSP fw0.5 Local -adp5 Posterior Decoding 0.487 0.592

Table 5.6: Posterior decoding on alignment accuracy: -adp4 is transition-based posterior decoding, and
-adp5 is character-based. Best results for each category are shown in boldface.
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the cost of aligning each residue in the sequence to each state in the model. The cost of aligning

a residue to a state is a function of the probability of emitting the residue in that state, plus the

probability of entering the state given the best path from the start of the model to that state.

In its entirety, the Viterbi algorithm yields the most likely path through the model that emits all

residues, whether in insert, delete, or match states.

An alternative to the Viterbi algorithm is posterior decoding [70]. Posterior decoding

is similar to the Viterbi algorithm, except that the cost of aligning a residue to some state is a

function not of the most likely path through that state, but of all paths through that state. These

probabilities are computed by the Forward-backward algorithm.

SAM 3.1 o�ers two varieties of posterior decoding: transition-based (-adp4) and character-

based (-adp5). Their di�erence lies in how they calculate the posterior probability of each residue

aligning to each node in the model. Transition-based posterior decoding reects the alignment

with the greatest probability of entering each match state, or aligning to each column. given all

paths through the model. It is not de�ned for local alignment. Character-based posterior decoding

is perhaps the more traditional. It selects each position according to the posterior probability

of emitting each residue at each alignment column, or match state in the model. Both forms of

posterior decoding select each position according to the posterior probability of the position, given

all paths through the model. For contrast, the Viterbi algorithm selects each position according to

the single most-probable path through the model.

Intuitively, posterior decoding might yield better alignments, as it reects more informa-

tion: the probability of all paths through a node, rather than the probability of one path (albeit

the best path). Research in near-optimal sequence alignment indicates that one should not merely

pay attention to the top-scoring alignment, but should also observe alternate, high-scoring align-

ments to �nd the commonalities [188]. In Table 5.6, we see that posterior decoding does improve

alignment accuracy. Both character-based and transition-based posterior decoding improve the

shift score and the optimal subalignment score, with the latter indicating less misalignment. How-
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ever, posterior-decoded alignments are not immune to overalignment: posterior-decoded global

alignments do not score as well as Viterbi local alignments.

In Table 5.6, we see that character-based posterior decoding with local alignment yields the

best shift score fairly consistently, and often by a wide margin. Further, its optimal subalignment

scores are far better than those for Viterbi local alignment. The gap between its shift score and

optimal subalignment score is almost as large as that for a global alignment method; this method

is not immune to overaligning. However, in terms of overall alignment quality, local alignment with

character-based posterior decoding is the method of choice.

Global posterior-decoded alignments have slightly higher optimal subalignment scores

than the other methods, indicating that they have a slightly higher number of accurate positions.

The highest optimal subalignment scores are obtained with transition-based posterior decoding.

However, the optimal subalignment scores for character-based posterior decoding are almost as

good, and the shift scores are far better. Therefore, character-based posterior decoding is probably

the best of the global methods.

5.7 Thinning the seed alignment

We have examined the choice of seed alignment, but have not further addressed the

question of alignment composition. For an alignment that characterizes the family of the seed

sequence, what variety of sequences makes for a useful alignment? One might think that \more is

better", that adding more sequences to the alignment always makes it more informative. However,

as is shown in Table 5.7, this is not exactly the case.

The results shown in Table 5.7 were obtained by thinning each seed alignment to a

maximal percent homology, such that no two sequences in the alignment are identical in more

than the speci�ed number of residues. There was no preliminary sorting of the sequences in the

alignment; each sequence was kept or discarded based solely on its similarity to the sequences in
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Maximum % Shift Score
Identity Global Alignment Local Alignment

90% 0.320 0.326
80% 0.323 0.326
70% 0.324 0.330
60% 0.319 0.328
50% 0.312 0.322
40% 0.303 0.321
30% 0.288 0.302
20% 0.213 0.225
10% 0.160 0.142

Table 5.7: Shift score as a function of the maximum percent identity. Seed alignments were thinned to
the speci�ed maximum % identity by starting with no sequences selected, and then reading through the
alignment one sequence at a time. Each sequence is compared to the sequences already selected. When some
sequence compares to all sequences selected with less than the threshold percent identity, then the sequence
is added to the thinned alignment. The results shown reect Target98-HSSP alignments, alignments built
by SAM-T98 and seeded with the HSSP version of the sequence. The results were obtained using SAM
Version 2.2, the 1998 vintage of the w.05 weighted build method, and the parameter setting �mtrans = 0.0

the thinned alignment. The target and template sequences were then aligned using a model derived

from the thinned alignment.

If it were true that more sequences in an alignment always yields a more useful alignment,

we would expect to see the shift score deteriorating steadily as maximum percent homology is

decreased. Instead, the score peaks at approximately 70% identity. As maximum percent identity

decreases from 100% (not shown), the score increases gradually to its peak value. Below that value,

it decreases gradually until approximately 30%. Below 30%, it decreases rapidly.

The pattern described is evident for each of the build methods shown, and for both global

and local alignment. The same pattern is also evident when the two avors of hmmscore are used

to select the alignment direction and for the optimal subalignments. These results are not shown

for the sake of brevity. The consistency of this pattern suggests that the result is not an artifact of

the experimental setup, but is more characteristic of alignment behavior. As for why this might be

the case, one explanation is that the seed alignment should characterize the breadth of the family,

and that too many close homologs skew the alignment. While sequence weighting schemes should

address this skew, it appears that they cannot completely remove it.
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Delete-Delete Pseudocount Shift Score Optimal Subalignment Score
0.4 0.350 0.396
0.5 0.349 0.395
0.6 0.349 0.396
0.7 0.349 0.396
0.8 0.350 0.397

0.9 0.343 0.392

Table 5.8: E�ects on alignment accuracy of the delete-delete pseudocount in the transition regularizer. For
comparison, the delete-match pseudocount was 0.0685456 and the delete-insert pseudocount was 0.391659.
The values currently used are shown boxed, and the best results are shown in boldface. All results were
obtained with SAM version 2.2, Target98-HSSP seed alignments, local alignment, the 1998 version of the
w0.5 building method.

Match-Match Pseudocount Shift Score Optimal Subalignment Score
1.6 0.346 0.397
1.9 0.345 0.395
2.2 0.345 0.394
2.5 0.343 0.392

2.8 0.343 0.392
3.1 0.341 0.389
3.4 0.340 0.387
3.7 0.338 0.384
4.0 0.338 0.384

Table 5.9: E�ects on alignment accuracy of the match-match pseudocount in the transition regularizer. For
comparison, the match-delete pseudocount was 0.145193 and the match-insert pseudocount was 0.422453.
The values currently used are shown boxed, and the best results observed are shown in boldface. Better
results might have been obtained by testing lower pseudocounts, but this data suggests that the results
would not improve by very much. All results were obtained with SAM version 2.2, Target98-HSSP seed
alignments, local alignment, the 1998 version of the w0.5 building method.

5.8 Searching for better transition costs

No exploration of building better alignments with SAM would be complete without con-

sidering transition costs. For most systems, meaningful transition costs are notoriously hard to

compute; SAM is no exception. Transition costs in SAM are calculated according to the transi-

tions observed in the alignment plus pseudocounts given in the transition regularizer. When one

sets out to modify transition costs in SAM, one modi�es the transition regularizer.

All experiments in this section use a transition regularizer derived from FSSP alignments.

Preliminary experiments with other regularizers showed that this one worked considerably better

than most. However, the alignments produced showed a pattern of mistakes; they were overly biased



78

Transition Cost Scale Factor Shift Score Optimal Subalignment Score
x0.2 0.340 0.395
x0.4 0.343 0.393
x0.5 0.344 0.394
x0.6 0.343 0.392
x0.7 0.344 0.393

x1.0 0.342 0.390
x5.0 0.331 0.374

Table 5.10: E�ects on alignment accuracy of scaling down the transition pseudocounts. The values
currently used are shown in boldface. The values currently used are shown boxed, and the best results are
shown in boldface. All results were obtained with SAM version 2.2, Target98-HSSP seed alignments, local
alignment, the 1998 version of the w0.5 building method.

toward long sequences of match states. Starting with the FSSP-trained regularizer, I explored

regularizer optimization in three directions:

1. Decreasing the cost of extending gaps by decreasing the Delete-Delete pseudocount (results

shown in Table 5.8),

2. Modifying the cost of staying in match states by modifying the Match-Match pseudocount

(results shown in Table 5.9),

3. Modifying the impact of the regularizer by scaling all of the pseudocounts by some constant

(results shown in Table 5.9).

In all three cases, decreasing the pseudocount or pseudocounts improved alignment quality

slightly. The optimal subalignment score improved as well as the shift score, indicating that the

change had not made the process more prone to misalignment. However, in all three cases, the

change was quite modest. The change was more pronounced whenever a di�erent regularizer was

used; in such cases, the change was always negative. For the match-match pseudocount, additional

tests might have yielded better results. However, the changes observed were subtle enough that

the results would probably not yield a dramatic change. Overall, these results suggest that small

changes in the regularizer will probably not yield much improvement in alignment quality.
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5.9 Consensus builds

All results shown up to this point have involved build methods that generate one single

alignment. This section concerns consensus methods, methods which generate two alignments,

and compare the �rst alignment to the second to obtain a consensus alignment. This consensus

alignment is obtained by removing from the �rst alignment any regions that are not aligned in the

second, or for which the second alignment places the residues more than a couple of positions away.

The intuition behind consensus builds is the same as that behind posterior decoding and

other forms of sub-optimal alignment study [188]. It states that the alignment of some target

residue is trustworthy if various alignments of the same sequences always tend to align the residue

in about the same position. If the residue is not consistently aligned, or if it tends to be aligned to

very di�erent columns in di�erent alignments, then it belongs to an alignment region that should

be treated with more skepticism.

5.9.1 Methods

The consensus results shown here reect a combination of two di�erent alignments. The

alignments are combined by using the shift score as a measure of comparison between two predicted

alignments. In brief, the shift score is used to compare the two alignments, and the optimal

subalignment algorithm is used to obtain the subalignment of the �rst that maximizes its shift

score relative to the second. The precise steps are detailed as follows.

1. A �rst alignment is built, aligning the target sequence to the template family.

2. A second alignment is built with a slightly di�erent method, aligning the target sequence to

the template family.

3. A third alignment is generated as follows. The program a2mtrim is used to obtain the

subalignment of the �rst alignment that maximizes its shift score relative to the second.
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4. The program measure shift computes the shift score and optimal subalignment score of this

third alignment to the FSSP structural alignment of the template and target sequences.

To best understand the changes made to the �rst alignment to produce the third, consider

the columns that are removed from an alignment to generate its optimal subalignment.

� Columns with a subscore of 0.8 or better are always retained. If a column has a subscore of

0.8 or better, the template and target residues are shifted by at most one position.

� Columns with a subscore of 0 or less are always removed. If a column has a subscore of 0 or

less, either its residues are not aligned in the reference alignment or they are aligned with a

shift of �ve or more positions.

� Columns containing residues shifted by two to four positions might be deleted if the alignments

are similar, or might be retained if the alignments are very dissimilar.

For a consensus method to yield a good alignment, then it must clearly start with two

alignments that are good, and at least somewhat di�erent. We have explored the following combi-

nations of alignment algorithms:

� Global versus local,

� Di�erent weighted build methods,

� Posterior decoding versus Viterbi alignment algorithm, and

� For cases when the seed alignment is not built with knowledge of the seed structure, swapping

the choice of homolog set. First, the target sequence is aligned to the template sequence and

its homologs. Then, the template sequence is aligned to the target sequence and its homologs.

A third alignment is obtained by starting with the �rst and removing positions not aligned

consistently in the second.

With four di�erent factors to vary, care must be taken that the results presented do not

overwhelm the reader. Therefore, this section focuses on the following parameters.
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5.9.2 Consensus between global and local alignment

The �rst consensus method to consider is the consensus between global and local align-

ment. Table 5.11 shows the results of such methods. Unfortunately, such a consensus does not

appear to be of bene�t to either global or local alignment. This is true for both Viterbi and

character-based posterior decoding alignments. Apparently, global and local alignments are so

dissimilar that when one limits the alignment to the positions of agreement, too much is removed.

5.9.3 Consensus between template and target family alignments

The next consensus method tested involves alignment direction: whether to align the tem-

plate sequence to the target homologs or the target sequence to the template homologs. Intuitively,

the consensus between the two alignments should include alignment of those conserved domains

or motifs common to both families. In terms of structural homology, this consensus alignment

should align those regions of common structure, and should therefore reect the more interesting

or meaningful portions of the alignment.

One alternative to taking the consensus between the template-target and target-template

alignments is to take whichever alignment yields a better HMMscore. Certain protein families

do not tend to yield good models for detecting certain remote homologs, especially if the new

homologs are members of a new subfamily not represented in the family. This is just one reason

why in certain cases, one of the two alignment directions might yield a far better alignment. As

shown in Section 5.5, if one had prior knowledge of what direction would yield the better alignment,

this knowledge would yield on average about a 20% improvement in alignment quality. When we

use HMMscore to select the alignment direction, we realize about half of this improvement.

FSSP seed alignments cannot be used in this case; if the structure of the target sequence

is not known, then there cannot be an FSSP alignment of its structural homologs.

Table 5.12 summarizes the results obtained by the consensus of the two alignment di-
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Viterbi Alignments
Build Build Shift Optimal

Seed Method 1 Method 2 Score Subalignment
Target99 w0.5-global None 0.356 0.530
Target99 w0.5-local None 0.368 0.457
Target99 w0.5-global w0.5-local 0.360 0.439
Target99 w0.5-local w0.5-global 0.359 0.434
Target99 fw0.5-global None 0.343 0.514
Target99 fw0.5-local None 0.368 0.451
Target99 fw0.5-global fw0.5-local 0.355 0.422
Target99 fw0.5-local fw0.5-global 0.354 0.428

FSSP w0.5-global None 0.447 0.602
FSSP w0.5-local None 0.415 0.483
FSSP w0.5-global w0.5-local 0.416 0.467
FSSP w0.5-local w0.5-global 0.415 0.483
FSSP fw0.5-global None 0.463 0.614
FSSP fw0.5-local None 0.409 0.480
FSSP fw0.5-global fw0.5-local 0.424 0.464
FSSP fw0.5-local fw0.5-global 0.414 0.468

Character-based Posterior-decoded Alignments
Build Build Shift Optimal

Seed Method 1 Method 2 Score Subalignment
Target99 w0.5-global None 0.377 0.543
Target99 w0.5-local None 0.395 0.513
Target99 w0.5-global w0.5-local 0.372 0.442
Target99 w0.5-local w0.5-global 0.361 0.440
Target99 fw0.5-global None 0.363 0.525
Target99 fw0.5-local None 0.388 0.506
Target99 fw0.5-global fw0.5-local 0.354 0.420
Target99 fw0.5-local fw0.5-global 0.354 0.428

FSSP w0.5-global None 0.486 0.620
FSSP w0.5-local None 0.491 0.598
FSSP w0.5-global w0.5-local 0.431 0.469
FSSP w0.5-local w0.5-global 0.486 0.577
FSSP fw0.5-global None 0.491 0.623
FSSP fw0.5-local None 0.487 0.592
FSSP fw0.5-global fw0.5-local 0.425 0.466
FSSP fw0.5-local fw0.5-global 0.414 0.468

Table 5.11: The results shown are obtained by a consensus of global and local alignments for the same
weighted build method.
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Viterbi Alignments
Choice of Alignment Direction
Random Better HMMscore

Build Build Shift Optimal Shift
Method 1 Method 2 Score Subalignment Score
w0.5-global None 0.356 0.530 0.388
w0.5-local None 0.368 0.457 0.399
w0.5-global w0.5 Global 0.383 0.425 0.373
fw0.5-global None 0.343 0.514 0.371
fw0.5-local None 0.368 0.451 0.410
fw0.5-global fw0.5-global 0.372 0.413 0.373

Character-based Posterior-decoded Alignments
Choice of Alignment Direction
Random Better HMMscore

Build Build Shift Optimal Shift
Method 1 Method 2 Score Subalignment Score
w0.5-global None 0.377 0.543 0.403
w0.5-local None 0.395 0.513 0.419
w0.5-global w0.5-global 0.403 0.449 0.403
fw0.5-global None 0.363 0.525 0.390
fw0.5-local None 0.388 0.506 0.419
fw0.5-global fw0.5-global 0.386 0.427 0.387

Table 5.12: The results shown investigate the e�ects of consensus between two alignments of di�erent
direction: aligning the target sequence to the template homologs, and the template sequence to the target
homologs. Results for standard global and local alignment are shown for comparison. For each template-
target pair, we measured the average shift score of the two alignment directions, the average optimal
subalignment score of the two directions, and the shift score for the alignment yielding the better reversed-
sequence HMMscore. Results shown are the average of the results for all template-target pairs tested. The
best results in each category are shown in boldface.
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rections, with results on global and local alignment shown for comparison. The results reported

were obtained with Target99 seed alignments. We chose to build the consensus builds with global

alignment and not local alignment because of the relatively-small size of local alignments. If local

alignments were further shortened, the remaining alignment might not be long enough to score

well. This suspicion is reinforced in part by the results in Section 5.9.2, in which the consensus

between global and local alignments does not yield an e�ective consensus.

The consensus alignments show signi�cant improvement in most cases. This suggests that

many of the positions aligned consistently by both alignments were accurate, and many of those

not were either misaligned or overaligned positions. However, when we use HMMscore to select the

better direction, the consensus method loses its edge. This is no surprise, as taking the consensus

between the two directions blurs the distinctions between them. In the cases when one direction

yields a reliable alignment but the other does not, throwing out all but the common positions

compromises the reliable alignment.

In summary, consensus on alignment direction does not necessarily yield the best align-

ment. If one alignment is suggested to be far better than the other, according to its HMMscore, this

better alignment should be used, and will not be improved by removing positions not in agreement

in the other alignment. If there is no suggestion that one alignment is much better than the other,

then the consensus can yield a signi�cant improvement.

5.9.4 Consensus between posterior decoding and Viterbi

The next consensus explored is that between Viterbi and posterior-decoded alignments

of the same sequence, using the same weighted builds. For this investigation, we took alignments

produced by character-based posterior decoding, and by the Viterbi algorithm. We removed from

the posterior-decoded alignment the positions not in close agreement in the Viterbi alignment

and vise versa. Table 5.13 shows the results of this consensus, and compares the accuracy of the

consensus alignments with the accuracy of the Viterbi and posterior-decoded alignments.
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Build Alignment Alignment Shift Optimal

Seed Method Algorithm 1 Algorithm 2 Score Subalignment

Target99 w0.5 Viterbi None 0.356 0.530

Target99 w0.5 Posterior Decoding None 0.377 0.543

Target99 w0.5 Posterior Decoding Viterbi 0.351 0.454

Target99 w0.5 Viterbi Posterior Decoding 0.351 0.454

Target99 fw0.5 Viterbi None 0.343 0.514

Target99 fw0.5 Posterior Decoding None 0.363 0.525

Target99 fw0.5 Posterior Decoding Viterbi 0.348 0.452

Target99 fw0.5 Viterbi Posterior Decoding 0.347 0.451

FSSP w0.5 Viterbi None 0.447 0.602

FSSP w0.5 Posterior Decoding None 0.486 0.620

FSSP w0.5 Posterior Decoding Viterbi 0.492 0.579

FSSP w0.5 Viterbi Posterior Decoding 0.491 0.578

FSSP fw0.5 Viterbi None 0.463 0.614

FSSP fw0.5 Posterior Decoding None 0.491 0.623

FSSP fw0.5 Posterior Decoding Viterbi 0.499 0.589

FSSP fw0.5 Viterbi Posterior Decoding 0.498 0.588

Table 5.13: The results shown are obtained by a consensus of a global Viterbi alignment and a global
character-based posterior-decoded alignment of the same sequences, using the same weighted build method.
The best results in each category are shown in boldface.

This consensus does not yield improvement consistently. In FSSP alignments, the con-

sensus alignment is of slightly better quality than the posterior-decoded alignment. In Target99

alignments, this combination compromises the posterior-decoded alignment, the better of the two.

5.9.5 Consensus between di�erent weighted builds

The �nal consensus experiment investigated is the consensus between di�erent weighted

build algorithms. In these experiments, two global alignments are built using di�erent weighted

builds, and positions from the �rst alignment are removed if they are not in close agreement with

the second alignment.

Table 5.14 reports the results of consensus builds for both Viterbi and character-based

posterior-decoded alignments. In most cases, the consensus between the two global alignments

results in an alignment of somewhat higher quality than either the global or local alignments of

the same sequences. When the consensus alignment does not represent an improvement over the

local alignment, it is not much worse.
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Viterbi Alignments
Build Build Shift Optimal

Seed Method 1 Method 2 Score Subalignment
Target99 w0.5-global None 0.356 0.530
Target99 w0.5-local None 0.368 0.457
Target99 w0.5-global fw0.5-global 0.341 0.442
Target99 fw0.5-global None 0.343 0.514
Target99 fw0.5-local None 0.368 0.451
Target99 fw0.5-global w0.5-global 0.373 0.490
FSSP w0.5-global None 0.447 0.602
FSSP w0.5-local None 0.415 0.483
FSSP w0.5-global fw0.5-global 0.484 0.574
FSSP fw0.5-global None 0.463 0.614
FSSP fw0.5-local None 0.409 0.480
FSSP fw0.5-global w0.5-global 0.487 0.578

Character-Based Posterior-decoded Alignments
Build Build Shift Optimal

Seed Method 1 Method 2 Score Subalignment
Target99 w0.5-global None 0.377 0.543
Target99 w0.5-local None 0.395 0.513
Target99 w0.5-global fw0.5-global 0.389 0.504
Target99 fw0.5-global None 0.363 0.525
Target99 fw0.5-local None 0.388 0.506
Target99 fw0.5-global w0.5-global 0.390 0.495
FSSP w0.5-global None 0.486 0.620
FSSP w0.5-local None 0.491 0.598
FSSP w0.5-global fw0.5-global 0.503 0.578
FSSP fw0.5-global None 0.491 0.623
FSSP fw0.5-local None 0.487 0.592
FSSP fw0.5-global w0.5-global 0.501 0.592

Table 5.14: Results obtained by taking the consensus positions between alignments computed with dif-
ferent weighted build algorithms. Simple global and local alignment results are shown for comparison, and
the best results in each category are shown in boldface.
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Note that the w0.5 and fw0.5 weighted builds use the same weighting scheme, entropic

weighting with an average savings per column of half of one bit, but use slightly di�erent column

regularizers. These di�erent regularizers will yield slightly di�erent amino acid posteriors at each

alignment column, which in turn will yield slightly di�erent alignments. However, both alignments

will be built using a comparable balance of information between the training sequences and the

priors. Di�erent weighting schemes will also a�ect the alignment by yielding di�erent amino acid

posteriors. In contrast, di�erent weighting schemes will yield di�erent emphasis on the training

alignment relative to the priors. The question of what weighting schemes will combine well is

interesting, but is a question that we have not addressed here in interest of brevity.

5.9.6 Summary

When one compares di�erent alignments of the same sequences, as generated by a variety

of reliable but di�erent methods, certain positions will be fairly common among most alignments.

As has been observed in study of near-optimal alignments, positions common to many plausible

alignments are more likely to be accurate than positions only aligned in a few. Following on this

idea, we have explored the quality of consensus alignments:, alignments obtained by taking two

di�erent alignments, and removing all positions that are not in close agreement in both.

Obviously, if the consensus alignment is going to be of good quality, the two alignments

one starts with must be of good quality themselves. If one starts with a good alignment, compares

it with a poor alignment, and removes the positions that are not in close agreement, one will turn

the good alignment into the poor one, in part. Therefore, one should not bother with consensus

alignments unless both alignments used are likely to be of good quality themselves.

We explored various combinations of alignment parameters: global and local alignment,

posterior decoding and Viterbi, di�erent weighted builds, and di�erent alignment directions: whether

one aligns the target sequence to the template homologs or vise versa. The most successful combi-

nation tested was di�erent weighted builds.
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Taking the consensus between two alignments built with di�erent directions yields an

improvement in overall alignment score. However, there is a better application of alignment di-

rection information. Certain alignment directions work better than others, and HMMscore yields

considerable information regarding which direction will be better. When one takes the consensus

between alignments built with di�erent alignment direction, one blurs the distinction between the

better and worse direction, and HMMscore ceases to be such an e�ective indicator of the better

direction.

5.10 Putting it all together

After studying numerous alignment algorithm parameters and the quality of the align-

ments produced, we shall close by summarizing what combination of factors yielded alignments

with the best quality overall. Here, we present the �ve best methods in three categories: best

overall alignment with FSSP seeds, best overall alignment with Target99 seeds and the alignment

direction chosen at random, and best overall alignment with Target99 seeds and the alignment

direction chosen by reversed-sequence HMMscore.

Table 5.15 shows the �ve best methods for aligning with FSSP seed alignments. All �ve

are a consensus of global alignments. Most involve two di�erent weighted builds, and most start

with a posterior-decoded alignment.

Table 5.16 shows the �ve best methods for aligning to Target99 seeds and selecting the

alignment direction at random. Every one of the �ve involves posterior decoding. The best two,

and three of the �ve, involve a consensus on the alignment direction. However, a simple posterior-

decoded local alignment build is also among the top �ve, and scores about as well as the more

complex methods.

Table 5.17 shows the �ve best methods on Target99 seed alignments when the alignment

direction is chosen on the basis of reversed-sequence HMMscore. Once again, every one of the
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Shift
Rank Score Description

1 0.503
Consensus between posterior-decoded w0.5 global and posterior-
decoded fw0.5 global

2 0.501
Consensus between posterior-decoded fw0.5 global and posterior-
decoded w0.5 global

3 0.499
Consensus between posterior-decoded fw0.5 global and fw0.5 global
Viterbi

4 0.499
Consensus between posterior-decoded w0.5 global and fw0.5 global
Viterbi

5 0.498 Consensus between w0.5 global Viterbi and posterior-decoded fw0.5

Table 5.15: For FSSP seed alignments, this table describes the �ve methods that yielded the best overall
shift score.

Shift
Rank Score Description

1 0.403
Consensus between a posterior-decoded w0.5 global alignment of the
target sequence to the template family and a posterior-decoded w0.5
global alignment of the template sequence to the target family

2 0.395
Consensus between a posterior-decoded w0.5 global alignment of the
target sequence to the template family and a Viterbi w0.5 global
alignment of the template sequence to the target family

3 0.395 A posterior-decoded w0.5 local alignment

4 0.394
Consensus between a posterior-decoded fw0.5 local alignment and a
Viterbi w0.5 global alignment

5 0.393
Consensus between a posterior-decoded w0.5 global alignment of the
target sequence to the template family and a posterior-decoded fw0.5
global alignment of the template sequence to the target family

Table 5.16: For Target99 seed alignments, this table describes the �ve methods that yielded the best
overall shift score when the alignment direction was chosen at random.
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Shift
Rank Score Description

1 0.422
Consensus between a posterior-decoded fw0.5 global alignment and a
posterior-decoded w0.5 local alignment

2 0.421 A posterior-decoded w0.5 local alignment

3 0.420
Consensus between a posterior-decoded fw0.5 local alignment and a
Viterbi w0.5 global alignment

4 0.419 A posterior-decoded fw0.5 local alignment

5 0.416
Consensus between a posterior-decoded fw0.5 global alignment and a
posterior-decoded w0.5 global alignment

Table 5.17: For Target99 seed alignments, this table describes the �ve methods that yielded the best shift
score when the alignment direction was chosen according to the reversed-sequence HMMscore.

�ve best methods involves posterior decoding. The best method involves the consensus between

two global posterior-decoded alignments built with di�erent weighting schemes. However, simpler

posterior-decoded local alignment scores nearly as well, and occupies two slots in the top �ve.

In summary, the recipe for the best alignments is as follows. If there is an FSSP alignment

of the template sequence and its structural homologs, that should be used as the seed alignment.

The �nal alignment should be a consensus of posterior-decoded global alignments built with di�er-

ent weighted builds.

If the template sequence has no FSSP alignment, then the alignment should be built with

Target99 seed alignments, local posterior-decoding, and with the HMMscore selecting the alignment

direction if possible. If obtaining the HMMscores is not possible, or if the two HMMscores are close,

then a slight improvement might be realized by building a global posterior-decoded alignment of

the template to the target family, building a global posterior-decoded alignment of the target to

the template family, and selecting the positions in close agreement in the two alignments.
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Chapter 6

Comparing two pro�le-based

alignment systems on hard remote

homologs

This chapter concerns pro�le-based methods for sequence alignment. As described in Chapter 3,

these methods add homologs to an alignment by generating a pro�le from the columns of the

alignment and then aligning the new homologs to the pro�le. Such methods are computationally-

eÆcient, and can be quite sensitive. As the protein sequence databases grow, and as libraries of

protein family alignments become more complete and representative, pro�le methods are emerging

as a strong method for sequence alignment.

This chapter focuses on the task of aligning a target sequence to an alignment of tem-

plate sequence and homologs, once a fold prediction has been made. At �rst glance, this action

might seem unnecessary, particularly if the fold recognition method produces an alignment anyway.

However, there are three good reasons to estimate this alignment after fold prediction, even if an

alignment has already been estimated.



92

1. There are algorithms that yield more accurate alignments and algorithms that make more

eÆcient use of computing resources, and they are usually not the same. During fold recogni-

tion, when thousands of potential matches between target sequence and template structure

are tested, the alignment algorithm must be eÆcient. After the fold has been identi�ed with

an eÆcient method, the alignment can be re-estimated with a more precise method.

2. As crazy as it sounds, there are methods that can accurately identify folds but do not yield

alignments, or anything from which alignments can be inferred [36]. Similarly, there are

confounding instances of algorithms identifying the correct fold but producing an alignment

that is entirely wrong [154].

3. A model intended for fold recognition should provide a general description of the fold. Once

the fold has been identi�ed, a more speci�c model can be better for aligning the target

sequence to particular features of the template family. For instance, SAM-T98 fold recognition

works best with the w0.5 weighting scheme, but as shown in Chapter 5, the w0.8 weighting

scheme can yield more accurate alignments. The di�erence between the two schemes is that

in w0.8, a greater proportion of the signal comes from the training alignment, rather than

the priors.

After the fold has been detected, how does one obtain the most accurate alignment possi-

ble? The answer to that question would merit one or more Ph.D. dissertations in itself. Rather than

address the entire question, we have addressed one small part by comparing two pro�le alignment

systems: SAM [78], and the pro�le alignment module in CLUSTALW [180, 82]. For the larger

question, the related literature is reviewed in Section 3.2.4.

By the time one has a fold predicted for a target sequence, one has an arsenal of infor-

mation available that could be useful for aligning it with the template sequence. This information

includes

� an alignment of the template sequence and its sequence homologs,
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� an alignment of the target sequence and its sequence homologs,

� an alignment of the template sequence and its structural homologs, and

� secondary structure of the template sequence.

To build the best alignment, the obvious approach would seem to be using everything available.

However, as with any modeling process, one should not automatically use a complex model when

a simple model would work just as well. Therefore, we have set out to assess the value of each of

the above classes of information to the alignment process, using SAM and CLUSTALW as a jury

of two.

6.1 Methods

The objective of this work was to compare alignment methods in terms of the accuracy

with which they align diÆcult remote homologs, where the level of diÆculty is approximately that

of a CASP3 fold recognition target.

Each pair of remote homologs was aligned as follows. First, one was assigned as the

template sequence, and the other the target. All information pertaining to the structure of the

target sequence was o�-limits during the alignment process. Second, the template and target

sequences were aligned by SAM and by CLUSTALW. In most cases, alignments were generated

by estimating a pro�le from a seed alignment of the template sequence plus homologs and then

aligning the template and target sequences to the pro�le. There were some variations on this step,

as I shall discuss in the next paragraph. Third, the accuracy of the alignment was measured by

extracting the pairwise alignment of the template and target sequences and by comparing that

predicted alignment to each of three structural alignments of the same sequences.

We explored a number of variations on methods for aligning the template and target

sequences. First, we varied the alignment used for estimating the pro�le. We experimented with
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alignments of the template sequence and structural homologs, alignments of the template sequence

and sequence homologs, and \alignments" consisting of the template sequence only. To estimate

how much information came from the alignment rather than from the aligned sequences, we used

CLUSTALW to estimate a multiple alignment of the template sequence, target sequence, and

template sequence homologs.

6.1.1 Selection of the remote homology pairs

We selected 200 remote homology pairs according to the following criteria.

� The three structural aligners were able to �nd a signi�cant superposition of the two structures,

according to each author's de�nition of signi�cance:

{ DALI zscore � 7.0,

{ VAST p-value � 0.0001, and

{ Yale RMSD � 4.0.

� The sequences were suÆciently dissimilar that a simple FASTA [148] pairwise alignment

yielded a shift score of 0.4 or worse.

No deliberate steps were taken to ensure that the pair had at least a threshold level of

similarity. However, the requirement of a signi�cant superposition by all three structural aligners

weeded out many more distant pairs than close ones. The 200 pairs ranged in diÆculty from 3%

to 24% identical, and the set was approximately 12% identical on average.

As both sequences in each pair were of known structure, each pair represented two di�erent

assignments of template and target sequences, yielding a total of 400 tests. Of these 200 pairs, 130

were used for optimizing the methods and 70 pairs, or 140 tests, were used for �nal assessment of

the results. Table 6.1 lists the remote homology pairs in the optimization and test sets. To indicate

the ranges of structural similarity and sequence homology of these pairs, Table 6.1 lists the percent
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identity of their structural alignment and their zscore according to DALI. The parallel quantities

for the VAST and Yale aligners were not listed in the interest of brevity.

6.1.2 Selection of the template sequence alignments

Two types of sequence alignments were used in this investigation: structure-based align-

ments and sequence-based alignments.

The structure-based alignments were extracted from FSSP [67], a database of multiple

alignments of structures superimposed by DALI. We included only those sequences which DALI

superimposed with a zscore of 7.0 or better. For each template-target pair, we removed the target

sequence from the FSSP alignment of the template sequence and structural homologs. Note that

FSSP alignments consist of a concatenation of pairwise alignments generated by DALI, and no

pairwise alignment inuences the alignment of any other pair of sequences. Therefore, one can

remove the target sequence to obtain an objective alignment of the template sequence and its

remaining structural homologs.

Regarding the selection of sequence-based alignments, recall that our �rst objective was

to compare the pro�le alignment methods in SAM and CLUSTALW. Therefore, there had to be

sequence-based alignments built by an impartial third method. We used HSSP alignments [160].

For further impartiality, we re-estimated the HSSP alignments with both SAM and CLUSTALW.

However, results on the re-estimated alignments proved to be consistent with those on the original

alignment. In the interest of brevity, we did not report results obtained with the re-estimated

alignments. Finally, because HSSP alignments tend to be small, we also used SAM-T99 alignments:

alignments built by the 1999 version of SAM-T98 [93].

6.1.3 Assessment of alignment quality

Alignment accuracy was measured by comparison with structural alignments produced by

three structural aligners: DALI [69], VAST [51], and the Yale aligner [50]. Section 4.6 describes
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Optimization set

Structure 1 Structure 2 DALI Zscore % Identity Structure 1 Structure 2 DALI Zscore % Identity

1a0tP 1prn 11.9 8 1a34A 1stmA 10.1 7
1abrB 1bfg 15.1 9 1ad4A 1nsj 13.8 9
1ad4A 1dhpA 13.1 10 1ad4A 1ak5 9.9 13
1ad4A 1gowA 9.9 8 1ad4A 1dosA 9.3 9
1ad4A 1frb 9.2 9 1ad4A 1cnv 9.0 8
1ad4A 1onrA 8.7 15 1adjA 1pysA 8.2 22
1ae9A 1aihA 11.6 15 1agjA 1arb 17.4 15
1air 1idk 29.5 21 1ak5 1cnv 9.0 9
1ak5 1dhpA 7.1 13 1ak5 1onrA 7.1 8
1ako 3dni 19.1 15 1al3 1sbp 11.9 10
1amk 1dhpA 11.1 10 1amk 1dosA 9.2 9
1amk 1onrA 7.4 11 1amp 1cg2A 25.3 18
1amp 2ctc 12.3 12 1amy 2aaa 26.3 18
1amy 1pamA 18.2 21 1amy 1edg 9.3 8
1aozA 1nif 21.2 17 1aq0A 1edg 16.1 12
1aq0A 1eceA 14.2 9 1aq0A 2myr 12.4 12
1aq0A 1gowA 12.1 13 1aq0A 1frb 10.4 7
1aq0A 1dhpA 7.4 8 1arb 1havA 13.6 11
1aszB 1pysA 12.9 16 1at0 1vdeA 12.5 14
1auoA 1broA 16.4 19 1auoA 1cex 12.5 11
1auyA 1stmA 8.6 12 1ax4A 2dkb 19.0 11
1ax4A 2gsaA 17.3 13 1bco 1itg 12.1 12
1bco 1vsd 11.9 12 1bcpA 1lt3A 10.5 24
1bcpB 1bovA 7.0 8 1bdb 1wab 7.1 8
1bfg 1wba 8.6 6 1bmtA 3chy 10.5 11
1bovA 1lt5D 7.6 5 1broA 1ede 25.7 16
1broA 1din 15.4 17 1broA 1cex 10.2 13
1btkA 1btn 9.5 10 1btkA 1irsA 9.4 10
1btl 1pmd 18.0 11 1btl 2bltA 15.3 13
1btn 1mai 8.9 9 1btn 1irsA 8.5 13
1byb 1edg 15.9 9 1byb 1nsj 10.4 7
1cem 1gai 19.8 9 1ceo 2myr 19.7 13
1ceo 1gowA 18.8 11 1ceo 1aq0A 17.0 11
1ceo 1xyzA 16.0 9 1ceo 1dhpA 10.6 6
1ceo 1frb 9.3 6 1cex 1tca 10.8 10
1cex 1din 10.1 10 1cnv 2myr 12.4 9
1cnv 1dhpA 8.9 8 1ctn 2ebn 17.4 13
1dbqA 1pea 12.3 10 1dhpA 1nsj 10.7 9
1dhpA 2ebn 9.2 8 1dhpA 1dosA 8.8 12
1dhr 1eny 19.3 10 1din 1tca 12.7 11
1djxB 1rlw 15.6 16 1dorA 1ak5 16.7 11
1dorA 1dhpA 9.1 11 1dosA 1nsj 7.5 11
1dpgA 1ofgA 19.0 11 1dynA 1irsA 9.5 10
1dynA 1mai 8.4 10 1eceA 1edg 24.0 16
1eceA 1nar 11.9 9 1edg 2myr 17.4 8
1edg 1gowA 16.7 15 1edg 1xyzA 13.3 9
1esc 1wab 13.0 19 1fkx 1nsj 7.3 8
1frb 1igs 10.5 11 1gca 1pea 16.1 11
1gcb 1ppn 13.3 20 1gggA 1pda 8.8 16
1gnwA 1pgtA 17.7 16 1gowA 1xyzA 12.5 8

Test set

Structure 1 Structure 2 DALI Zscore % Identity Structure 1 Structure 2 DALI Zscore % Identity

1hnf 1neu 8.4 21 1hrdA 1lehA 32.3 20
1hyhA 1eny 7.1 11 1iae 1kuh 11.3 13
1idk 1rmg 11.2 12 1igs 1nar 7.8 5
1ihp 1rpa 25.4 19 1irsA 1mai 8.3 11
1jxpA 1agjA 11.6 15 1kuh 1sat 11.0 19
1lam 2ctc 10.6 5 1lucA 1cnv 10.7 8
1lucA 1dhpA 10.2 7 1lucA 1frb 10.1 7
1lucA 1xyzA 9.3 8 1lucA 1dosA 7.6 8
1lxa 1thjA 14.6 18 1lylA 1pysA 9.1 20
1mrp 1sbp 13.3 14 1nar 2myr 11.6 6
1ndh 2pia 18.4 16 1nsj 4xis 7.9 12
1nwpA 1rcy 9.3 24 1oatA 1ax4A 18.6 15
1onrA 1nsj 9.9 8 1onrA 1eceA 8.3 9
1opy 1ounA 14.3 8 1opy 1std 11.4 9
1pbgA 1edg 18.9 12 1pbgA 1cnv 12.7 8
1pbgA 1aq0A 12.6 10 1pbgA 1dhpA 9.5 4
1pea 2dri 17.8 11 1pea 1tlfA 17.1 8
1pea 8abp 15.1 10 1plq 2polA 18.5 12
1pov1 2mev1 10.5 20 1prn 2omf 18.2 14
1prtF 1tiiD 9.5 9 1prtF 3ullA 7.9 16
1reqB 1amk 8.5 7 1rlw 1rsy 12.3 21
1scuA 3chy 8.5 18 1sesA 1adjA 17.7 14
1smvA 2mev1 7.8 11 1tdtA 1lxa 16.9 15
1tdtA 1thjA 12.7 21 1thtA 1broA 16.3 12
1thtA 1din 15.1 13 1tlfA 8abp 25.5 15
1v39 1vid 9.0 9 1vhiA 2bopA 7.3 3
1vid 1yub 9.7 9 1wba 2ila 9.5 6
1wod 1sbp 23.4 15 1wod 1pot 16.6 15
1wod 1al3 15.1 10 1wod 1mrp 8.6 13
1xjo 2ctc 11.3 8 2i1b 1wba 10.0 12
2tysA 1dhpA 11.4 14 2tysA 1amk 11.1 12
2tysA 1dosA 11.0 8 2tysA 1eceA 11.0 10
2tysA 1ak5 9.8 12 2tysA 1edg 7.7 8
2tysA 1nsj 7.0 9 3pte 1btl 17.0 17
4mbp 1mrp 16.9 13 4mbp 1sbp 13.6 11

Table 6.1: Remote homology pairs used for optimization and testing
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our reasons for using three structural aligners and the selection of the aligners that were used.

For each comparison between predicted alignment and structural alignment, we measured

three quantities: the shift score, the number of residue pairs aligned correctly as a fraction of the

number of pairs aligned (alignment speci�city), and the number of residue pairs aligned correctly

as a fraction of the number of correct pairs (alignment sensitivity). Although the shift score is

highly correlated to both alignment sensitivity and speci�city, we report alignment speci�city and

sensitivity because they are more familiar quantities to many readers.

For each predicted alignment, we obtained scores relative to four sets of structural align-

ments: DALI, VAST, Yale, and closest: whichever one of the three structural alignments the

predicted alignment was most similar to. This quantity merits extra columns in a few tables be-

cause each structural alignment represents one signi�cant superposition of the template and target

sequences, and when one asks if a predicted alignment is good, one is asking if it is similar to some

signi�cant structural superposition. The shift score was used to select the closest alignment.

6.1.4 Description of the alignment methods

The results shown here were obtained with SAM version 3.1b and CLUSTALW version

1.8, the command line version of CLUSTALX [82].

The alignment procedure used with SAM was as follows. Given a template family align-

ment, we used the w0.5 weighted build procedure to estimate a pro�le HMM from the alignment.

We then aligned the template and target sequences to the model with the align2model program,

yielding a pairwise alignment of the template and target sequences. Align2model was used with

both the default Viterbi algorithm and with character-based posterior decoding (-adp5). For sim-

plicity in comparing the results to CLUSTALW, we used global alignment.

The alignment procedure used with CLUSTALW was as follows. Given a template family

alignment, the -profile option in CLUSTALW was used to generate a pro�le from the template

family alignment, and to align the template and target sequences to that pro�le. CLUSTALW pro-
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�les were generated with and without secondary structure information. When secondary structure

information was used in the pro�le, the secondary structure provided was the DSSP [88] secondary

structure of the template sequence. �-helices and 3-10 helices were designated as helix, �-strands

and �-bridges were designated as strand, and everything else was designated as loop. When mul-

tiple alignments were re-estimated with CLUSTALW, they were re-estimated with CLUSTALW's

progressive alignment module, its default and most familiar module.

Both methods were optimized for alignment of hard remote homologs. The optimization

of SAM was described in Chapter 5. Optimization of CLUSTALW was performed empirically,

using the 130 remote homology pairs in the optimization set, and using the shift score of the

closest structural alignment as an objective function. Separate optimizations were performed for

CLUSTALW progressive alignment and CLUSTALW pro�le alignment. For CLUSTALW pro�le

alignment, four separate optimizations were performed: for structure-based and sequence-based

alignments, and with and without secondary structure masks. Thus, a total of �ve CLUSTALW

optimizations were performed, representing the largest body of work behind this e�ort. The �nal

optimized parameter settings were as follows.

� The pairwise gap extension parameter was decreased from 0.10 to 0.09 for progressive align-

ments.

� The gap extension parameter was decreased from 0.20 to 0.18 for progressive alignment and

for three of the four cases of pro�le alignment. For pro�le alignment involving structure-based

seed alignments and no secondary structure information, the gap extension parameter was

decreased to 0.14.

� For pro�le structure-based alignments without secondary structure masks, the gap distance

threshold was set to 3 and the hydrophilic gap penalty option was turned o�.

� For pro�les with secondary structure masks and sequence-based alignments, the strand gap

penalty was increased from 4 to 5 with the terminal regions of the strands set to the �rst two
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positions at the start and no positions at the end of the strands.

� For pro�les with secondary structure masks and structure-based alignments, the helix gap

penalty was decreased to 2.

� Default parameters were used in all other cases.

Note that the tests described here represent very diÆcult tests for both methods. However,

such investigations are worthwhile for two reasons. First, a method that can perform well on

the hard cases can probably perform well on the easier cases, give or take minor adjustments in

parameter settings. The converse is not true. Second, when one is using a method, one should have

an intuition for its limitations. This requires determining the point at which the method might

lose its e�ectiveness.

6.2 Results

6.2.1 How similar are the three di�erent structural alignments?

When we compare predicted alignments to three structural alignments rather than one,

are we really gathering new information? Alternatively, are the three structural alignments so

similar that anything past the �rst comparison is redundant? These questions are worth asking

before one goes to extra trouble to compare predicted alignments to not one but three sets of

structural alignments.

We used the shift score to compare the three structural alignments for the 200 pairs of

structures in the dataset. Figure 6.1 shows histograms of the shift scores comparing the DALI and

VAST alignments, the DALI and Yale alignments, and the VAST and Yale alignments.

If two alignments are identical, their shift score is 1.0. If two alignments are completely

di�erent, their shift score is less than zero. In Figure 6.1, we see that for each pair of aligners, a

large population of pairs has a shift score of 0.65 or better. This is the range in which an strong
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Figure 6.1: To compare the similarity of the alignments produced by the three structural aligners, we
used the shift score. For all pairs of structures in the training set, we measured the shift score of the
structural alignments from FSSP and VAST, FSSP and Yale, and VAST and Yale respectively. The
histograms shown reect the overall similarity of the FSSP and VAST alignments (top), the FSSP and
Yale alignments (middle), and the VAST and Yale alignments (bottom).
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homology modeling alignment will tend to score. However, the populations are not without skew.

For all pairs of aligners, somewhere between 5 and 10% of the pairs of structures have a shift score

of less than zero, indicating that their alignments are non-overlapping. Additionally, approximately

20% of the pairs have shift scores in the range of 0.2 to 0.5, the range of a good to excellent fold

recognition alignment. Overall, the mean shift score for each pair of aligners is approximately 0.6,

with a median shift score of approximately 0.75. On the whole, the alignments produced by DALI

and VAST are the most consistent.

In general, the three alignments are more similar than they are dissimilar, but they do

have their di�erences. The three comparisons are not redundant.

6.2.2 Aligning with structural homologs

First, we studied the accuracy of alignments produced from a pro�le estimated from FSSP

seed alignments. Although FSSP alignments have a lower sequence homology signal than sequence-

based alignments, we saw in Chapter 5 that their implied structural information can be very useful

for producing pro�les. Alignments produced from FSSP seed alignments were consistently better

than those produced by sequence-based alignments.

Table 6.2 reports on the accuracy of alignments produced by SAM and CLUSTALW. The

most apparent result is that CLUSTALW was not able to derive as much information from the

alignment as SAM. This is probably the e�ect of the regularizers used in both methods. While

CLUSTALW uses a weighted set of substitution values, SAM uses Dirichlet regularizers. Systems

of substitution matrices, such as the one used in CLUSTALW, work �ne for a small number of

sequences. However, as the size of the alignment grows, weighted substitution matrices are less

e�ective at ascertaining overall patterns of column conservation [91]. Particularly for alignments

with low overall homology, \conserved" columns might show a conserved property more often than

a conserved residue. In such cases, Dirichlet mixtures are better able to identify and reect the

conserved property [166].
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Shift Score
Alignment Structural Alignment

Aligner Options FSSP Vast Yale Closest
SAM Viterbi 0.308 0.303 0.276 0.342
SAM Posterior Decoding 0.369 0.368 0.334 0.404
CLUSTALW None 0.140 0.124 0.120 0.159
CLUSTALW Secondary Structure 0.143 0.129 0.126 0.163

Alignment Speci�city
Alignment Structural Alignment

Aligner Options FSSP Vast Yale Closest
SAM Viterbi 0.300 0.325 0.289 0.346
SAM Posterior Decoding 0.356 0.393 0.344 0.409
CLUSTALW None 0.156 0.163 0.156 0.178
CLUSTALW Secondary Structure 0.161 0.172 0.163 0.184

Alignment Sensitivity
Alignment Structural Alignment

Aligner Options FSSP Vast Yale Closest
SAM Viterbi 0.350 0.296 0.276 0.350
SAM Posterior Decoding 0.384 0.330 0.305 0.383
CLUSTALW None 0.210 0.170 0.167 0.214
CLUSTALW Secondary Structure 0.215 0.179 0.175 0.224

Table 6.2: Performance of SAM and CLUSTALW on pro�le-based alignments and structure-based pro�les.
These results were obtained by aligning the target sequence to a pro�le generated from the FSSP alignment
of the template sequence and its structural homologs. In all cases, SAM with posterior decoding (-adp5)
yielded the best performance, as shown.
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Other interesting results in Table 6.2 are that use of posterior decoding leads to a major

improvement in SAM alignments, and secondary structure-dependent gap parameters lead to a

minor improvement in CLUSTALW alignments.

6.2.3 Aligning with sequence homologs

To analyze the performance of pro�le methods on sequence-based homologs, we tested

two sets of sequence homolog alignments: HSSP and SAM-T99. These alignments di�er in the

set of sequences aligned and in the method that aligns them. SAM-T99 alignments are far larger

than HSSP alignments: for the structures in the test set, the SAM-T99 alignments contained on

average 86 sequences, while HSSP alignments contained 15 on average. While the HSSP alignments

are built by MaxHom, the SAM-T99 alignments are built by pro�le alignment with SAM hidden

Markov models.

Table 6.3 shows the results of aligning to a pro�le derived from SAM-T99 and HSSP

alignments. In this table, there are a number of points to observe. First, as in Section 6.2.2,

SAM seems to derive more information from the alignment. However, here the gap is narrowed.

Second, both SAM and CLUSTALW seem to bene�t from the additional homologs in the SAM-

T99 alignments. One might speculate that some of the di�erence in performance comes from the

method used to estimate the seed alignment. However, when we experimented with allowing both

SAM and CLUSTALW to re-estimate the HSSP alignment, results on the re-estimated alignments

were consistent with those on the original alignments (data not shown). Third, the SAM align-

ments continue to bene�t from posterior decoding; CLUSTALW alignments bene�t from secondary

structure-dependent gap parameters with SAM-T99 seed alignments, but not with HSSP align-

ments. This suggests that when the alignment is small, the secondary structure information is

actually misleading as applied.
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Shift Score

Alignment Seed Structural Alignment

Aligner Options Alignment FSSP Vast Yale Closest

SAM Viterbi SAM-T99 0.159 0.170 0.164 0.199

SAM Posterior-decoding SAM-T99 0.194 0.212 0.202 0.239

SAM Viterbi HSSP 0.098 0.115 0.111 0.135

SAM Posterior-decoding HSSP 0.146 0.160 0.158 0.184

CLUSTALW None SAM-T99 0.130 0.146 0.146 0.174

CLUSTALW Secondary Structure SAM-T99 0.131 0.149 0.150 0.176

CLUSTALW None HSSP 0.092 0.094 0.102 0.121

CLUSTALW Secondary Structure HSSP 0.086 0.090 0.095 0.111

Alignment Speci�city

Alignment Seed Structural Alignment

Aligner Options Alignment FSSP Vast Yale Closest

SAM Viterbi SAM-T99 0.181 0.211 0.198 0.227

SAM Posterior-decoding SAM-T99 0.207 0.245 0.225 0.259

SAM Viterbi HSSP 0.127 0.158 0.149 0.164

SAM Posterior-decoding HSSP 0.161 0.194 0.184 0.205

CLUSTALW None SAM-T99 0.148 0.177 0.171 0.193

CLUSTALW Secondary Structure SAM-T99 0.150 0.180 0.173 0.193

CLUSTALW None HSSP 0.120 0.139 0.138 0.153

CLUSTALW Secondary Structure HSSP 0.114 0.134 0.134 0.143

Alignment Sensitivity

Alignment Seed Structural Alignment

Aligner Options Alignment FSSP Vast Yale Closest

SAM Viterbi SAM-T99 0.220 0.199 0.195 0.231

SAM Posterior-decoding SAM-T99 0.247 0.227 0.217 0.255

SAM Viterbi HSSP 0.168 0.160 0.158 0.177

SAM Posterior-decoding HSSP 0.206 0.194 0.191 0.215

CLUSTALW None SAM-T99 0.203 0.188 0.188 0.216

CLUSTALW Secondary Structure SAM-T99 0.206 0.190 0.190 0.218

CLUSTALW None HSSP 0.162 0.145 0.150 0.168

CLUSTALW Secondary Structure HSSP 0.155 0.139 0.144 0.162

Table 6.3: Performance of SAM and CLUSTALW on pro�le-based alignments when the pro�le is derived
from sequence homologs of the template sequence. The set of homologs were derived from SAM-T99 and
HSSP, respectively.



105

Shift Score
Alignment Structural Alignment

Aligner Options FSSP Vast Yale Closest
SAM Viterbi 0.068 0.079 0.073 0.099
SAM Posterior Decoding 0.098 0.110 0.108 0.130
CLUSTALW None 0.081 0.082 0.085 0.106
CLUSTALW Secondary Structure 0.064 0.064 0.068 0.088

Alignment Speci�city
Alignment Structural Alignment

Aligner Options FSSP Vast Yale Closest
SAM Viterbi 0.108 0.131 0.122 0.139
SAM Posterior Decoding 0.126 0.151 0.145 0.160
CLUSTALW None 0.109525 0.126608 0.125168 0.137297
CLUSTALW Secondary Structure 0.101 0.115 0.113 0.125

Alignment Sensitivity
Alignment Structural Alignment

Aligner Options FSSP Vast Yale Closest
SAM Viterbi 0.144 0.135 0.130 0.151
SAM Posterior Decoding 0.164 0.151 0.151 0.170
CLUSTALW None 0.153 0.133 0.136 0.156
CLUSTALW Secondary Structure 0.134 0.120 0.123 0.141

Table 6.4: Performance of SAM and CLUSTALW on pro�le-based alignments when no homologs are
available. These results were obtained by generating a pro�le from the template sequence and aligning the
target sequence to the pro�le. In all cases, the SAM-T99 seed alignment worked better than the HSSP
seed, and the SAM posterior decoding algorithm yielded the best results.
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6.2.4 Aligning with no homologs

As a control, we derived pro�les from the template sequence only and aligned the target

sequence to the pro�les. These results are shown in Table 6.4.

Not surprisingly, both SAM and CLUSTALW su�er when the alignment is made without

any homologs, with both methods aligning only about 15% of the residues correctly. As seen

with the HSSP seed alignments in Section 6.2.3, posterior decoding seems to improve the SAM

alignments, but secondary structure-dependent priors seems to hurt the CLUSTALW alignments.

Perhaps this reects that secondary structure is not entirely conserved between remote homologs.

In studies of remote homologs, on average approximately 80% of all structurally-superimposed

positions have same secondary structure [156].

6.2.5 Pro�le alignment compared with progressive alignment

Finally, we compared the accuracy of alignments produced by pro�le methods to those pro-

duced by CLUSTALW's progressive multiple alignment estimation. Here, we provided CLUSTALW

with the target sequence, template sequence, and homologs of the template sequence, estimated a

multiple alignment of these sequences, and extracted and scored the pairwise alignment of the target

and template sequences. We provided CLUSTALW with two di�erent sets of homologs: SAM-T99

homologs and FSSP homologs. Re-estimating a structural alignment might sound strange, but

doing so permitted us to contrast the information in the FSSP homolog set with that in the FSSP

alignment.

Table 6.5 reports the performance of CLUSTALW on multiple alignment estimation. For

comparison, we also report results on pro�le alignment as estimated previously. Here, we observe

that in this case, progressive alignment results were not very sensitive to the choice of seed align-

ment. However, the choice between pro�le methods and progressive alignment was more important:

pro�le methods yielded signi�cantly better results than progressive alignment in all cases.
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Shift Score

Structural Alignment

Aligner Method Homologs FSSP Vast Yale Closest

SAM Posterior decoding SAM-T99 0.194 0.212 0.202 0.239

SAM Posterior decoding FSSP 0.369 0.368 0.334 0.404

CLUSTALW Pro�le, Secondary Structure SAM-T99 0.131 0.149 0.150 0.176

CLUSTALW Pro�le, Secondary Structure FSSP 0.143 0.129 0.126 0.163

CLUSTALW Progressive SAM-T99 0.091 0.091 0.088 0.112

CLUSTALW Progressive FSSP 0.092 0.088 0.096 0.113

Alignment Speci�city

Structural Alignment

Aligner Method Homologs FSSP Vast Yale Closest

SAM Posterior decoding SAM-T99 0.207 0.245 0.225 0.259

SAM Posterior decoding FSSP 0.356 0.393 0.344 0.409

CLUSTALW Pro�le, Secondary Structure SAM-T99 0.150 0.180 0.173 0.193

CLUSTALW Pro�le, Secondary Structure FSSP 0.161 0.172 0.163 0.184

CLUSTALW Progressive SAM-T99 0.122 0.139 0.130 0.148

CLUSTALW Progressive FSSP 0.122 0.134 0.138 0.145

Alignment Sensitivity

Structural Alignment

Aligner Method Homologs FSSP Vast Yale Closest

SAM Posterior decoding SAM-T99 0.247 0.227 0.217 0.255

SAM Posterior decoding FSSP 0.384 0.330 0.305 0.383

CLUSTALW Pro�le, Secondary Structure SAM-T99 0.206 0.190 0.190 0.218

CLUSTALW Pro�le, Secondary Structure FSSP 0.215 0.179 0.175 0.224

CLUSTALW Progressive SAM-T99 0.157 0.135 0.132 0.163

CLUSTALW Progressive FSSP 0.157 0.133 0.143 0.163

Table 6.5: Comparison of the accuracy of alignments generated by pro�le methods by SAM and
CLUSTALW to CLUSTALW progressive multiple alignment estimation.
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6.3 Summary

We have focused on the task of aligning some remotely-related template and target se-

quences once the fold has been predicted. We have investigated two pro�le alignment methods in

comparison to each other and to the popular CLUSTALW progressive alignment method. Both

SAM and CLUSTALW's pro�le method generated signi�cantly more accurate alignments than

CLUSTALW's progressive multiple alignment method when provided with the same data. At the

risk of generating yet another study in which the author's method is shown as most successful,

SAM generated signi�cantly better alignments than CLUSTALW. These results are consistent in

comparisons with three di�erent structural aligners, and care was taken to ensure that these three

di�erent aligners yielded three di�erent alignments.

On average, the best method was able to correctly align about 40% of the pairs of residues.

One might argue that the homologs studied in this investigation are too remote, and that there is

little practical value in an alignment that is only 40% correct. To this point, I o�er two counter-

arguments.

1. As stated by homology modeling expert Roland Dunbrack [159], twilight zone alignments

tend to be uneven. Some regions are conserved and have few indels, while others show more

variation. Even if indel placement is not precisely correct, the placement is usually close

enough to suggest what sections of the proteins are conserved in evolution. The number

of indels near the functional residues of the template protein can yield valuable clues as to

whether the functionality of the remote homolog is preserved.

2. There is little to gain by working on moderate or easy homologs, as many methods can

produce a good alignment. In the twilight zone, where most methods begin to fail, there is

much to gain in study of the nature of the failures. This chapter provides the groundwork

for our work in predicting reliability of alignment regions, reported in Chapter 9.
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Chapter 7

Analysis of pairwise contact

potentials

Pairwise contact potentials, the statistical likelihood of pairs of amino acids to interact given their

amino acid type, appear everywhere in protein structure prediction. Pairwise contact potentials

have �gured prominently in validation of partially-determined structures, in homology modeling,

threading, and ab initio structure prediction, and in docking prediction.

Since pairwise contact potentials are not used in pro�le-based fold recognition, one would

think that they could be valuable for alignment validation. Predicted contacts could be inferred

from the structure of the template sequence and the alignment of the template and target sequences.

If an alignment had a large number of unlikely contacts, that alignment might not be trustworthy.

However, pairwise contact potentials have been regarded with suspicion, with their detractors

claiming that they're little more than an awkward encoding of hydrophobicity. Thus, before one

builds a system to harness pairwise contact potentials for alignment validation, one should be sure

that they'd be worth the extra complexity.

In this chapter, I report my results assessing the information content of pairwise contact
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potentials. In Section 7.2, I detail limitations in pairwise information learned through building

contact potential functions, functions to predict whether a pair of residues would be in contact

given their amino acid types and perhaps given information on their physical environment. In

Section 7.3, I explore the possibility that pairwise preferences for tertiary contacts might not be

statistically signi�cant when conditioned on burial or exposure information. Our conclusions are

summarized in Section 7.5.

7.1 Related work

Pairwise contact potentials have a long history in prediction and assessment of protein

structure. Pairwise contact potentials have been used to validate partially-determined structures,

predict protein docking interfaces, and predict protein structure in ab initio and threading method-

ologies. They are very well-represented in the literature, with several reviews [163, 186, 98, 184,

85, 126].

Pairwise contact potentials measure the statistical likelihood of each pair of amino acids to

interact relative to the frequency of the amino acids. They are typically measured over a database

of actual protein structures. Some are based simply on pairwise frequencies [124]. Many involve

separate frequency distributions for various ranges of pairwise distances [162, 22]. Others factor in

additional information such as solvent accessibility measures [29], torsion angles [191], and various

inter-atomic distances [112].

The statistical likelihoods of a predicted contact contributes to an approximation of the

stability of the protein in the predicted structure. Individual likelihoods are combined into an

overall energy approximation, typically with a formulation involving the exponential of the sum of

the individual contact likelihoods. Threading algorithms search for the con�guration that minimizes

the approximation of overall energy by testing a very large number of con�gurations and applying

some logic to modify portions of the predicted structure.
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Encoded within pairwise contact potentials are representations of forces that play a large

role in protein structure determination; chief among these is hydrophobicity [85]. Bryant and

Lawrence estimated that approximately two thirds of the information in their pairwise contact

potential was truly hydrophobicity information [22]. Casari and Sippl measured a simple contact

potential based on the frequencies of interaction of all pairs of residues given a distance threshold,

and used principal component analysis to derive a hydrophobicity measure for each amino acid

from the pairwise potential. This hydrophobicity measure correlated to accepted hydrophobicity

measures with correlation coeÆcients of 0.73 and greater. [25]. There have been successful threading

algorithms that predicted protein structure based on simply hydrophobicity [71]. This has led

various critics to wonder if they really reect anything meaningful besides hydrophobicity, and if

any remaining information is merely added or unnecessary complexity.

The complexity of certain pairwise contact potentials is also a subject of controversy. The

\simpler" pairwise contact potentials involve at least 210 terms, and the more complex potentials

involve thousands of terms. While some evidence suggests that the more complex potentials perform

better [122, 108], there is other evidence suggesting that simple potentials can perform as well as the

complex ones [141]. One compounding factor is that potentials are not trivial to test. A potential

can be e�ective at identifying the native structure from a number of plausible, protein-like decoys,

but can perform poorly at identifying a compact structure out of a pool of unfolded decoys. The

overall lesson seems to be that the potential should be evaluated with a test appropriate to its

application, and extra complexity should be justi�ed or rejected at that time.

However, the harshest criticism of pairwise contact potentials came from Thomas and

Dill [179]. For small peptide lengths of eleven and eighteen residues, they generated all possible

protein sequences and estimated their structures using exact lattice models. Such peptides are

short enough in length that the forces on them and their structures can be computed exactly. After

classifying each residue as either hydrophobic or polar, they pointed out their �rst aw in the logic

underlying contact potentials. In application, pairwise interactions are assumed to be independent
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of each other. However, they are not independent; the interactions between hydrophobic residues

dominate the structure. This dominance, together with restrictions due to chain length, implicitly

de�nes the location of many of the polar residues. Therefore, the location of these polar residues

is not determined by its attraction to or repulsion from its neighbors.

Next, Thomas and Dill added their contribution to the argument against complex contact

potentials. They compared complex potentials dependent on distance and amino acid type with far

simpler potentials dependent on distance and their simple hydrophobic-polar classi�cation. When

they graphed interaction energy versus distance, the more complex potential had the same form

as the simpler potential for the three amino acids shown. Further, the simpler potential had the

same form as another simple, distance-dependent potential that classi�ed residues as interior or

exterior. Thus, they surmised that the more complex potentials mostly reect such facts as that

the hydrophobics Isoleucine and Valine tend to be together in the protein interior.

Finally, Thomas and Dill tested a simple hydrophobic-polar potential against the far

more complex Hendlich potential [60] at identifying the native fold from a set of decoys. The

simple potential performed nearly as well as the more complex potential; out of 65 cases, the

simple potential identi�ed the correct structure 31 times, versus 37 times for the more complex

potential. Moreover, their mistakes were consistent; when the complex potential failed to identify

the native fold, the simple potential failed also.

More recent analyses of pairwise contact potentials have stated that the observed contact

potential is inuenced by the protein structure database in subtle ways. Zhang and Skolnick showed

that the accuracy of the potentials depends on the stability of the structures in the database [195].

Furuichi and Koehl showed that if a contact cuto� of greater than eight angstroms is used, the size

of the proteins in the database factors into the contact potential [49]. Also, and not surprisingly,

Furuichi and Koehl showed that the topologies in the database inuence the potential; if the

structure database is dominated by helical proteins, the resulting potentials will perform well on

helical proteins only.
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Vendruscolo and Domany argued that pairwise contact potentials alone are insuÆcient to

predict or verify protein structure [187]. Given a contact map of the crambin protein and maps of

plausible decoys, they tried to �nd a contact potential function that would assign a lower energy

to the native contact map than to the decoys. They trained a perceptron to estimate the contact

potentials. Perceptron training did not converge, and the partially-trained perceptron could only

recover 40% of the actual contacts.

Sunyaev et al [175] also presented a statistical argument that did not reect well on

contact potentials. They stated that if a potential describes the �t between the amino acids and

environment, then the relationship between the amino acids, and between the amino acids and their

environment, must be statistically signi�cant. Using chi-squared tests and Bahahur theory, they

tested if amino acid pairwise preferences were signi�cant given backbone conformation, accessibility,

and pairwise distances. They observed that certain amino acids are \average", and have little or

no statistical preference for any combination of interaction partner and environment tested. These

average amino acids included Alanine, Asparagine, Aspartic Acid, Glutamine, Histidine, Serine,

Threonine, and Tyrosine.

With so many criticisms, how does one explain the historical success of contact potentials?

The �rst argument is that the limitations of contact potentials do not necessarily render them

ine�ective in practice. While Sunyaev et. al. found no distinct association between eight amino

acids and their environments or pairwise interaction partners, they found such a signal for the other

twelve amino acids. Some threading methods involve pairwise contact potentials have been very

successful in the CASP contests [128, 109]. These methods are getting information from somewhere.

Mirney and Shakhnovich [122] suggested that part of the success of threading methods

in CASP2 was that the target proteins lent themselves well to threading. They observed that

threading accuracy depends on two factors: the accuracy of the potentials and the similarity of the

structures, and surmised that the success of the threading groups in the CASP2 contest was due in

part to the targets, and their similarity to existing template structures. Further, when the template
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and target structure are very close (within 2 angstroms RMS deviation), threading methods will

withstand a small amount of noise in the contact potentials. However, this does not mean that

the potentials are unimportant; when they compared simple frequency-based potentials with more

complex distance-based potentials, the frequency-based potentials performed signi�cantly worse

even when the structures are close. Further, one should note that in CASP3, the Bryant and Sippl

threading teams made strong predictions on fold recognition targets with only fold-level structural

similarity [128]. In summary, the selection of target proteins in CASP2 might have contributed to

the success of the threading teams, but there was more to their success than a lucky selection of

sequences.

There seems to be little argument at this point that contact potentials convey information.

Cootes et. al. [30] analyzed the statistical relation between an amino acid, its neighbor, and its

structural environment. Using log-linear analysis, they found strong, statistical relations between

an amino acid and its neighbor, especially for long-range, tertiary interactions. Further, they

showed that pairwise preferences were distinct by structural type, and were non-symmetric: if an

IJ pair was observed, with I appearing in the sequence before J , a JI pair was not equally likely to

be observed. Every one of the arguments saying that hydrophobicity is most of the information in

pairwise contact potentials can be turned around to say that they encode information in addition to

hydrophobicity. For example, when Thomas and Dill [179] tested a hydrophobicity-based potential

against a more complex potential, their simple potential identi�ed the native fold in 37 out of 65

cases while the more complex potential identi�ed it in 41 out of 65 cases. While one can say that

the simple potential performed nearly as well as the complex one, one can also say that the simple

potential failed in four cases where the complex one succeeded.

However, whether the likelihood of predicted contacts would be a useful measure of align-

ment validation is a di�erent question. An incorrect alignment can yield a prediction of a compact,

protein-like structure or an implausible structure with large holes in the interior, and there is usu-

ally no prior way to guess which type of error is more likely. There is no general-purpose contact
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potential; some are better at detecting unfolded structures, and some are better at picking the

native structure over protein-like decoys [184, 141]. Thus, at best, any given contact potential

could detect certain classes of alignment errors, but only certain classes.

Similarly, potentials optimized for recognizing the native structure are not necessarily

viable for recognizing similar structures. Kocher et. al. [96] evaluated various distance-based

potentials on their ability to identify the native structure. They found that the e�ectiveness of

the potential was related to the choice of amino acid reference point: potentials that measured

distances from the centroid of the side chain were more e�ective than those that used C� distance;

those that used the distance between C� atoms were more e�ective than those that measured the

distance between C� atoms. However, the more e�ective potentials rely on information that is not

always conserved between remote homologs.

Flores et. al. [47] observed that as sequence similarity decreases, accessibility, side chain

angles, and secondary structure all become less conserved. Chung and Subbiah [27] observed

substantial di�erences in side chain torsion angles of remote homologs, suggesting that remote

homologs make di�erent side chain contacts. Russell and Barton [155] examined structurally-

superimposed positions in remote homologs and analogs: proteins with similar structure but dif-

ferent function. They found no more than chance relation in accessibility, side-chain contacts, and

similarity of secondary structure; in these three quantities, remote homologs and analogs showed

no greater similarity than unrelated proteins show by chance. Finally, Russell et. al [156] studied

pairs of structurally-aligned proteins and divided them according to their relation in the SCOP

database [73] as homologs (same superfamily) or analogs (same fold, di�erent superfamily). In

structurally-superimposed positions, the SCOP homologs and analogs showed some similarity in

secondary structure (81 - 85% conserved) but weaker similarity in accessibility (approximately

60% conserved). Thus, information that has been used to help contact potentials identify native

structures is not conserved between remote homologs.

In summary, the lessons from the literature are that the information in pairwise contact
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potentials is probably signi�cant. However, the potential should be chosen according to the appli-

cation, and the choice of potential should reect assumptions to be made within the application.

For alignment validation, one should not rely on structural features that are not conserved in re-

mote homologs: location of the side chains and accessibility. If one chooses a distance-speci�c

potential, one should select a de�nition of pairwise distance that is reasonably conserved between

remote homologs; side chain centroids are a poor choice, but C� or C� distances are better choices.

There is active debate on whether complex or simple potential functions work better. Conditioning

potentials on secondary structure might be of bene�t, and tertiary interactions appear to be more

interesting than local interactions.

7.2 Knowing one amino acid tells little about its neighbors

The �rst step in our investigation of pairwise contact potentials was to estimate a set of

potential functions. Access to some actual potential functions would enable us to experiment with

them, and observe what sort of information they seemed to convey by what situations in which

they seemed to perform well.

In collaboration with Temple Smith's group and with Rick Lathrop, we experimented

with a number of the major feature sets on pairwise contact prediction. In addition to the identity

of the contact pair, these feature sets contain environmental inputs such as pairwise distance and

accessibility, as described in Table 7.1. For each feature set, our goal was to predict the likelihood of

contact given the interacting amino acids, plus any environmental attributes. Our approach was to

train a system of neural networks to estimate the posterior probability of contact given the amino

acid types and environmental features: P̂ (a1; a2j~e), where a1 and a2 are the types of amino acids

involved in the interaction, and ~e is a set of inputs describing the environment of the interacting

pair.



117

Bias term: 1.0

+

2
W3

Input X 1
W1

W0

Input X

Input X

Illustration of a perceptron

2 Y
Activation Function
A(W,X)

Σ

3

Y = A W0 Σ
i = 1

3
Wi Xi(

W

)

Figure 7.1: Illustration of a perceptron

7.2.1 Introduction to neural networks

Neural networks, or more pedantically arti�cial neural networks, are mathematical mod-

eling systems inspired by models of learning in the brain [63, 14]. Learning in biological systems

involves repeated adjustment to the strength of various synaptic connections between neurons. An

arti�cial neural network involves inputs connected to one or more outputs with each connection

represented by a weight, a real-valued number representing the connection strength. Neural net-

work learning, or training, involves repeatedly presenting the network with a number of training

examples consisting of inputs and target outputs, and adjusting the weights in order to better

approximate the target outputs given the input.

The simplest avor of a neural network, called a perceptron, is illustrated in Figure 7.1.

This perceptron features one output unit ~Y connected to a layer of input units ~X by an outer layer

weight vector ~W . The input to the output unit Y is W0 +
PN

i=1WiXi, the sum of the products of

the inputs and their weights, plus the weight on the bias term. At the output unit, an activation

function is applied to this input. The purpose of the activation function is to map this input to

the expected range of the output. For example, if the perceptron models a probability function,

the expected range of the output is from 0.0 to 1.0. An activation function that would map the
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range of real numbers into this output range is the log-sigmoid activation function 1
1+e�X . Also

de�ned at the output unit Y is some error function, a function to quantify the error of the neural

network by comparing the network output Y with the target output O. A common error function

is squared error: E = (Y �O)2. Alternatively, if the network estimates a probability function and

the estimated value Y is an estimated probability with O being the actual probability, one might

use an entropic error function E = �O log(Y )�(1�O) log(1�Y ). Thus, there is a set of equations

relating the network error to the inputs and the weights.

Upon initialization, the weights of the neural network are assigned random values. During

training, the network is presented with a number of training examples ( ~X;O) consisting of a set

of inputs ~X and a target output O. The learning algorithm calculates the network output and

network error E(Y;O), then changes the weights slightly according to a learning rule, such as

~Wnew = ~Wold � ��W . Here, �W is a weight change vector, often calculated from the neural

network equations and � is an algorithmic parameter called the learning rate, which serves to

regulate the amount of change to the network to prevent uctuation. In back-propagation networks,

the weight change vector �W is computed by calculating the partial derivative @Y

@ ~W
to propagate

the error backwards through the weights of the network. This is known as gradient descent learning.

For certain problems, the perceptron architecture is not suÆcient to model the function

desired. In such cases, one can use a two-layered network, in which there is one set of weights

connecting the inputs to a hidden layer of perceptrons, and another set of weights connecting the

hidden layer to the outputs. As previously, each perceptron unit has an associated activation

function, whether the perceptron is part of the hidden layer or the output layer. Again, there is an

error function de�ned for the outputs of the network. Thus, there is still a set of equations relating

the error function to the inputs and weights of the neural network.

Another type of neural network layer is a softmax layer [18]. Softmax layers are typically

used at the outermost layer of the network. Their e�ect is similar to an activation function: to

derive a probability distribution from a vector of real-valued quantities. Each softmax output Yi is
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associated with a softmax input Si, and is related to the softmax input vector ~S by the equation:

Yi = eSiP
j
e
Sj

While neural networks might seem mysterious, they prove to have interpretations in

Bayesian statistics. Consider a neural network trained for classi�cation: when the neural net-

work is given an example represented by the inputs ~X, it estimates the probability with which

the example belongs to each of a number of classes ~Y . Such neural networks have been shown to

estimate the Bayesian posterior probability of each output class Yi [150].

Applications of neural networks include statistical systems with a very large number of

inputs, and a basis for exploratory analysis when one believes some inputs and an output are

associated but is unclear on the nature of the association. Critics point out that neural networks

are diÆcult to decipher, and are too much of a black box: a person can throw data at a neural

network package and hope for the best, but that's not good science. Certainly, when one works with

neural networks, one should follow a proper experimental protocol. Part of this protocol entails

ensuring that complexity is used only where justi�ed: for example, extraneous inputs should be

removed, and a multi-layer network should not be used where a perceptron is suÆcient. Yet critics

aside, neural networks have been applied successfully to a number of areas in computational biology

including secondary structure prediction [152], estimating potential functions for threading [58] and

gene prediction [185].

7.2.2 Description of the feature sets

To experiment with contact potential functions, we built neural-network-based contact

potential functions for several of the major feature sets in the literature. This section describes

those feature sets. Each feature set is detailed below, and the contents of the feature set are

summarized in Table 7.1. All feature sets described here were built in the lab of Temple Smith [105]

on the �fty-nine proteins listed in Table 7.2, a set representing most of the distinct protein folds in

the PDB at that time.
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Pairwise feature sets consist of tuples (a1; a2; ~e), where a1 and a2 are amino acids in a

contact pair and ~e describes some aspect of the environment surrounding a1 and a2. The environ-

mental features di�er slightly for each feature set. All feature sets contain some features describing

the geometry of the pair, such as pairwise distance. Some contain additional �elds describing

environment around a1 and a2, such as accessibility measures.

Distance-based feature sets: Bryant-Lawrence, Jernigan, and Sippl

Many pairwise feature sets are based on the idea that amino acid pairs exhibit a regular

pattern of pairwise interaction given distance. For example, if an isoleucine is interacting with

another residue seven angstroms away, that other residue might be a phenylalanine. Pairwise

feature sets that predict contact based on amino acid type and distance include Bryant-Lawrence

[22], Jernigan [83], and Sippl [162]. The only environmental feature for these feature sets is pairwise

distance. The di�erences between the feature sets concern the precise manner of measuring pairwise

distance, and the resolution to which it is measured.

Sippl uses the distance between the C� atoms, measured to a resolution of 0.1 �A. Jernigan

de�nes the location of each residue as a point at the center of the side chain, and uses the distance

between these points as the pairwise distance, and measures it to a resolution of 0.001 �A. Bryant-

Lawrence de�nes the distance between two residues using a point 2.4 �A from C� in the C� direction,

measured to a resolution of 0.1�A. This distance is referred to as the peptide midpoint distance.

All three feature sets de�ne contact according to pairwise distance: two residues are

considered in contact if they are not adjacent in the protein chain and if their pairwise distance

is less than some threshold. Jernigan uses a pairwise threshold of 6.5 �A, Bryant-Lawrence uses

10 �A, and Sippl uses 15 �A. Further, each of these feature sets divide contact into various classes,

according to the pairwise distance.
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Feature set Features

Bryant-Lawrence [22] Peptide Midpoint Distance

Crippen [112]

O - N distance, N - O distance,
C - N distance, N - C distance,
O - Cbeta distance, Cbeta - O distance,
N - Cbeta distance, Cbeta - N distance,
Cbeta - Cbeta distance

Jernigan [83] Side-chain Midpoint Distance

Sippl [162] Alpha Carbon Distance

True-mrf [191]

Beta Carbon Distance, Omega angle
Amino Acid 1 Phi Angle, Amino Acid 2 Phi Angle,
Solvent Exposure at Amino Acid 1,
Solvent Exposure at Amino Acid 2,
Secondary Structure at Amino Acid 1,
Secondary Structure at Amino Acid 2

Tetrahedron [29]

Window through which Amino Acid 1 looks at Amino Acid 2,
Window through which Amino Acid 2 looks at Amino Acid 1,
Secondary structure at Amino Acid 1,
Secondary structure at Amino Acid 2,
Fraction of Volume Accessible via the �rst window speci�ed,
Fraction of Volume Accessible via the second window speci�ed,
Solvent Exposure at Amino Acid 1,
Solvent Exposure at Amino Acid 2,
Beta Carbon Distance

Table 7.1: Contents of the feature sets used for estimating pairwise contact potential functions

1aak 1aba 1aep 1alc 1apa 1baa 1bgc 1byh
1cde 1cew 1dhr 1f3g 1hoe 1ifc 1lec 1lis
1mat 1mbd 1nar 1pkp 1plc 1rcb 1rec 1s01
1tie 1ubq 1yat 256b 2act 2ca2 2cpl 2cpp
2cyp 2end 2had 2hpr 2lzm 2mcm 2mhr 2sns
351c 3adk 3chy 3est 3tgl 4bp2 4cpv 4fgf
4fxn 5cpa 5cyt 5fd1 5tmn 7rsa 8dfr 9api
9rnt

Table 7.2: List of the PDB structures contained in the Lathrop-Smith data set
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Extended feature sets: Crippen, Tetrahedron, and True-mrf

A second class of feature sets contain pairwise distance plus additional features to describe

the environment around the pair or the orientation of the two residues with respect to each other.

These feature sets are Tetrahedron [29], True-mrf [191], and Crippen [112].

Crippen captures pairwise orientation through the distances between various parts of the

two residues: O �N , N � O, C �N , N � C, O � C� , C� � O, N � C� , C� �N , and C� � C� .

Altogether, these distances describe the relative orientation of the two residues with respect to each

other. The feature set includes three di�erent types of contacts with separate contact criteria. A

backbone-backbone contact must have an O�N distance of less than 3.2 �A and a C �N distance

of more than 3.9 �A. A backbone{side-chain contact must have a distance between O and C� or N

and C� of less than 5.0 �A. These same distances are measured for side-chain{side-chain contacts;

the cut-o� is 9.0 �A, and there must be no atom within 1.4 �A of the pairwise axis.

True-mrf describes pairwise orientation through polar geometry rather than through dis-

tances. It orients the residue pair according to their C� atoms: pairwise distance is de�ned as the

distance between the C� atoms, and the polar geometry is de�ned with respect to the C� � C�

axis. The phi angle of each residue is de�ned by drawing an axis through C� and the center of the

side chain. Phi is the angle between this side chain axis and the C� � C� axis. The Omega angle

is de�ned by looking down the C� �C� axis, and measuring the angle between the two side-chain

axes. In addition, True-mrf includes the secondary structure and solvent exposure at both residues.

Solvent exposure is an accessibility measure designed for threading algorithms, where the goal is

to �nd structural similarity between sequences that are not necessarily similar. The traditional

solvent accessibility measure used in the DSSP program [88] is inappropriate for threading algo-

rithms because it retains too much indirect information on the protein sequence. Solvent exposure

removes this sequence information as follows. First, the side chains of all amino acids are replaced

with the side chain of Alanine. Then, to avoid spurious holes in the interior of the protein, the
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Figure 7.2: Idealized illustration of the geometry of the tetrahedron feature set [29]

radii of C� and the water sphere are increased. Finally, Eisenberg's algorithm is used to calculate

the accessible area [15].

Finally, the Tetrahedron feature set models the environment of each amino acid by means

of abstract geometry, as described roughly in Figure 7.2. First, a coordinate system is established

with the C� - C� direction forming the Z axis, the X axis bisecting the NH � C� � CO angle,

and the Y axis orthogonal to Z and X axes. A triangle is formed by placing one vertex at N , one

at H , and one at C. A fourth vertex, V , is placed on the Z axis above C� to form three more

triangles equal in size to the �rst. This de�nes a tetrahedron centered at C� . For each contact

pair (a1; a2), the Tetrahedron feature set describes the window through which a1 looks at a2, the

window through which a2 looks at a1, and the percentage of the window surface that is accessible

to solvent. Also included in this feature set are the secondary structure and the solvent exposure

for both a1 and a2. The solvent exposure is computed in the same way as in True-mrf.

7.2.3 Results and analysis

To experiment with contact potential functions, we trained neural networks to estimate

a number of potential functions. Given a pair of interacting amino acids a1 and a2 observed in an

environment described by ~e, these neural networks estimated the probability that a1 and a2 would
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be in contact given environment ~e: P̂ (a1; a2j~e).

Not all amino acids are equally likely, and this fact must be taken into account when

judging neural net performance. Suppose a neural net was trained to predict a1, the �rst amino

acid in some pair, and was trained to predict it with no inputs. The net would minimize its losses

by \playing the odds", predicting each amino acid according to its background frequency.

When a neural net is given a set of input features ~x and is asked to predict a1 given ~x,

the value of feature set ~x is reected by how strongly the net predicts a1 given ~x relative to the

background probability of a1. For example, Alanine is a common amino acid; in general, about

one out of every ten randomly-chosen amino acids will be Alanine. Thus, a neural net with no

features would always predict Alanine with a probability of 0.1. Suppose a di�erent neural net had

a better feature vector ~x, and when Alanine was the correct answer, this net predicted it with an

average probability of 0.4. The ratio between 0.4 and 0.1 represents how much information the

neural net is getting out of feature vector ~x. We measure this information gain with a log odds

ratio: log(P (a1j~x)
P (a1)

). A high log odds ratio reects an informative feature vector ~x.

For each feature set, we trained a neural net to estimate the probability of the amino acid

pair given the environment, P̂ (a1; a2j~e). Early results showed that our performance improved if we

divided this problem into two parts: �rst estimate the probability of the �rst amino acid given the

environment P̂ (a1j~e), then estimate the probability of the second amino acid given the �rst and the

environment P̂ (a2ja1; ~e). The pairwise likelihood P̂ (a1; a2j~e) is the product of these two terms. We

estimated the probability of the pair by predicting the �rst residue given the environmental inputs

and then predicting the second residue given the �rst plus the environmental inputs. Table 7.3

summarizes these results using the log odds ratio over the background frequencies.

Something interesting can be seen in Table 7.3: predicting the second amino acid given

the �rst and other inputs is almost as hard as predicting the �rst given those inputs. In other

words, knowing the �rst amino acid is of little value for predicting the second. This contradicts the

popular hypothesis that pairwise contacts exhibit a distinct pattern. Clearly, further investigation



125

was called for.

Continuing from this observation, we estimated the mutual information between the two

amino acids in contact for each feature set. Mutual information measures the amount of information

shared by two quantities; it is similar to correlation, but more general [31]. Mutual information is

calculated according to the following formulae:

NA; NB = Number of classes of quantities A and B respectively

P (Ai) = Probability of class i of quantity A

H(A) = Entropy of quantity A

= �

NAX
i=1

P (Ai)log2(P (Ai))

H(A;B) = Joint entropy of quantities A and B

= =

NAX
i=1

NBX
j=1

P (Ai; Bj)log2(P (Ai; Bj))

I(A;B) = H(A) + H(B)�H(A;B)

=

NAX
i=1

NBX
j=1

P (Ai; Bj) log2

�
P (Ai; Bj)

P (Ai)P (Bj)

�

=

NAX
i=1

NBX
j=1

P (Ai; Bj) log2

�
P (Bj jAi)

P (Bj)

�

=

NAX
i=1

NBX
j=1

P (Ai; Bj) log2

�
P (AijBj)

P (Ai)

�

For each feature set, Table 7.4 lists I(a1; a2), the mutual information between the con-

tacting residues. By the general formula mutual information I(a1; a2) is computed as follows:

I(a1; a2) =
P

a1

P
a2
P (a1; a2) log2

�
P (a2ja1)
P (a2)

�
where here the sums are over the 20 types of amino

acids. When these probabilities are estimated from the data, we use the estimated probability P̂

in place of the actual probability P . This is how the numbers in the column labeled I(a1; a2) in

Table 7.4 were calculated.
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log2(
P̂ (a1j~e)

P̂ (a1)
) log2( P̂ (a2ja1;~e)

P̂ (a2)
)

Feature Set Training Test Verify Training Test Verify
Set Set Set Set Set Set

Bryant-Lawrence [22] 0.0110 0.0062 0.0049 0.0303 0.0071 0.0004
Crippen [112] 0.1347 0.1323 0.1212 0.1738 0.1560 0.1526
Jernigan [83] 0.0205 0.0186 0.0052 0.1055 0.0483 0.0488
Sippl [162] 0.0003 -0.0014 -0.0010 0.0059 0.0013 0.0017
Tetrahedron [29] 0.3227 0.2464 0.2190 0.3565 0.2483 0.2417
True-mrf [191] 0.2647 0.2241 0.2127 0.2917 0.2408 0.2264

Table 7.3: Results for estimating contact potential functions for each feature set. Given a pair of interact-
ing amino acids a1 and a2 and environmental features ~e, the potential functions were trained to estimate
the probability that a1 and a2 are in contact given ~e, P̂ (a1; a2j~e), or alternatively P̂ (a1j~e)P̂ (a2ja1; ~e). The
log likelihood ratios shown represent how much information the neural networks learned relative to the
amino acid background distributions. The training set was used to adjust network weights. The examples
in the test set (alternatively called cross-training set) were not seen during training, but overall test set
performance was used to adjust training parameters. The verify set was an independent set of examples
not seen until training was completed. The data was partitioned with at random with 60% of the examples
in the training set, 20% in the test set, and 20% in the verify set.

The column labeled log2(
P̂ (a2ja1;~e)

P̂ (a2j~e)
) shows the conditional mutual information

X
a1

X
a2

P (a1; a2j~e) log2

 
P̂ (a2ja1; ~e)

P̂ (a2j~e)

!

where every probability is conditioned on knowledge of a particular amino acid environment. This

latter quantity approximates how much information the �rst amino acid provides on the second,

as estimated by the neural networks. This quantity is expected to be less than I(a1; a2) when

knowledge of the environment, such as whether the amino acids are buried or exposed, \explains

away" the apparent dependency between them. This is what we observe. In short, our results

showed that knowing the identity of either residue yields less than one tenth of one bit of information

on the other residue. For contrast, maximum information is approximately four bits per residue

and one single homolog yields approximately three bits per residue [91], if the homology is not too

distant. Thus, the information available from amino acid potentials seems to be limited.
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Feature Set I(a1; a2) log2( P̂ (a2ja1;~e)

P̂ (a2j~e)
)

Bryant-Lawrence [22] 0.0239 0.0130
Crippen [112] 0.0622 0.0193
Jernigan [83] 0.0876 0.0277
Sippl [162] 0.0131 0.0013
True-mrf [191] 0.0394 0.0250
Tetrahedron [29] 0.0805 0.0010

Table 7.4: Mutual Information and Log Likelihood Ratios on the Contact Pairs. Mutual information
represents the strength of the pairwise signal between amino acids a1 and a2, and the log likelihood ratio
approximates how much information the �rst amino acid provides on the second, as estimated by the neural
networks.

7.3 Statistical analysis of pairwise contacts

In Section 7.2, we saw that pairwise contact patterns are weak. All the same, are they

signi�cant? This section describes our work to address that question.

Most people do not believe that protein structure is governed directly by speci�c pairwise

preferences, such as isoleucines seeking out valines before threonines. Rather, most believe that

observed pairwise preferences reect that hydrophobic residues tend to be buried within the protein

interior, and thus tend to be near other hydrophobic residues. This leads to the question of how

much information is left after hydrophobic e�ects are factored out, and we have addressed this

question by studying patterns of pairwise mutual information within buried regions and within

exposed regions, and by comparing these patterns to what one would expect if contact pairs were

statistically independent.

In addition, most believe that there are certain pairs of amino acids that exhibit distinct

attractive or repulsive forces for clear biochemical reasons. We have examined how much pairwise

signal can be attributed to two sets of forces:

� The preference for cysteines to interact with other cysteines, and

� Among charged residues, the attraction between residues of opposite charge and repulsion

between residues of the same charge.
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7.3.1 Description of the dataset

The dataset used for these experiments was assembled by the Temple Smith lab under the

directions of Rick Lathrop. It is an enlarged version of the dataset described in 7.2.2 containing

lists of pairwise contacts for 208 structures for a total of 45,505 contact pairs. All contacts are

between residues in secondary structure elements: helices or beta strands. All had a C� distance

of eight angstroms or less, and were three or more positions apart in the protein sequence.

Of these 45,505 contact pairs, we focused on the 22,707 pairs involved in tertiary contacts:

long-range interactions between proteins at least �ve residues apart in the protein sequence, a

distance just long enough to omit pairs of residues in adjacent turns of �-helices. There are two

good reasons to focus on tertiary interactions. First, earlier analysis found tertiary contacts to be

the most signi�cant [30]. Second, the very successful threading team led by Steve Bryant focuses

in contacts separated by at least one turn of an �-helix [140].

Along with the interacting amino acids, the dataset contains various data describing their

environment, including secondary structure and solvent exposure. Solvent exposure, described

previously in Section 7.2.2, is an accessibility measure designed for threading algorithms. Figure 7.3

shows a histogram of the solvent exposures of the 91,010 residues in the 45,505 contact pairs in the

dataset.

7.3.2 Pairwise information as inuenced by exposure

First, we studied how the mutual information between interacting residues is a�ected by

exposure. Speci�cally, we studied interacting pairs for which the solvent exposure of at least one

residue was no more than some threshold value, and contrasted that with pairs for which both

residues had a solvent exposure of greater than the threshold value. In preliminary work, we

studied pairs for which both residues were buried, but found that when at least one residue was

buried, the same patterns were evident and the pool of data was larger.



129

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

10

Exposure value

lo
g(

N
um

be
r 

of
 d

at
ap

oi
nt

s)

Log histogram of exposure values in the dataset

Figure 7.3: Histogram detailing the exposure values of the interacting residues

Observed mutual information depends on sample size

When comparing the mutual information of a large pool of data to that of a small pool, one

must be aware that observed mutual information is heavily a�ected by sample size. When mutual

information is measured with too small a sample size, it will tend to increase arti�cially [192]. Given

the probability distributions for the interacting amino acid, we estimated their expected mutual

information according to the equations shown below.

(a1; a2) = Two interacting amino acids

Ĥ(a1) = Estimate of the entropy of a1

Ĥ(a2) = Estimate of the entropy of a2

Ĥ(a1; a2) = Estimate of the entropy of the amino acid pair (a1; a2)

Î(a1; a2) = Estimate of the mutual information between a1 and a2

~̂
P (a1) = Estimated probability distribution of a1

~̂
P (a2) = Estimated probability distribution of a2

~̂
P (a1; a2) = Estimated joint probability distribution (a1; a2)
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E[X ] = Expected value of some quantity X

E[Î(a1; a2)] = E[Ĥ(a1) + Ĥ(a2)� Ĥ(a1; a2)]

= E

"X
a1

P̂ (a1) log2(P̂ (a1)) +
X
a2

P̂ (aj) log2(P̂ (a2))

�
X
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X
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+
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P̂ (a2) log2(P̂ (a2))

i

+
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a1

X
a2

E
h
P̂ (a1; a2) log2(P̂ (a1; a2))

i

Here, when we estimate a probability distribution such as P̂ (a1), if we have N total

observations and ni observations that amino acid ai is a1, then our estimate of the probability that

ai is a1, P̂i, is computed as ni
N

. Thus, we can write the estimated mutual information as follows

below.

N = Total number of observations

ni = Number of times that amino acid ai is observed as a1

nj = Number of times that amino acid aj is observed as a2

nij = Number of times that ai is observed as a1 and aj is observed as a2

E[Î(a1; a2)] =

20X
i=1

ni

N
log2

�ni
N

�
+

20X
j=1

nj

N
log2

�nj
N

�
�

20X
i=1

20X
j=1

nij

N
log2

�nij
N

�

Note that the counts of observations ni, nj , and nij are derived from the data. Consider

ni, the number of times that some amino acid ai is observed as the �rst amino acid, a1. A priori,

we do not know the value of ni, except that it lies somewhere between 0 and N inclusive. However,

we can estimate it as follows. Let x represent some value in the range from 0 to N . P (ni = x), the

probability that we see x observations of amino acid ai as a1, can be estimated as shown below.

Pi = The true probability that amino acid ai is a1
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x = Some potential value for ni

P (ni = x) =

0
BB@ N

x

1
CCA (Pi)

x(1� Pi)
(N�x)

If we let y and z describe potential values for nj and nij respectively, we can estimate the probability

that y is nj and z is nij in the same way.

Qj = The true probability that amino acid aj is a2

Pij = The true probability that ai is a1 and aj is a2

y = Some potential value for nj

z = Some potential value for nij

P (nj = y) =

0
BB@ N

y

1
CCA (Qi)

y(1�Qi)
(N�y)

P (nij = z) =

0
BB@ N

z

1
CCA (Pij)

z(1� Pij)
(N�z)

Putting everything together, we can then estimate the expected mutual information according to

sample size as follows.

E[Î(a1; a2)] =

20X
i=1

2
664

NX
x=0

x

N
log2(

x

N
)

0
BB@ N

x

1
CCA (Pi)

x(1� Pi)
(N�x)

3
775

+

20X
j=1

2
664

NX
y=0

y

N
log2(

y

N
)

0
BB@ N

y

1
CCA (Qj)

y(1�Qj)
(N�y)

3
775

�

20X
i=1

20X
j=1

2
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NX
z=0

z

N
log2(

z

N
)

0
BB@ N

z

1
CCA (Pi;j)

z(1� Pi;j)
(N�z)

3
775

Note that this formula is an approximation. The ni, nj , and nij terms are treated as
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independent of each other. In reality, they are not independent because of such constraints as

P
i

P
j nij = N . However, while this equation might not be entirely realistic, it merits inspection

for assessing the behavior of expected mutual information by sample size. Later in this section, we

introduce excess mutual information, an alternative formulation that avoids this problem.

Figure 7.4 shows this expected mutual information as a function of sample size, calculated

according to these equations with the observed probability distributions used to approximate their

actual probability distributions. The expected mutual information starts at zero when the sample

size is zero, and reaches a peak value of 2.26 bits with a sample size of 17. To understand why

entropy is overestimated at small sample sizes, consider the expected estimates of entropy as shown

in Figure 7.5. Ĥ(a1) and Ĥ(a2) both climb fairly quickly to their true values; they involve only

twenty equivalence classes. At very small sample sizes, expected mutual information is high because

H(a1), H(a2), and H(a1; a2) all su�er from oversampling. In constrast to H(a1) and H(a2),

Ĥ(a1; a2) involves 400 equivalence classes; a larger set of samples is needed derive an accurate

estimate of the underlying probability distribution P (a1; a2). This is a classic pitfall of maximum

likelihood methods, methods in which probability distributions are estimated solely as a function of

observed counts.

Having recognized the problem, we still need a method to factor out sample size when

analyzing observed mutual information. In theory, we could apply the formula above to compute

the expected mutual information for the sample size, and compare that to the observed value.

In practice, direct application of the formula is viable for only small sample sizes, as it involves

multiplying very large combinatorial terms with very small probability terms. This problem can be

reduced by adding the logarithms of the two quantities rather than multiplying the quantities, but

this is not a complete solution. As the combinatorial terms become very large and the probability

terms become very small, one cannot add the logarithm of a very small probability to the logarithm

of a very large combinatorial term without losing precision. Eventually, precision errors make the

equation too inaccurate for direct application. A better alternative is to select random samples
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of the desired sample size, measure the mutual information of the randomly-chosen subset, and

repeat the procedure enough times to yield a statistically-viable estimate.

However, when we study pairs in only buried or only exposed positions, there is a second

problem with comparing their mutual information with that of all pairs. The distribution of amino

acids in proteins varies as exposure varies. Buried positions tend to contain a greater proportion

of hydrophobic amino acids, and exposed positions contain a greater proportion of charged amino

acids. There are circumstances in which we would want to compare mutual information of buried

pairs with that of equally-sized subsets of randomly-chosen pairs, but such comparisons do not tell

us if the buried pairs have signi�cant mutual information. Instead, they tell us how the strength

of the pairwise signal changes as burial or exposure changes. Such comparisons are made within

this section. To derive estimates of expected mutual information given sample size and joint

probability distribution, I measured the mutual information of 1000 randomly-chosen samples of

speci�ed sample size.

Thus, to determine if the observed mutual information in a subset is signi�cant, we need

to compare it to the expected mutual information given both the sample size and appropriate

probability distributions. In this work, we are focusing on the signi�cance of pairwise preferences,

and particularly if observed contacts are actually independent. Therefore, the correct way to assess

signi�cance of observed mutual information is to compare it to the mutual information expected

given pairwise independence. If two quantities are independent, the probability of seeing any pair

is the product of the probabilities of seeing the two members of the pair: P (x; y) = P (x)P (y). To

derive an estimate of the expected mutual information of the amino acid pair (a1; a2) if a1 and a2

are independent, we collected the set of observations and scrambled the order of a2 observations

with respect to the a1 observations. This yields a set of observations with the same marginal

distributions and the same sample size. We measured the mutual information on this sample,

and repeated the test enough times to yield a statistically-viable result. We call this quantity

independent information II(a1; a2).
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Sampled mutual information (bits)
Number of samples Mean Standard Deviation

10 0.0954 0.0039
100 0.0948 0.0059
250 0.0943 0.0065
500 0.0939 0.0064

1000 0.0943 0.0064
10000 0.0941 0.0063

Table 7.5: Mean values and standard deviations obtained when sampling expected mutual information
given sample size and assuming pairwise independence

One advantage of comparing this approach is it yields a measure of the signi�cance of the

observed mutual information. One can consider the observed mutual information Î(a1; a2) to be

signi�cant if, with high probability, Î(x; y) is larger than the mutual information expected given

pairwise independence and small sample size e�ects. To estimate this probability, while we measure

independent information II(a1; a2), we observe the proportion of the times that Î(x; y) is greater

than the mutual information measured on the permuted data. This yields a probability that the

observed mutual information exceeds what would be expected given pairwise independence and due

to sampling error: P (observed > expected given independence). By subtracting the independent

information II(x; y) from the observed mutual information Î(x; y), we estimate the excess mutual

information IE(x; y), the amount of mutual information beyond the amount that would be expected

given sample size e�ects.

Exactly when is a result statistically viable? In informal terms, one has enough samples

to yield a statistically viable result if adding random samples is not likely to alter the result. I

determined this empirically by varying the number of samples measured and comparing the results.

Table 7.5 shows the mean and standard deviation for sampled or mutual information of buried

tertiary pairs for various numbers of samples. Looking at this table, we see that as few as 250

samples yields a stable approximation of the mean. Sampling for much more than 250 samples did

not yield very di�erent information, merely required additional computing resources. Therefore, I

chose an approximation obtained with 500 samples.
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In summary, given an observed mutual information, there are two estimates of the mutual

information to consider.

1. First is the mutual information that would be expected given the sample size and if the

interacting residues are independent. This estimate is calculated by permuting the order of

observations of one amino acid relative to the other: independent information II (a1; a2).

2. Second is the mutual information that one would expect from a same-sized sample of the full

dataset. This estimate is arrived at by selecting observations from the dataset at random.

This estimate becomes interesting when one is studying pairs chosen for some environmental

factor, such as buriedness. It can be interesting to compare the pairwise information in an

environmentally-chosen subset to that in the full dataset. However, one cannot compare

observed mutual information values directly because the subset is smaller, and therefore will

tend to have greater mutual information by small sample e�ects. By comparing the mutual

information in the environmentally-chosen subset to the expected mutual information for a

subset of the same size chosen at random, we can compare the strength of the pairwise signals.

7.3.3 Analysis of the pairwise information in buried and exposed subsets

As mentioned previously, hydrophobic forces, not pairwise contact propensity, is consid-

ered the dominant factor in protein folding [34]. When hydrophobic residues are buried in a protein

core, their stability depends more on burial than on identity of their neighbors. Charged residues,

which should have a distinct interaction pattern, are more common in exposed positions. This

suggests that pairwise mutual information should be greater in exposed positions and less in buried

positions.

To test this hypothesis, we studied the mutual information of interacting pairs as a function

of their burial and exposure. We de�ned \their burial or exposure" to be the minimum of their

two solvent exposure values. This divided the dataset into two subsets: those for which the solvent
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exposure of the more buried residue was less than a threshold value, and those for which the solvent

exposure of both residues was greater than the threshold value. In preliminary work, we divided

the data into four subsets according to the solvent exposure of each residue, and observed that

studying the minimum exposure yielded a similar pattern with reduced experimental complexity.

Figure 7.6 shows a histogram of the minimum solvent exposure values for all pairs and for the

tertiary pairs. Note that for both cases, the vast majority of all pairs have at least one residue fully

buried, and a fair number have one residue partially buried. The x-axes of these histograms are

scaled according to the data: there are pairs which both have a solvent exposure above 120, though

almost all have a minimum exposure of 80 or less for all pairs, or 60 or less for the tertiary pairs.

Note further that the full dataset contains more exposed pairs than the tertiary dataset. This is

mostly due to pairs of residues in adjacent turns of exposed helices.

To see which exposure threshold yielded the most interesting division of buried versus

exposed, we tested a range of thresholds from 0 to 80 for the full dataset, and from 0 to 60 for

the tertiary dataset. For each threshold, we divided the data into buried and exposed subsets.

For each subset, we measured the observed mutual information, and compared it to the mutual

information we would expect given the sample size, with two di�erent estimates of expected mutual

information.

1. Independent information II (a1; a2), the mutual information expected assuming pairwise in-

dependence was calculated by scrambling the order of observations of the second amino acid

relative to the �rst, as described in Section 7.3.2.

2. The mutual information expected if the probability distribution did not vary with exposure

reects the amount of mutual information of a same-sized subset of pairs chosen randomly

from the dataset. If pairwise preferences are less distinct in buried positions and more distinct

in exposed positions, then the observed mutual information should be less than this estimate

in buried positions and greater than this estimate in exposed positions.
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Figure 7.6: We considered the exposure of a pair to be the minimum of the two exposure values. These
histograms show the ranges of minimum exposure values for all pairs in the dataset (top) and for the
tertiary pairs only (bottom). The x-axes are scaled according to the range of the data.



139

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60 70 80

P
ai

rw
is

e 
m

ut
ua

l i
nf

or
m

at
io

n 
(b

its
)

Exposure threshold

Mutual information of buried contacts only, all pairs

Observed mutual information
Mutual information expected assuming pairwise independence

Mutual information expected from a same-sized sample, all pairs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10 20 30 40 50 60

P
ai

rw
is

e 
m

ut
ua

l i
nf

or
m

at
io

n 
(b

its
)

Exposure threshold

Mutual information of buried contacts only, tertiary pairs

Observed mutual information
Mutual information expected assuming pairwise independence

Mutual information expected from a same-sized sample, tertiary pairs
Mutual information expected from a same-sized sample, all pairs

Figure 7.7: Comparison between observed and expected mutual information in buried positions: all pairs
(top) and tertiary pairs (bottom). A pair is de�ned as buried if the solvent exposure of the more buried
residue is less than the exposure threshold.
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Figure 7.8: Comparison between observed and expected mutual information in exposed positions: all
pairs (top) and tertiary pairs (bottom). A pair is de�ned as exposed if the solvent exposure of the more
buried residue is greater than the exposure threshold.



141

Pairwise mutual information given burial or exposure

Figure 7.7 compares the observed and expected mutual information for buried positions

for all pairs and for the tertiary pairs only. Figure 7.8 makes the same comparison for exposed

pairs.

In all �gures, we note that the observed mutual information is substantially greater than

what would be expected if the interactions were independent of amino acid type. In every case, the

observed mutual information was greater than the independent information II(x; y), the mutual

information sampled by scrambling the order of observation of the second residue with respect to

the �rst. With 500 scramblings of the order of observation of the two residues, we can say that

there is at least a 499
500 chance that the observed mutual information is signi�cant, greater than what

would be expected given simply small sample-size e�ects. By this analysis, there is little doubt

that pairwise preferences are signi�cant.

However, pairwise preferences appear to be less distinct in buried positions, especially

for short-range interactions. In Figure 7.7, when we compare the mutual information in observed

buried positions to that expected from a same-sized sample drawn without regard to burial, the

observed pairwise information drops to about half of the expected value for the set of all pairs,

including short-range interactions. This gap is at its widest at an exposure threshold of 8. For

tertiary pairs, we also see a gap between observed and expected mutual information at this point,

though the gap is far less pronounced. One would expect that the pairwise signal decreases in

buried positions, as hydrophobic contacts tend to be less speci�c than polar contacts; in that sense,

this data is not surprising. What is more surprising is that long-range interactions appear to be

less a�ected by hydrophobic forces than short-range interactions.

In Figure 7.8, we see that the amount of pairwise information does not vary much according

to exposure threshold. For both graphs, at the most exposed positions, the observed mutual

information appears to be slightly lower than what would be expected given the sample size and
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the background pairwise distribution. However, this decrease is probably not signi�cant; at high

exposure values, the sample sizes are so small that what we observe is probably just noise in the

data.

Mutual information of long-range versus short-range contacts

In Figures 7.7 and 7.8, we see that when we focus on tertiary contacts, the mutual

information appears to increase. However, most of this appears to be sample-size e�ects. When

we factor out sample size by comparing the observed mutual information between tertiary pairs

to the mutual information expected from a same-sized sample drawn from all pairs, there is only

a marginal increase in mutual information. This suggests that tertiary contacts are slightly more

interesting than shorter-range contacts, but only slightly.

Overall mutual information conditioned on exposure

Next, we computed the overall mutual information as a weighted average of the buried

and exposed subsets, weighted according to probability of burial or exposure. Figure 7.9 shows the

overall mutual information observed, expected assuming pairwise independence, and expected from

a same-sized sample drawn independent of exposure. The �rst point is that something di�erent

appears to be at play between the short-range contacts and the long-range contacts. In pairs

that include short-range contacts, there is a pronounced dip in buried positions in excess mutual

information: information in excess of what would be expected given the sample size and assuming

pairwise independence, II(a1; a2). Tertiary pairs also show a dip in excess mutual information in

the buried positions, but the dip is far less pronounced. Excess mutual information is highlighted

in Figure 7.10. In this �gure, we see that while there are exposure thresholds for which almost

half of the excess mutual information is lost for the larger set of pairs, there is always at least 0.02

bits of excess information. In the tertiary pairs, there is always at least 0.035 bits of excess mutual

information.
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Figure 7.9: Overall mutual information conditioned on exposure: all pairs (top) and tertiary pairs (bot-
tom). A pair is de�ned as exposed if the solvent exposure of the more buried residue is greater than the
exposure threshold. The pairs were conditioned on exposure by weighting the buried and exposed mutual
information according to probability of burial or exposure.
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Figure 7.10: Excess mutual information: amount observed in excess of the amount expected by chance for
an independent set of pairs of the same size. Overall excess mutual information was computed by weighing
excess information in buried and exposed positions according to the probability of burial or exposure.

Second, looking at the overall mutual information for the tertiary pairs and comparing

it to what would be expected given the sample size for the set of pairs including short-range

interactions, we see again that the tertiary pairs contain slightly more information. At any sample

size, the mutual information expected given the tertiary distribution is about 0.002 bits greater

than that expected given the larger distribution.

Analysis of pairwise information by secondary structure

Next, we studied the dependence between mutual information and secondary structure.

Focusing on the tertiary contacts we divided the contacts into subsets according to secondary

structure type: strand-strand, helix-helix, and strand-helix. As a reminder, this dataset was created

for threading purposes, and does not include loop positions. The number of pairs in each class are

shown in Table 7.6.

Following the analysis in Section 7.3.3, we compared the amount of mutual information

for each subset to the amount that would be expected if contact patterns exhibited pairwise in-
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dependence. We estimated the amount expected assuming pairwise independence and given the

sample size by permuting the order of observation of the second amino acid relative to the �rst. As

described in Section 7.3.2, this process was repeated for 500 random permutations. To study the

dependence between mutual information and exposure, we conditioned the mutual information on

exposure as follows. We divided each set of contacts into buried and exposed subsets, according

to a threshold on the solvent exposure of the most-buried residue in the pair. For both buried and

exposed subsets, we measured the observed mutual information and estimated the expected mutual

information. We arrived at an overall value by computing a weighted average between buried and

exposed mutual information by sample size.

For each secondary structure class, we computed excess mutual information, the di�erence

between the mutual information observed and expected assuming pairwise independence. The

excess mutual information was conditioned on exposure for a range of exposure thresholds. This

data is shown in Figure 7.11.

The �rst point to notice on this graph is that all classes of secondary structure contacts

have excess mutual information. However, helix-helix contacts are the least-informative, while

strand-strand contacts are the most informative by far. This corroborates earlier work that contacts

can be meaningfully partitioned according to secondary structure type, and contacts between �-

strands are most signi�cant [30]. Another interesting point is that strand-strand contacts seem far

more dependent on exposure than other types of contacts; while the other curves are fairly at,

give or take noise, the strand-strand curve exhibits a pronounced dip at an exposure threshold of

6.

Table 7.6 further quanti�es the e�ect of secondary structure type on contact information.

This table reports the observed mutual information for contacts of each secondary structure type

to that of a same-sized sample drawn at random from the set of all pairs. While helix-helix contacts

have approximately 25% less information than an same-sized set chosen without regard to secondary

structure, strand-strand pairs have close to 50% more. It is clear that �-strand contacts are a rich
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Figure 7.11: Following the analysis in Section 7.3.3, this �gure shows the excess pairwise mutual infor-
mation by secondary structure.

source of pairwise contact information.

7.4 Contribution of special amino acids

Certain classes of contacts make sense for special biochemical reasons:

� First, cysteines frequently interact with other cysteines, as pairs of cysteines can form disul-

�de bonds. Also, cysteines often cluster around metal ions. Even harsh critics of pairwise

Mutual information (bits)
Number Expected given same-sized

Contact type of pairs Observed sample, all pairs
All pairs 22707 0.0537 0.0537

Strand-strand pairs 11266 0.0997 0.0651
Helix-helix pairs 6147 0.0635 0.0856

Strand-helix pairs 5294 0.0817 0.0930

Table 7.6: Mutual information according to secondary structure types: amount observed versus amount
expected for an equally-sized subset drawn at random and without replacement from all secondary structure
types. Comparing the observed mutual information to the information that would be expected from a
same-sized sample drawn independently of secondary structure provides some intuition on how strong the
pairwise interaction signal is for each secondary structure class.
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potentials accept this attraction as one genuine pairwise preference.

� Second, a few of the 20 amino acids carry a charge, and might reasonably be attracted to

residues of opposite charge and repulsed from residues of like charge. The residues classi�ed

as charged are arginine, aspartic acid, glutamic acid, lysine, and histidine. Note that histidine

is not always classi�ed as charged; it carries no charge at neutral pH, but adopts a charge

slightly below neutral pH.

Here, focusing on the tertiary pairs, we address the question of how much of the observed pairwise

mutual information can be explained by these special forces.

Note that when a special attraction exists between two residues, those residues interact

with increased frequency and those residues interact with others with decreased frequency. For

example, when cysteines interact frequently with other cysteines, they do not interact frequently

with the other nineteen amino acids. This aberrant lack of interaction is as much a source of

pairwise mutual information as the interaction between special residues. So, when measuring the

impact of special forces on pairwise mutual information, one must address both the increased

frequency of interaction where the force applies and the decreased frequency of interactions where

it does not. We have addressed this by comparing the mutual information between all residues

with the mutual information between residues not a�ected by the special forces. For example, to

examine the amount of pairwise mutual information explained by the cysteine-cysteine attraction,

I compare the pairwise mutual information of all twenty amino acids to that of the nineteen amino

acids that are not cysteine. My justi�cations for this approach are as follows:

� This observed change in mutual information acts as an upper bound for the signal resulting

from the force. If N bits of information are lost by removing cysteine from the frequency

tables, then no more than N bits of information can be attributed to the cysteine-cysteine

attraction. If N is surprisingly small, then this upper bound might be suÆcient to say if the

force is not signi�cant.
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� A separate test can be used to determine how much of the pairwise preference of the a�ected

residue is due to the special force. For example, one might measure the frequency with which

cysteine interacts with residues other than cysteine, and test if this frequency is signi�cantly

di�erent from the frequencies of amino acids other than cysteine. If those frequencies are not

signi�cantly di�erent, then one could state that cysteine has no contact preference besides

interacting with itself. Further, one could then argue that when one compares the mutual

information between all pairs with the mutual information between all pairs not including

cysteine, the di�erence is explained by the special attraction of cysteine to itself.

Tables 7.7 and 7.8 summarize the change in mutual information seen by removing special

residues. Table 7.7 describes the bits of excess information remaining after the special residues are

removed, and Table 7.8 compares the observed mutual information to the expected information in

a same-sized sample drawn from the tertiary dataset.

When the cysteine residues are removed from the dataset, the bits of excess mutual in-

formation drops by 11%, and the observed mutual information drops to 10% of what would be

expected from a same-sized sample drawn at random. While these percentages might not seem like

a large fraction, note that only 4% of the pairs involve a cysteine residue. With 4% of the interac-

tions representing 10% to 11% of the information, the interactions must be viewed as important.

For contrast, consider interactions involving charged residues. These interactions represent 23%

of the pairs in the dataset. When they are removed, the excess mutual information decreases by

32%, and the observed mutual information drops by 35% relative to a same-sized sample drawn at

random. If these 23% of the interactions involve 32% to 35% of the information, then the charged

residues have more pairwise signal than most residues. However, on a per-interaction basis, the

cysteines are a richer source of pairwise interaction.

When both charged residues and cysteines are removed, the number of pairs decreases by

26%. The bits of excess mutual information decrease by 46%, and the observed information drops

to 48% of the amount expected from a same-sized sample drawn at random. In summary, almost
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Mutual information (bits)
Pairs Expected assuming Bits

Analyzed Observed pairwise independence Saved
All pairs 0.0537 0.0116 0.0421

Removing Cysteine 0.0482 0.0108 0.0374
Removing charged residues 0.0370 0.0082 0.0288

Removing both 0.0299 0.0073 0.0226

Table 7.7: Mutual information of interacting residues including and excluding those subject to special
physiochemical forces: cysteine and the charged residues arginine, aspartic acid, glutamic acid, lysine, and
histidine. Observed mutual information is compared to the independent mutual information, that expected
given the sample size and assuming pairwise independence. Bits saved refers to the di�erence between these
two quantities.

Mutual information (bits)
Pairs Sample Expected given same-sized Bits

Analyzed Size Observed sample, all pairs Lost
All pairs 22707 0.0537 0.0537 0

Removing Cysteine 21843 0.0482 0.0536 0.0054
Removing charged residues 17510 0.0370 0.0566 0.0197

Removing both 16729 0.0299 0.0573 0.0275

Table 7.8: Mutual information of interacting residues including and excluding those subject to special
physiochemical forces: cysteine and the charged residues arginine, aspartic acid, glutamic acid, lysine, and
histidine. Observed mutual information is compared to the amount expected if same-sized samples are
drawn at random from the set of all pairs. The second quantity will usually be larger than the �rst, and
bits lost quanti�es this di�erence.

half of all pairwise information comes from just over a fourth of the data, and interactions involving

6 of the 20 amino acids.

To further assess the contribution of these special forces to pairwise mutual information,

we reduced the 20-letter amino acid alphabet to smaller alphabets according to special forces

exerted by the residues. These alphabets were as follows: cysteine and non-cysteine; positively-

charged, negatively-charged, and other; and positively-charged, negatively-charged, cysteine, and

other. For each case, we measured the excess mutual information for each alphabet as outlined in

Section 7.3.3. Figure 7.12 shows the excess mutual information for each alphabet as a function of

the exposure threshold.

According to Figure 7.12, of the 0.035 bits of mutual information observed in pairwise

interactions, 0.005 bits can be attributed directly to the cysteine-cysteine attraction. While 0.005
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Figure 7.12: To assess the amount of pairwise mutual information explained by special forces, we re-
duced the 20-letter amino acid alphabet to smaller alphabets according to the special forces studied: cys-
teine and non-cysteine; positively-charged, negatively-charged, and other; and cysteine, positively-charged,
negatively-charged, and other. Here, the excess mutual information in each case is shown as a function of
the exposure threshold.

bits might not sound like a large amount, recall from Table 7.8 that only 4% of the observed pairs

include a cysteine residue. Therefore, one twentieth of the data contains about one seventh of the

information.

When measuring the information according to charge, we experimented with whether or

not to consider histidine charged. Histidine is not charged at neutral pH, but becomes charged when

the pH drops slightly. In preliminary experiments, we compared the excess mutual information

obtained when we classi�ed histidine as charged to that obtained when we classi�ed it as neutral.

When we classi�ed it as charged, the excess mutual information was slightly larger (data not

shown). Therefore, for later work, we classi�ed histidine as charged.

In Figure 7.12, we see that charge accounts for somewhere between 0.007 and 0.010 bits of

excess mutual information. At the exposure threshold of 8, interactions between charged residues

account for approximately 0.0075 bits of excess mutual information, leaving the amount of pairwise

information not attributable to charge at 0.0275 bits. At this same threshold value, 0.0125 bits of
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excess information can be attributed to special forces. This is approximately one third of all of the

excess mutual information; there is only 0.0235 bits of excess mutual information beyond what can

be attributed to special forces.

7.5 Summary

The pairwise mutual information of interacting amino acids is quite low, less than one

twentieth of one bit. Tertiary contacts appear to be more informative than those that include

short-range interactions, but most of that apparent information is merely small sample-size e�ects.

Interactions involving Cysteine or charged residues represent almost half of the information in the

pairwise distribution, even though these pairs represent only one-fourth of all interactions.

If one considers contacts that involve short-range interactions, almost half of the appar-

ent pairwise information will be due to hydrophobic forces. Tertiary contacts are also a�ected by

hydrophobic forces, but the e�ect is far less pronounced: approximately one tenth of the infor-

mation in tertiary contacts can be attributed to hydrophobicity. The largest body of short-range

interactions studied was residues in adjacent turns of �-helices. While pairwise contact potentials

contain excess information to help predict these contacts, other approaches might be better. Mod-

ern secondary structure predictors are up to 78% accuracy [90], and �-helices are one of the easier

secondary structure classes to identify [152]. Instead of using weak information between short-range

contacts to predict �-helices, a better approach is to focus on the tertiary contacts and to leave

the helix prediction to a secondary structure predictor.

While mutual information between tertiary pairs is limited as a whole, it is inuenced

heavily by secondary structure type. Contacts between residues in �-helices carry the least in-

formation; at all exposure thresholds, they carry substantially less information than other types

of contacts. Contacts between �-strand residues are the most informative of all classes analyzed.

Thus, if the goal is contact prediction, the most sensible strategy is to build a specialized predictor
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for �-strand contacts and ignore the rest.
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Chapter 8

Prediction of �-strand contacts

As shown in Chapter 7, when we study amino acid contacts, the patterns of contacts between

interacting �-strands are particularly interesting. Not only do �-sheet contacts yield a stronger

signal than general contacts, that signal degrades less in the hydrophobic core of the protein, the

portion most critical for protein structure prediction. Furthermore, a �-strand contact is usually

comprised of more than one pair, so the contact information accumulates along the �-strand.

Contrast this to random coil, where two residues might be close enough to interact, but their

sequence neighbors might not be close enough to have any e�ect on each other. Thus, for the goal

of harnessing pairwise contact information for alignment validation, concentrating �rst on �-sheet

contacts is a sensible strategy.

This chapter describes study into antiparallel �-sheet contact potentials that I performed

in collaboration with Albion Baucom and Lydia Gregoret [56]. Our two �-strand contact potential

functions take as input two �-strand segments and associated input and estimate the probability

that their central residues would be in contact. Our �rst contact potential function simply estimated

probability of �-strand contact or no �-strand contact. The second divided up �-strand contacts

into a number of di�erent classes based on topology and accessibility patterns, and estimated the

probability that the inputs were in each class of contact or not in contact.
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Prior work in this area is outlined in Section 8.1, while Sections 8.2 and 8.3 describe our

�-strand contact potential functions. Our �ndings are reported in Section 8.4 and summarized in

Section 8.5.

8.1 Related work

While �-helices and �-sheets exist in proteins in approximately equal proportions [193],

�-sheets are more of a mystery. Scientists are never certain whether to consider them secondary

or tertiary structure phenomena. On one hand, they feature long-range tertiary contacts. On

the other hand, �-strands are secondary structure elements, though they do not exist outside of �-

sheets. Recent evidence suggests that �-strand formation is the �rst step in �-sheet formation [164];

prior beliefs were quite di�erent[34]. Unlike all-� proteins, all-� proteins are diÆcult to study and

to design [131]. Secondary structure prediction is harder on �-strands than �-helices [152]. While

amino acid �-helix propensities are easy to estimate and apply, �-strand propensities are more

complex. The stability of an amino acid in a �-strand depends on whether the strand is an edge

strand or in the interior of the sheet [121], whether it is position is hydrogen-bonded to neighboring

residues [168], whether the sheet is parallel or antiparallel [121, 80], and the type of amino acids

nearby [193, 138]. Yet there is consensus that �-strand residues exhibit distinct preferences in

pairwise interactions.

The seminal work in �-strand contact prediction was published by Tim Hubbard [75].

Under Hubbard's system, contact was predicted on the basis of one residue on the �rst �-strand

and a �ve-residue segment on the second, a subset of the information used by my predictor. With

this information Hubbard constructs propensities on �-strand contacts, and uses these propensities

to score potential contacts. Hubbard says little about exactly how these propensities are computed.

Many authors have observed di�erent amino acid residue potentials in di�erent topologies [110, 95,

121]. In a similar vein, Hubbard considers a number of distinct contexts separately: whether the
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strands are parallel or antiparallel, and whether or not the central residues are hydrogen-bonded.

Hubbard used his �-strand contact potentials for successful protein structure prediction

in the CASP1 contest [76]. He made ab initio predictions by using PHD [152] to locate possible �-

strands, and used his potential function to assemble these �-strands into a protein structure. In the

fold recognition section, Hubbard used HMMer HMM software [43] to align the target sequences to

existing folds and used his �-strand potential function to validate and select candidate alignments.

Approximately �ve years after Hubbard's publication, Zhu and Braun published a work

quite similar to Hubbard's [197]. In their work, they divided �-strand contacts into four subsets

based on if the strands are parallel or antiparallel and whether or not the central residues were

hydrogen-bonded. They then measured the frequencies of each pair of amino acids in each of the

following positions, as illustrated by Figure 8.1: i and j, i and j � 1, and i and j � 2. They used

these frequencies as statistical energies. They do not cite the Hubbard paper, and were perhaps

not aware of its existence.

Anders Krogh applied neural networks and �-strand contact prediction to ab initio struc-

ture prediction [101]. He slid two windows of nine residues along proteins, using neural nets to

predict if the central residues represented a �-sheet contact pair. He did not con�ne his analysis

to known �-strands, but instead trained his neural nets to distinguish �-strand contact pairs from

everything else. He was surprised to �nd little correlation between contents of �-strands in con-

tact. However, note that unlike others, Krogh used one network to represent all �-strand contacts.

Perhaps his lack of observed signal was due to attempting to capture various distinct signals with

one single model.

8.2 Inputs to the �-strand contact potential functions

All data used for this work has been developed in the Gregoret lab by Albion Baucom

and Lydia Gregoret [56].
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1aak 1aan 1aba 1acf 1add 1ade 1amp 1aor 1apa 1arc
1asq 1ast 1atl 1atp 1bam 1bbp 1bcx 1bec 1bhp 1bia
1bmd 1bnd 1bnh 1bov 1bpb 1btn 1byd 1cbg 1cca 1cdc
1ceo 1cew 1chd 1chm 1clc 1cmc 1cpt 1csn 1ctf 1ctm
1ctu 1cxi 1cyx 1daa 1dea 1dfn 1dhr 1dpg 1dri 1dsb
1dts 1dup 1dyn 1eaf 1edt 1eny 1epb 1esl 1ezm 1fba
1�e 1�v 1fna 1frd 1frn 1fxd 1gal 1gar 1gca 1gcb
1gd1 1gky 1goh 1gox 1gp1 1gpc 1gpm 1gpr 1grj 1gse
1gtq 1han 1hip 1hmy 1hny 1hoe 1hpl 1hpt 1hqa 1htp
1hur 1hxn 1hyh 1hyl 1ino 1irk 1knb 1kpt 1lat 1lba
1lcp 1lfa 1l� 1lla 1llo 1ltt 1mat 1mdc 1mdt 1mhl
1mla 1mml 1mmr 1mol 1mpp 1msa 1msc 1mup 1nar 1nba
1nci 1nfp 1npx 1nsd 1oac 1omp 1onc 1opb 1opr 1otf
1otg 1ova 1ovb 1oxa 1pbn 1pbp 1pda 1pea 1pfk 1pgx
1phh 1php 1pht 1pii 1plq 1pne 1pnf 1pnk 1poc 1pox
1prn 1psp 1ptr 1pya 1pyd 1qor 1rbp 1rcb 1rec 1reg
1rhd 1rib 1ris 1rnb 1rsy 1rtp 1rve 1sac 1sbp 1sca
1sce 1ses 1shb 1shg 1slt 1smn 1smp 1spa 1sts 1tca
1tcs 1ten 1tfd 1tgx 1the 1tie 1tif 1tig 1tml 1tnd
1tpl 1trb 1trh 1trk 1tup 1ubq 1udh 1urn 1vca 1vcc
1vhh 1vmo 1vrt 1vsf 1wap 1wsy 1xad 1xxa 1xyz 2aai
2acu 2ak3 2ayh 2aza 2bbk 2bop 2btf 2cbe 2cht 2ci2
2cmd 2cpl 2ctv 2cym 2fcr 2fke 2fxb 2glr 2glt 2gn5
2gsq 2had 2hft 2hhm 2hip 2hpd 2hpr 2kau 2lao 2liv
2ltn 2mad 2mcm 2mnr 2msb 2nck 2nrd 2olb 2oxi 2pab
2paz 2pf2 2phl 2phy 2pia 2pk4 2por 2reb 2rhe 2rn2
2rsl 2rsp 2sar 2scp 2sil 2sn3 2sns 2sod 2stv 2tgi

2tmd 2trx 3adk 3b5c 3cd4 3chy 3cox 3dfr 3dni 3gap
3grs 3hsc 3il8 3lad 3ovo 3rp2 3rub 3sc2 3sdp 3tgl
4blm 4bp2 4cla 4fgf 4gcr 4htc 4icd 4tms 4ts1 5cts
5dfr 5er2 5fbp 5fd1 5fx2 5gst 5hvp 5pep 5rub 5sga
5tnc 6ebx 6lyz 6taa 7enl 7lzm 7nn9 7pcy 7tim 821p
8acn 8atc 8cat 8cpa 8cpp 8dfr 8fab 8gpb 8i1b 8rxn
8tln 9abp 9ldt 9pap 9pti 9rnt 9rsa 9wga 9xia

Table 8.1: Contents of the Gregoret-Baucom dataset [56]
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Figure 8.1: Diagram of the windowing terminology

The protein structure dataset used for these experiments contains 339 proteins with a

maximum of 30% homology. All structures have a resolution of 2.3 angstroms or better, and all

redundant chains were removed from the protein structure de�nition. The structures contained in

this dataset are listed in Table 8.1.

In addition to the set of structures, Baucom and Gregoret have provided us with topologi-

cal accessibility measurements for all proteins in the set. Topological accessibility measures solvent

accessibility by stripping o� the side-chains and using a sphere of somewhat larger diameter com-

pared to what is used in standard accessibility computations; the standard calculations use a sphere

that approximates the size of a water molecule..

The primary input for the potential function is sequence data. Given two �-strand residues

which might be in contact, we extracted a window of �ve residues from each strand, centered at the

possible contact pair. These central residues are referred to as i and j, and the windows containing

them are referred to as the i-window and j-window. By convention, the i-window appears in the

sequence before the j-window. The residues in the i-window are referred to, in sequence order, as

i-2, i-1, i, i+1, i+2, and the residues in the j-window are referred to as j-2, j-1, j, j+1, j+2. This

terminology is illustrated in Figure 8.1.

While these windows represent known �-strands, not all ten residues are required to be
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�-strand residues. Both i and j must be �-strand residues, and both windows must contain at least

two additional �-strand residues. This permits making predictions near the end of strands and on

short strands. A further note is that this predictor did not address �-bulges; all strands used in

this investigation were unbulged.

In addition to the sequence data, we looked at certain environmental data: accessibility,

strand membership information, and chain separation, the number of residues between i and j in

the protein sequence.

8.2.1 Representation of the sequence data

Neural networks, described in Section 7.2.1, expect that each input represents a distinct

signal, and di�erent values of that input represent di�erent strengths of the signal. Thus, each

input should have one distinct meaning rather than each value of the input having a distinct

meaning. For example, if input i was to represent an amino acid i with value 1 representing i =

Ala, value 2 representing i = Arg, and so forth, that would not be a good representation. A better

representation is to have 20-input bit vector to indicate which amino acid residue i is: bit 1 is set

if i = Ala, bit 2 is set if i = Arg, and so forth. Another reasonable representation is to select a set

of characteristic properties to describe each amino acid. Rather than seeing the amino acid type,

the net would see a set of values describing properties of that amino acid.

Both of the good representations described above have pitfalls. For the characteristic

property representation, the properties must be chosen wisely. If the relevant information is not

in the property set, neural net performance will su�er. The pitfall of the bit vector representation

is that it leads to a lot of inputs, and hence a lot of free parameters. Unless the training set is

very large, the net might not have enough data to estimate all of the free parameters, and thus

might not be able to learn as well. Overall, the best course of action is to try both representations

and choose the one which works better. Preliminary work has suggested that the representative

property method is better for this problem. We have used a set of twelve properties hand-picked by
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Lydia Gregoret, listed in Table 8.2. Later experiments used a reduced set of six properties selected

from the twelve by Lydia Gregoret (data not shown). This reduced set of properties was referred

to as properties lite.

8.2.2 Additional inputs

In addition to sequence data, we experimented with including as inputs topological acces-

sibility, strand membership information, and chain separation, the distance on the protein chain

between the i and j residues, measured in number of amino acids.

Note that determining accessibility and strand membership requires structural informa-

tion. Since this potential function was to be used in a structure prediction context, actual acces-

sibility and strand membership were not technically legitimate inputs. The following, however,

would be legitimate inputs:

� Predicted accessibility and strand membership, as generated by a program such as PHD [152],

or

� Predicted accessibility and strand membership of the target structure, as inferred from the

template structures and a predicted alignment of the target and template sequences.

Because both options add complexity to the experimental design, we decided to start with the

\cheating inputs", the actual accessibility and strand membership information, to see if they were

useful. Because the predicted values would probably not be as informative as the actual values,

we decided that we would incorporate strand membership or accessibility predictions only if the

actual inputs gave the potential function a decided edge.

8.2.3 Construction of the false examples

Construction of the false examples is designed to mimic the natural protein folding process

of each segment of the sequence choosing to be in contact with some other segment. For each actual
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Amino Acid

Property A R N D C E Q

Anti-parallel �-Sheet Propensity 0.9 0.82 0.54 0.54 1.19 0.85 0.85

Aromaticity � 0.0 0.0 0.0 0.0 0.0 0.0 0.0

�-Strand Propensity � 0.83 0.93 0.89 0.54 1.19 0.37 1.1

�-Turn Propensity � 0.67 0.95 1.56 1.46 1.19 0.74 0.98

Bulkiness 11.5 14.28 12.82 11.68 13.46 13.57 14.45

Charge � 0.0 1.0 0.0 -1.0 0.0 -1.0 0.0

Free Energy of Transfer 1.24 0.24 0.77 0.71 1.6 0.65 0.65

H-Donor 0.0 1.0 1.0 0.0 0.0 0.0 1.0

H-Acceptor 0.0 0.0 1.0 1.0 0.0 1.0 1.0

Parallel �-Strand Propensity 1.0 0.62 0.53 0.53 1.13 0.48 0.48

Polarity � 8.1 10.5 11.6 13.0 5.5 12.3 10.5

Volume � 0.68 0.67 0.59 0.56 0.59 0.63 0.64

Amino Acid

Property G H I L K M F

Anti-parallel �-Sheet Propensity 0.56 1.12 1.54 1.26 0.82 1.19 1.4

Aromaticity 0.0 0.5 0.0 0.0 0.0 0.0 1.0

�-Strand Propensity � 0.75 0.87 1.6 1.3 0.74 1.05 1.38

�-Turn Propensity � 1.56 0.95 0.47 0.59 1.01 0.6 0.6

Bulkiness 3.3 13.69 21.4 21.4 15.71 16.25 19.8

Charge � 0.0 0.5 0.0 0.0 1.0 0.0 0.0

Free Energy of Transfer 1.24 1.01 1.48 1.36 0.0 1.3 1.36

H-Donor 0.0 0.5 0.0 0.0 1.0 0.0 0.0

H-Acceptor 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Parallel �-Strand Propensity 0.79 0.38 2.6 1.42 0.62 1.13 1.17

Polarity � 9.0 10.4 5.2 4.9 11.3 5.7 5.2

Volume � 0.58 0.64 0.83 0.83 0.74 0.71 0.74

Amino Acid

Property P S T W Y V

Anti-parallel �-Sheet Propensity 0.42 0.87 1.3 1.4 1.68 1.53

Aromaticity � 0.0 0.0 0.0 2.0 1.3 0.0

�-Strand Propensity � 0.55 0.75 1.19 1.37 1.47 1.7

�-Turn Propensity � 1.52 1.43 0.96 0.96 1.14 0.5

Bulkiness 17.43 9.47 15.77 21.67 18.08 21.57

Charge � 0.0 0.0 0.0 0.0 0.0 0.0

Free Energy of Transfer 0.89 1.01 0.95 1.24 0.83 1.42

H-Donor 0.0 1.0 1.0 0.5 1.0 0.0

H-Acceptor 0.0 0.0 0.0 0.0 0.0 0.0

Parallel �-Strand Propensity 0.35 0.7 0.59 1.17 1.08 2.63

Polarity � 8.0 9.2 8.6 5.4 6.2 5.9

Volume � 0.7 0.58 0.66 0.71 0.68 0.79

Table 8.2: The amino acid property set by Webster, Nambudripad, and Buturovic [190]. � denotes
properties retained for the properties lite property set.
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i-2 i-1 i i+1 i+2  j"-2 j"-1 j" j"+1 j"+2
(false strand contact)

(true strand contact, wrong register)

ii-1i-2 i+1 i+2

j"-2 j"-1 j" j"+2j"+1

j’j’+1j’+2 j’-1 j’-2

i-2 i-1 i i+1 i+2  j’-2 j’-1 j’ j’+1 j’+2

Generation of False Examples

Figure 8.2: Generation of the false examples, showing two di�erent types of false contact

i residue, another j residue chosen at random according to constraints:

� Both i and j are �-strand residues,

� i and j are part of the same protein, and

� According to the DSSP program [88], i and j are not interacting in a �-sheet contact.

Data from i and j are then combined to form a single false example. Note that no preference is

given to the location of j relative to the actual contacts of i: this false contact could involve two

�-strands that are not in contact, or two �-strands in contact with a di�erent register shift. These

di�erent types of false examples are illustrated in Figure 8.2.

8.3 Architecture of the potential function

The neural net was trained to distinguish true from false examples based on the input.

Both true and false examples are both divided into a training set and cross-training set, where the

training set was used for adjustment of the weights. The cross-training examples were not seen

during training, but overall cross-training performance was used to adjust the learning rate and to

decide when to stop training. No separate validation set was used. The training algorithm used
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softmax and a maximum likelihood learning rule [18], an adaptive learning rate [63], and weight

decay [14].

8.3.1 Motivation for classifying �-strand contacts

Initial work was done with a potential function that estimated two values: the probability

that the strands were in contact, and the probability that they were not. However, early results

showed that the actual contact was often not the top scoring one; often the top score went to the

(i, j+1) or (i, j-1) contact [12]. On consideration of neural net learning of the parity function, this

behavior made some sense.

Given two binary-valued inputs, their parity should be 1 if both input values are the same

and 0 if they are di�erent. This simple function cannot be learned by a single layer neural net.

The equation used by a single layer neural net is w1x + w2y + b � threshold: the equation of

a line if there are two inputs or of a hyperplane if there are three or more inputs. As shown in

Figure 8.3, there is no single line that can separate inputs for which parity=0 from those for which

parity=1. A neural net with hidden units can address the parity problem, but assuming a �nite

number of training examples, the hidden layer will not be able to address other functions as well. If

the problem posed to the neural net involves some intricate function on top of the parity function,

the neural net might not be able to learn either part of the problem.

1
0
1 11

parity=0
parity=1
Legend0

Summary of the parity problem

0
0
1
1

0
1
1
0

Input values
yx parity

x

y

1

Problem: there is no single line that separates the two cases

Figure 8.3: Illustration of why the parity problem cannot be solved by a single layer neural net
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The characteristic of �-sheets that makes this problem analogous to the parity problem

is the bipolar nature of many �-strands. Due to packing constraints, the side chains of adjacent

�-strand residues point in opposite directions; if you think of a �-sheet as a horizontal surface,

alternate rows of side chains point up and point down. Many �-sheets are exposed to the solvent

on one side only, and the strands of these sheets are characterized by an alternating pattern of

hydrophobic and hydrophilic side chains. If two � strands are correctly oriented, then hydrophobic

residues are in contact with other hydrophobics and hydrophilics are in contact with other hy-

drophilics. Given that (i, j+1) or (i, j-1) often has a higher score than (i,j), the neural nets did

not seem to be learning this pattern.

To address this problem, we divided the realm of �-strand contacts into classes based

on exposure and topology. We then built neural nets to estimate the probability with which an

example belongs to each class.

The classes of contacts

Each window was classi�ed as edge, buried, or bipolar. The central residues were classi�ed

as buried or exposed. With two strands, this classi�cation scheme yields six attributes per window

pair. Not all combinations of inputs occur naturally; for example, if a window is buried, the central

residue will always be buried. Additionally, not all combinations occur frequently enough to permit

statistical analysis. Certain less-frequent classes were added to the \other" class. The �nal list of

classes is as follows:

� Both the i-window and j-window are bipolar; residue i is exposed.

� Both the i-window and j-window are bipolar; residue i is buried.

� The i-window is bipolar, the j-window is an edge strand, residue i is buried.

� The i-window is bipolar, the j-window is on an edge strand, residue i is exposed.

� The i-window is on an edge strand, the j-window is bipolar, residue j is exposed.
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� The i-window is on an edge strand, the j-window is bipolar, residue j is buried.

� Both the i-window and j-window are buried.

� The i-window is buried, the j-window is on an edge strand.

� The i-window is on an edge strand, the j-window is buried.

� Both the i-window and j-window are on edge strands.

� Other

In addition to the eleven classes shown, there is one \false class" representing �-strands

not in contact. This is equivalent to the false set in the previous experiments. When the classi�er

is presented with an input example, it estimates the probability with which the example falls into

each class, including the false class.

Handling of unlabeled true examples

As labeling true examples was a manual and labor-intensive process, most of the true

examples were not labelled. Therefore, there were three categories of input examples:

1. Examples known to represent false contacts,

2. True examples of known classes, and

3. True examples of unknown classes.

During training, when the neural net was presented with an example from some known class, it

adjusted the weights according to the standard learning rule. When it is presented with an unknown

example, it estimates the probability with which the example belongs to each class and adjusts the

weights according to the normal learning rule scaled by the estimated probability with which the

example belongs to the class. This scheme is called competitive learning [79].
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8.4 Results

8.4.1 Results on true or false classi�cation

This section summarizes the results obtained with a potential function that estimates two

values: the probability that the inputs represent a �-strand contact and the probability that they

do not.

We built potential functions for antiparallel �-strand pairs with a variety of inputs, and

tested their performance at discriminating between true and false examples in the cross-training set.

These results are summarized in Table 8.3. Note that all results shown in this table were obtained

with the same number of training examples. One would expect results obtained with smaller input

sets to perform better, as there are more training examples per free parameter. However, the strong

performance shown by chain separation is signi�cant.

The strong performance of chain separation is likely an unintended outcome of false set

construction. As stated earlier, false contacts are built by taking one residue i and choosing at

random some residue j from the same protein such that the two residues must both be in some �-

sheet contact, but cannot be in contact with each other. Close residues are more likely to interact

than distant neighbors; this is the motivation behind studying chain separation [90]. So, true

contacts are likely to be close in the sequence compared to randomly-chosen residue pairs. Thus,

the neural net was probably relying too heavily on chain separation: predicting the likelihood of

contact solely on the closeness of i and j. While it might be true that distant residues are less

likely to interact than close ones, predicting solely on this point would not yield a useful potential

function. While we chose to not using chain separation as an input, a reasonable workaround would

be to build a false set with the same chain separation probability distribution as the true set.

While strand membership seems to be a powerful input, this is probably also an unintended

consequence of experimental design. Examination of the weight matrix showed that the neural nets

focus on strand membership whenever it is available. This led us to suspect that the neural nets
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Properties Accessibility
Strand
Membership

Chain
Separation

Number
of inputs

Accuracy in
True-False
Discrimination (%)

X X X X 151 87.45

X X X 150 81.44

X X 140 62.11

X X X 131 86.45

X X 130 80.71

X X 121 80.74

X 120 63.32

X X 11 86.73

X 10 76.10

X 1 80.53

Table 8.3: Percent accuracy in true/false contact discrimination with a single class for true contacts. Each
row represents a separate experiment, and each X indicates features used in that experiment.

were merely looking for symmetry between the i-window and j-window strand membership. For

example, with antiparallel strand pairs, if residues i through i+2 were strand members and residues

j-2 through j were strand members, then then the two strands might contain three interacting

residues. In contrast, if the strand members were i-2 through i and j-2 through j, the only place

the windows could make contact is at i and j and strand contact would not be likely. Again,

while this strand membership pattern might yield genuine information, it would not yield a useful

potential function.

Finally, we noted that accessibility did not appear to be a valuable input. As shown in

Table 8.3, results of experiments including accessibility were not very di�erent from results of the

analogous experiments not including accessibility. Further note that these results were obtained

with actual accessibility. As described in Section 8.2.2, we planned to use actual accessibility in

preliminary work to see if it proved valuable; if so, we would replace it with predicted accessibility.

Since predicted accessibility would likely not be as informative as actual accessibility, we decided

to omit accessibility in future experiments.

Therefore, in later work, we chose to concentrate on patterns of amino acid identity or

properties, and omit strand membership, chain separation, and accessibility.
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8.4.2 Results with multiple classes of true contacts

This section summarizes the results obtained using a potential function that estimates

contact probability according to multiple classes of contacts.

As described in Section 8.4.1, we had decided to no longer use chain separation, strand

membership information, or accessibility because earlier work suggested they did not yield a useful

potential function.

To reduce network complexity, we reduced the size of the property set by selecting from the

twelve inputs six which seemed most useful and representative in biological terms. This properties-

lite set was chosen by Lydia Gregoret, and initial results (not shown) suggested it was as e�ective

as the larger property set [12]. In addition to properties-lite, we experimented with two other

representations of sequence information: a bitvector representation of amino acid identity, and

polarity. Polarity is one of the properties in the properties-lite set, and one which should be

especially valuable. Beta-sheets frequently have a bipolar structure, with alternating hydrophobic

and polar residues. In bipolar sheets, polar residues are in contact with other polar residues and

hydrophobics are in contact with other hydrophobics. To estimate how much of the observed

information could be attributed to polarity, we experimented with using only polarity. Note that

the polarity value used was not binary, so more information was conveyed than simply if a residue

was hydrophobic or polar.

Table 8.4 presents the accuracy of the potential functions in discriminating true from false

contacts in the cross-training set. Here, the probability of contact was obtained by summing the

probability for each of the classes of contact.

Overall performance was modest. Looking at Table 8.4, and comparing them with those

in Table 8.3, we see that the potential function with that worked with multiple contact classes

did not achieve the same performance as the one that used a single class of contact. The simpler

potential function achieved an accuracy of 63% when using as input only data derived directly from
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Accuracy in True-False
Inputs Discrimination (%)
Properties-lite 59.26
Amino Acid Identity plus Properties-Lite 62.84
Amino Acid Identity 61.91
Polarity 62.06

Table 8.4: Percent accuracy in true/false contact discrimination with multiple classes of true contacts.

the sequence; no results with the more complex output function achieved quite the same level of

performance.

However, the results were signi�cantly better than might be obtained with random guess-

ing. When presented with one true and one false example, the potential value assigned a higher

value to the true example more than 50% of the time. Further, the potential function seemed to be

able to select the contacting residues (i; j) over the pairs with one register shift such as (i; j�1) [12].

Finally, comparing the polarity experiment with the others suggests that most of the

information the network was learning was patterns in polarity. This suggests that the predictor

had learned about the bipolar nature of �-sheets, but might not have learned more past that.

8.5 Summary

We succeeded in harnessing some �-strand contact information, as the potential functions

performed substantially better than random guessing. However, the information gain was not

overwhelming. In retrospect, this is consistent with the results shown in Chapter 7: there is

genuine signal in pairwise potentials, but the amount of information is limited.
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Chapter 9

Prediction of alignment position

reliability

Accurate alignment of a target protein sequence to a family of homologs is a fundamental problem

in computational molecular biology. Fundamental might seem like a strong word, but its use here is

appropriate. The Webster dictionary de�nition of \fundamental" includes the following: \serving

as a basis supporting existence or determining essential structure or function". If the family of

homologs includes a template sequence of known structure, the alignment of the target and template

sequence yields a prediction of the structure of the target protein and serves as a starting point for

homology modeling. Multiple alignments are used to predict secondary structure [152], functional

residues [134], evolutionary relationships [167], to identify new homologs [144], and to locate genes

in new genomes [102]. Unfortunately, alignment methods sometimes make mistakes, as seen in

Chapter 6. Any mistakes made in the alignment will be reected in its application. A system that

would be of tremendous practical value in molecular biology is one that studied an alignment in

which some new sequence had been added to a family, and produce a meaningful measure of the

reliability of each section of the alignment, preferably without requiring access to the alignment
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program. No good system exists today.

There are at least three good reasons to investigate predicting reliability of alignment

columns. First, it o�ers the option to post-process and hopefully improve predicted alignments;

unreliable regions can be removed, and core regions predicted as unreliable can be realigned. Sec-

ond, estimates of column reliability can be incorporated into systems that build on predicted align-

ments, such as tools for homology modeling or predicting functional residues. Such tools currently

weight all alignment positions equally. Third, study of factors that suggest an unreliable alignment

position permit us to assess where alignment systems make mistakes, in hopes of improving the

alignment systems.

We have explored one complex and three simple systems for predicting unreliable regions in

alignments of remotely-related target and template sequences, aligned by hidden Markov models.

The simple systems are single physical or statistical quantities considered to reect alignment

reliability.

1. The log odds ratio given the amino acid type of the residue aligned. The log odds ratio relates

the conditioned probability of the residue given its amino acid type aa and given the alignment

column to the unconditioned probability of that amino acid type: log
�
P (aajcolumn)

P (aa)

�
. The

log likelihood ratio reects how much more likely the residue is to appear in the column given

the other residues already there.

2. A similar log likelihood ratio derived from the HMM forward-backward table, reecting the

posterior probability of the residue to align to the column given all paths through the model.

This posterior decoding column cost is related to the posterior-decoded alignments we saw in

Chapter 5. In Chapter 5, we saw that when we compute alignments according to posterior

decoding information, examining all paths through the model rather than the single best-

scoring path, alignment quality is substantially improved over the standard method. In this

chapter, we examine the impact of using this posterior decoding information to validate
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alignments, whether or not they were built with posterior decoding.

3. The distance in the template sequence to the nearest helix or strand residue. This measure

follows the intuition that long loop regions are less conserved in evolution, and are more

diÆcult to model and align.

The complex system is a neural network trained to predict the reliability of an alignment column,

containing the above inputs and others. We have tested the four systems by using them to predict

alignment column reliability, removing those columns predicted as unreliable, and measuring the

change in alignment scores. On hard remote homologs, our systems removed 73.5% of the unreliable

positions, while preserving 81.8% of the accurate ones. This yielded a 15% improvement in overall

alignment quality over alignments estimated by our best methods.

9.0.1 Related work

Though few such systems have even been proposed, there are brave souls who have ad-

dressed this problem.

Jong Park [146] developed a tool that predicts reliable regions in a pairwise alignment

based on the sequence similarity in regions of the alignment. This system was never demonstrated

to be e�ective; with so little information at its disposal, it is not clear that it would be. According

to its author, it is no longer under development [142].

Kimmen Sj�olander developed a system that predicts reliable regions in the alignment of

a template sequence on the basis of a log likelihood ratio. For each alignment column i where

some residue of amino acid type aaj from the target sequence is aligned to the column, the system

estimates � log
�
P (aaj jcolumni)

P (aaj)

�
where P (aaj jcolumni) is the conditioned probability of aligning

amino acid aaj to column i given the alignment data in the column, and P (aaj) is the uncondi-

tioned probability of amino acid aaj . A threshold on this log likelihood ratio was then used to

identify and remove the less reliable positions. Though this system has been described in conference
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presentations, it is not published in any conference proceedings or elsewhere in the literature [165].

Two authors have observed that seed alignments contain regions of greater conservation

and regions of greater variability, and that alignment to the variable regions should be regarded

with greater suspicion. Dopazo [35] suggested a method to quantify variability within a sequence

alignment based on the PAM distance between each of the aligned sequences, and demonstrated

it on one alignment. Again, this is hardly a convincing demonstration. He suggested that his

measure might be useful for gauging alignment reliability, but did not apply it. This work is not

heavily cited in the literature, and it does not appear that any other author has applied his measure

to alignment reliability. Laurio [106] observed that when an HMM estimated from an alignment

is used for detecting remote homologs, the high variability alignment regions do not seem to be

informative; the states at corresponding model positions can be replaced with states with default

characteristics without any adverse impact on fold recognition accuracy. This suggests that the

important information in the high variability alignment regions is not their contents, but their

length. Note that the focus of Laurio's work was on fold recognition accuracy rather than alignment

reliability. However, the work depends on alignment reliability. Within Laurio's framework, the

structure of a target sequence is predicted on the basis of the score of its alignment to HMMs of

various structural families.

Vingron and Argos [189] proposed a system that estimates the reliability of each position

in an alignment according to the score of the best alignment that excludes that position. Such

second-best alignments are referred to as near-optimal alignments. The motivation to study them

is the intuition that when a sequence is aligned, there may be regions of the sequence for which

many distinct alignments are likely, and alignment of such regions should be viewed with more

skepticism than those for which there is one optimal alignment. Vingron and Argos showed their

reliability index to be e�ective on �ve alignments with pairwise identities ranging from 39% to

16%, built with free end gaps and aÆne internal gap costs. While �ve alignments is not enough

for a convincing demonstration, their results sparked further interest. Zuker [200] extended it to
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local alignment. Naor and Brutlag [129] studied the statistics of near-optimal alignments, and

observed that the regions included in the greatest number of alignments tend to correspond to the

conserved core regions of the protein. Yet central to all of these works is the assumption that a high

reliability index implies an accurate position, rather than a high-scoring but misleading position.

Mevissen and Vingron [120] tested this assumption on 109 alignments: 19 with sequence identity

in the range 25-30%, 46 in the range 30-40%, and 44 in the range 40-50%. They observed that

when the overall sequence identity is 30% or greater, positions with a high reliability index are

misaligned very rarely. In the 25-30% identity range, a strong score did not preclude misalignment,

though errors were more frequent at the positions with lower reliability indices. They did not

address alignments with less than 25% identity. At this time, 25% identity is regarded as near the

top end of the twilight zone [154], and homology within this range would constitute a comparative

modeling test rather than a fold recognition test [87]. Zhang et. al [196] took a similar approach

to post-processing alignments. Rather than omitting single positions found to be important to the

alignment according to the score, their algorithm assembles a �nal subalignment from regions that

are bordered by a substantial drop in alignment score. They presented a rigorous mathematical

basis for their system, but the system itself was only demonstrated on a few examples.

A number of groups have addressed near-optimal alignments and alignment reliability

by estimating forward-backward probabilities for each residue and position, the probability with

which the residue is aligned to the position, given all possible alignments [70, 123, 198, 183].

These forward-backward probabilities, described earlier in this chapter, are then used with the

Viterbi algorithm, or some close relative, to build a most-probable alignment. The alignment is

then truncated according to some threshold probability. This technique is referred to as posterior

decoding. Though it is more time-consuming than standard Viterbi alignment, it has been shown to

yield more accurate alignments [70]. As detailed in Chapter 5, our experience is that it aligns more

positions accurately than Viterbi, but su�ers somewhat from over-alignment, perhaps suggesting

that we have not found the optimal threshold value.
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Most recently, Yu and Smith [194] suggested that these forward-backward probabilities

can be useful to determine what positions in an alignment are most reliable. For each amino acid

aaj from the target sequence, aligned to some column i in the template alignment, they compute the

log likelihood ratio � log
�
Pfb(aaj jcolumni)

P (aaj)

�
, where P (aaj) is the prior probability of amino acid aaj

and Pfb(aaj jcolumni) is the posterior probability of aligning amino acid aaj to alignment column

i, given the posteriors calculated in the forward-backward table. They provided a mathematical

justi�cation on why this quantity should be useful, and demonstrated it on two test cases.

9.1 Methods

The goal of this work was to study alignments of hard, remote homologs, as aligned by

SAM, and to identify the reliable regions. The ultimate goal of this line of work is a general-

purpose predictor to identify the reliable regions of alignments built with any method. However,

any investigation toward a general method should start with a more speci�c method as a proof of

concept. We do hope that some of the lessons learned in this work apply to alignments produced

by other methods. However, that point has not been tested at this time.

9.1.1 Description of the dataset

The focus of this work was on hard remote homologs. As described in Chapter 6, the liter-

ature states consistently that many methods can align two close or moderate homologs accurately,

but as homology becomes more remote, accurate alignment becomes a greater challenge. For this

work, there are two good reasons to focus on remote homologs. First, \the twilight zone", now

described as below approximately 20% identity, is where contemporary alignment methods begin

to fail and where the next generation of improvements needs to be made. Second, if one is setting

out to identify accurate regions, there must �rst be inaccurate regions.

The dataset used for these experiments was described in Section 6.1.1. Briey stated, we
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identi�ed 200 pairs of structures with high structural similarity and low sequence similarity. High

structural similarity was determined by signi�cant structural superposition by three structural

aligners: DALI [68], VAST [51], and the Yale aligner [50]. Low sequence similarity was determined

by removing any pairs for which the FASTA pairwise aligner [148] could generate an accurate

alignment, where the criterion for accuracy was a shift score of 0.4 or better with the closest of the

three structural alignments.

As described in Section 6.1.1, we divided this set of 200 pairs into an optimization set of

130 pairs and a validation set of 70 pairs. The optimization pairs were used to develop this method,

and the test pairs were reserved for �nal system validation. As another validation step, we applied

the completed system to the 170 pairs of structures used to optimize SAM alignments as described

in Chapter 5. The purpose of this step was to compare the trimmed alignments in quality to the

alignments built with the methods described in Chapter 5.

9.1.2 Description of the alignments

Both global and local alignments produced by SAM tend to contain suspect regions, as

described in Chapter 5. Both types of alignments could bene�t from trimming. However, we

have focused on global alignment for two reasons. First, global alignments typically have better

optimal subalignment scores than local alignments, indicating that a greater number of positions

are aligned accurately with global alignment. Second, global alignments tend to contain more

inaccurate positions than local alignments; they need more trimming. Thus, global alignments

represent both greater need and greater opportunity for an alignment trimming system.

I have experimented with alignments built by two di�erent methods, using SAM. These

represent two of the best methods available for aligning remote homologs with SAM. The methods

used were as described below. All alignments were built with the w0.5 weighted build option.

1. Global alignments built with FSSP seed alignments and character-based posterior decoding

(the -adptyle 5 alignment option). As shown in Chapter 5, this is currently the best method
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available to generate alignments with SAM. A system which shows improvement on these tests

will have the distinction of improving our best methods.

2. Global alignments build with SAM-T99 seed alignments and the default Viterbi algorithm.

When SAM-T99 alignments are built, the methodology used is local Viterbi alignment with

the w0.5 weighted build. That methodology is \the workhorse", the way in which SAM

is used most often. This test has three merits. First, it represents more of a general test

than the previous one. Second, it provides the opportunity to study when \normal" SAM

alignments are in error, in hopes of improving the methods. Third, it can be applied even

when the structure of the template sequence is unknown.

While the ultimate goal in this line of research is a general-purpose prediction method, we

did not build one general-purpose predictor at this time. Rather, we built two sets of specialized

predictors for the two tests described above. In experimental design, there is often a tradeo�

between generality and performance. We recognize that a general-purpose predictor might never

match the performance of the predictors described in this chapter. However, building specialized

predictors for the two cases permitted us to better establish the proof of concept of this line of

research.

9.1.3 Training, cross-training, and validation alignments

The dataset described in Section 9.1.1 contains 200 pairs of protein structures with strong

structural similarity and weak sequence similarity. This set of 200 pairs was divided into an

optimization set of 130 pairs and a validation set of 70 pairs.

Note that each pair represents two alignment tests: aligning the �rst sequence to the sec-

ond and its homologs (Direction A), and aligning the second sequence to the �rst and its homologs

(Direction B). Thus, there were 260 alignments in the optimization set.

We trained our neural networks on the 130 Direction A alignments. These 130 alignments
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contained approximately 20,000 target residue alignment positions, or 20,000 data points. These

20,000 data points were divided at random into training and cross-training sets, with approximately

two-thirds of the data going to the training set. The training set was used to adjust neural network

weights. Overall performance on the cross-training set was measured after each training epoch,

and was used to select the best weight set and update the adaptive learning rate.

Once the neural network was trained, it was used to predict the reliability of the columns

of the 130 Direction B alignments. We then trimmed these alignments according to the predicted

reliability of each position, removing positions where some target sequence residue was aligned with

predicted reliability below some threshold value. We experimented with a number of threshold

values, and selected a �nal threshold value empirically. Scoring involved using the shift score to

compare each predicted alignment against three structural alignments of the same sequences, where

the structural alignments were produced by DALI, VAST, and the Yale aligner.

Next, we used the neural network and reliability threshold de�ned according to the op-

timization alignments to trim the validation alignments. We measured trimming performance by

scoring the initial alignments against structural alignments, removing alignment positions predicted

as unreliable, and scoring the trimmed alignments against the structural alignments. To score the

alignments, we compared each predicted alignment to structural alignments of the same sequences

as produced by the three structural aligners. For each comparison, we measured three quantities:

the shift score; alignment speci�city, the number of residue pairs aligned correctly as a fraction of

the number of residue pairs aligned; and alignment sensitivity, the number of residue pairs aligned

correctly as a fraction of the number of correct pairs.

As a �nal step, to better compare the trimmed alignments to the alignment-building

methodologies described in Chapter 5, we applied our trimming systems to those alignments. Here,

we used the shift score to compare the trimmed alignments to structural alignments produced by

DALI, and compared the trimmed alignments to others on the basis of the average shift score.

The single-valued predictors were developed using much the same system. As their de-
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velopment merely required estimating a threshold value, we estimated this value empirically on

the 130 Direction B alignments in the optimization set. Validation of the single-valued predictors

followed exactly the same procedure as that of the neural networks.

9.1.4 Neural network architecture and training

This section describes the methodology we used to train neural networks for estimating the

reliability of target sequence alignment positions. We described neural networks in Section 7.2.1.

For the work in this chapter, we trained neural networks to look at data representing a window of

alignment columns, centered on the column in question, and estimate the reliability of the alignment

of the target residue to the column. In the sections that follow, we describe the target reliability

value, the inputs to the neural network, the network architecture, and steps taken to minimize

complexity.

Target value for reliability prediction

For each predicted alignment, each position containing a target residue was assigned a

reliability score. This score was obtained by comparing the predicted alignment to the FSSP

structural alignment, and recording the shift column score. This measure is an intermediate value

in calculation of the shift score, as described in Chapter 4. For a column aligning two residues a

and b, the column score is computed as follows.

subscore(residue) =
1 + �

1 + jshift(residue)j
if shift(residue) de�ned

0 otherwise

column score = subscore(a) + subscore(b)

The column score ranges from -0.4 to 2.0, with higher values indicating greater reliability.

The neural network is trained to estimate the probability that the column was reliable,



179

where a reliable column is de�ned as one which is included in an optimal subalignment. In prelim-

inary work, I obtained a target probability from the column scores by estimating the probability

with which the column would be included in an optimal subalignment, given its column score.

According to preliminary analysis, this computation was as follows:

� When the column score is 0 or less, the column is never included. If a column has such a

score, then either it's the result of over-alignment or both residues in the column are shifted

by �ve or more positions.

� When the column score is 0.8 or higher, the column is always included. Columns with scores

in this range are either correctly aligned, or both residues are shifted by one position. Note

that among biochemists, a shift of 1 is often not regarded as serious, and can be construed

\stylistic" result of converting a high resolution atomic prediction of structural superposition

to a lower-resolution alignment [28].

� In other cases, the probability of a reliable column decreases rapidly as the column score

decreases. As shown in Figure 9.1, the square of the column score is a noisy but reasonable

approximation.

Alignment column information

The input to the neural net was a vector of information on a window of alignment columns,

centered on the column in question. Based on preliminary experiments, I started with a window

size of 15 alignment columns, centered on the column in question. The window size was optimized

in later steps.

Information was collected on each column of the predicted alignment, as described in

the following list. The data was derived, as indicated, from the input alignment or from the seed

alignment. The seed alignment is the alignment of the template sequence and its homologs to which
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Figure 9.1: Depicted is the probability that the column is included in an optimal subalignment as a
function of the column score. While this probability is not a smooth function, the square of the column
score is a reasonable approximation. Data for this �gure was obtained from 170 alignments built by SAM
with an early version of the w0.5 weighted build.

the target sequence had been aligned. In practice, we obtained it by removing the target sequence

from the input alignment.

Forward-backward information, included in the input set, is complex enough to merit a

few separate paragraphs. Forward-backward information reects the likelihood with which each

target sequence residue aligns to each column, given all possible alignments of target sequence and

seed alignment. This information was obtained by estimating a model from the seed alignment

with the w0.5 weighted build and using the grabdp program to generate a posterior-decoding

(*.pdoc) �le for the target sequence. This �le dumps out costs of aligning each residue to each

position, where the costs are estimated as a negative log of the posterior. Three sets of costs are

output: transition, match, and insert costs. Chapter 5 discussed posterior decoding to estimate

an alignment according to the match costs or transition costs. Posterior decoding with the -adp5

switch estimates alignments according to the match and insert costs, while posterior decoding with

the -adp4 switch estimates alignments according to the transition costs.

Match costs, the most intuitive, reect the cost of emitting the amino acid at each node in

the model, or aligning the residue at each column in the alignment. Insert costs reect the cost of
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inserting the residue before each column in the alignment. Together, match and insert costs reect

the alignment column where the target residue is most likely to appear.

Transition costs reect the cost of aligning the residue to each column in the alignment

given the model's transition parameters, or gap parameters. The di�erence between transition

costs and match and insert costs is that transition costs reect transition probabilities directly and

column probabilities indirectly, while the opposite is true for the others.

Not all values described below were available in all cases. When input values were not

available, we set the inputs to default values. The default values were selected in preliminary

experiments to approximate the midpoint of the experimental range.

The following list describes main quantities that we experimented with as input to the

neural networks. As described in Section 9.1.4, we started with a large set of inputs and pruned

down to those most relevant. Note that this list is not comprehensive. Out of mercy to my thesis

committee, I have not described every quantity that I experimented with, only those that proved

most signi�cant.

Indel locations: Within the window, we noted all positions where there was a gap in the target

sequence or an insert in the alignment.

Column Log Odds: This quantity reects the likelihood that the target residue would align to

the column, given the amino acids already aligned to the column. The column log odds is the

log likelihood ratio log
�
P (aatjcolumn)

P (aat)

�
, where where aat is the target sequence amino acid

aligned to the column, P (aatjcolumn) is the conditioned probability of amino acid aat in the

column, and P (aat) is its unconditioned probability. The probabilities were extracted from

a model of the seed alignment built with a w0.5 weighted build.

Savings: The estimate-dist program was used with the w0.5 weighted build to measure the

savings at each column of the seed alignment. Savings is de�ned as the di�erence between

the entropy of the amino acid prior probability distribution and the entropy of the amino
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acid prior probability distribution.

Non-loop distance: When the template residue at the column in question is in a strand or helix,

the non-loop distance is zero. When the template residue is in a loop, the non-loop distance

is the number of residues to the nearest end of the loop. Long loop regions tend to be less

conserved than strands or helices, so positions aligning long loops should be regarded with

more skepticism. This quantity was used both as a stand-alone predictor and as an input to

the neural networks. Its value was held constant over gaps, and at positions for which the

template secondary structure was not de�ned because its structure was not fully resolved.

When the non-loop distance was used as input to the neural network, the value used was

1
1+D . When it was used as a stand-alone predictor, its raw value was used.

Predicted Secondary Structure Similarity: Intuition states that an alignment is more trust-

worthy in positions where the target sequence is predicted to have the same secondary struc-

ture as the template sequence. This is especially true if the target sequence is predicted

with high probability to have the same secondary structure as the template sequence. For

each target sequence, we obtained a prediction of its secondary structure by applying the

predict-2nd program to a SAM-T99 alignment of the target sequence and its sequence ho-

mologs. Predict-2nd is a neural network program, and the trained neural network used was

t99-2877-IDaa13-5-8-7-10-5-9-11-ehl-seeded4-trained.net. For each position where

some target residue is aligned to the template sequence, we obtained from the predict-2nd

output � log (P (SS(template)jtarget alignment)), the probability of the template secondary

structure, given the alignment of the target sequence and its homologs.

Posterior Decoding Information: Posterior decoding information, as described above, reects

the likelihood of each target residue aligning to each seed alignment column given all align-

ments of target sequence to seed alignment. The information was obtained by generating a

model of the seed alignment with a w0.5 weighted build, and using the program grabdp to es-
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timate and print out forward-backward information on the alignment of the target sequence.

Below are descriptions of the precise posterior decoding quantities used.

Posterior-decoded Transition Cost: This quantity reects the likelihood that the target

residue would be aligned at the seed alignment column. It is derived from the probability

of the targetresiduealigning to the seed column given the model's transition parameters,

or gap parameters. This quantity reects gap likelihoods directly and column probabil-

ities indirectly.

Posterior-decoded Column Cost: This quantity also reects the likelihood that the tar-

get residue would be aligned at the seed alignment column. In contrast to the previous

quantity, it reects column costs directly and transition costs indirectly. It is computed

as � log (P (rijcolj)), where ri is the target sequence residue, colj is the column where ri

is aligned, and P (rijcolj) is the probability of residue ri aligning to column colj according

to the column's amino acid probability distribution.

Posterior-decoded Insertion Cost: This quantity reects the likelihood that the target

residue would be inserted before the seed alignment column rather than aligned to it.

The column cost and insertion cost together reect where the target residue is most

likely to appear. The insertion cost is computed as � log (Pins(rijcolj)), where ri is the

target sequence residue, colj is the column where ri is aligned, and Pins(rijcolj) is the

probability of residue ri inserted before column colj .

Other Posterior Decoding Data: There is a chance that the target sequence residue is

not aligned to the column where its cost is minimized. Therefore, for both transition-

based and character-based posterior decoding, we investigated information comparing

the position where the residue appears to the position where it would appear at lowest

cost, whether aligned or inserted. We investigated this di�erence in cost, and the distance

in the alignment between the column where the target residue appears and its lowest-cost



184

position. For neural network input, the distance was encoded as 1
1+D .

Neural network architecture and training

The neural networks used in this experiment are feed-forward back-propagation networks.

The neural network training is performed with the Aquanet program, based on software originally

written by Albion Baucom.

Each training example is described as a combination (ri;~c; P (ri)), where target sequence

residue ri is aligned to a column described by the input vector ~c. P (ri) is the actual probability

that residue ri is aligned accurately, de�ned on the basis of its column score as described in Section

9.1.4. The neural network estimates P̂ (rij~c), the estimated probability that residue ri is aligned

accurately given data on surrounding columns ~c.

The neural network was trained with an entropic learning rule. For each example (ri;~c)

with target output P (ri)), the error function is de�ned as

�P (ri) log
�
P̂ (rij~c)

�
� (1� P (ri)) log

�
1� P̂ (rij~c)

�
.

The networks used the standard feed-forward gradient descent algorithm, with the log-

sigmoid activation function [63]. and the learning rule was obtained by calculus derivation of the

error function. We experimented with single-layer and two-layer neural networks, selecting the �nal

architecture empirically.

When we experimented with neural networks with hidden layers, no windowing was ap-

plied to the hidden layer.

As described in Section 9.1.3, the data for building the neural networks was divided

randomly into thirds, with two thirds assigned as a training set and one third assigned as a cross-

training set. We performed on-line training, updating the weights after every training example

in the training set. After each training epoch, we kept the weights �xed and measured overall

performance on the cross-training set. The training algorithm used an adaptive learning rate,

which was modi�ed according to cross-training performance. Further, the �nal weight set was
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selected according to cross-training performance.

Reducing complexity

Neural networks perform best when presented with a small number of relevant inputs.

Additional inputs often do not help, because they represent additional statistical parameters that

the neural network must estimate with the same amount of data. Therefore, when working with

neural networks, one should try to simplify the input set whenever possible.

We used sensitivity analysis [97] to identify and remove extraneous inputs. This technique

measures the change in network error relative to the change in each input. When measured over

the training set, sensitivity analysis reects which inputs the network emphasizes least, and those

inputs can be removed. Direct examination of the weights can yield similar information for a

perceptron, but is not viable for a multi-layer network. Techniques such as weight decay [63] yield

a similar e�ect, but in our experience, sensitivity analysis works better for removing extraneous

inputs.

Our analysis performed numerous iterations of sensitivity analysis. In each iteration, we

would train a neural network, estimate the sensitivity of the network error to each input, and study

the input sensitivities. When we studied the input sensitivities, we would watch for two things:

which positions in the window of alignment columns are not important, and which inputs are not

important in any column. When an input appeared to not be important in any column, we would

remove that input for all columns and train a new neural network. If the new network achieved

comparable performance, as estimated by its best cross-training performance, we would continue

with another input. If the network performance su�ered after removal of some input, we would

reinstate the input and try removal of a di�erent one. Even if the network appears to be insensitive

to a certain input, its value must still be tested empirically because it might be providing indirect

bene�t to some other input. A frequent occurrence in sensitivity analysis is that after removal of

a seemingly-unimportant input, some previously important input appears far less useful. Neural



186

networks tend to compare inputs, and particularly tend to emphasize their di�erences. When one

removes an input that does not appear important and some previously-important input loses its

value, this suggests that the important input is valuable in comparison to the less-important one.

Note that there are two schools of thought in feature selection: top-down and bottom-up.

Top-down feature selection involves starting with a large set of inputs and gradually removing those

which appear unimportant. Bottom-up feature selection involves starting with features proven to

be valuable independently and gradually adding other features if they help. In this instance, we

have followed the top-down approach in hopes of not missing any indirect relation between features.

Using sensitivity analysis, we pruned the feature set until we arrived at a set of features

that could not be further reduced without compromising network performance. After optimizing

the input set, we optimized the window size empirically. After optimizing the window size, we

optimized the network architecture empirically. The reader can rest assured that before we arrived

at our �nal networks, we tested that all complexity in the �nal system served a purpose.

9.2 Results

We had two goals for this work. The �rst was to improve alignments produced by the best

method we have available, currently global alignment with FSSP seed alignments and character-

based posterior decoding. The second goal was to improve alignments built with more commonly-

used methods: global alignment with Target99 seed alignments, a method that has the major

advantage that it requires no structural information. While improvement over the best method

can be exciting, improvement over a commonly-used method is perhaps more valuable. Further, if

improvement can be shown over two di�erent methods, there is less chance that the performance

gain is particular to the method.

For each of these two cases, we investigated one complex and three simple predictors of

the accuracy of the alignment of a target sequence residue to a seed alignment column. The simple
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predictors were column log odds, non-loop distance, and posterior-decoded column cost. Each of

these predictors is described in Section 9.1.4. The complex predictor was a neural network that

used these simple predictors plus other data described in Section 9.1.4 to predict column reliability.

For each of the two classes of alignments, we empirically estimated a trimming threshold for each

predictor, and then applied the predictor and threshold value to a library of validation alignments.

While the ultimate goal of this line of work is a general-purpose alignment reliability

estimation system, the immediate goal was to show that the methodology can work. Therefore, we

built separate predictors for the FSSP and Target99 alignments, and analyzed them separately. At

this time, we have not addressed building one predictor to analyze any alignment no matter what

its source. However, when we analyze what information worked well for each case, their similarity

bodes well for a more general method.

9.2.1 Neural network optimization

As described in Section 9.1.4, we optimized the neural networks in the following order.

First, we optimized the input feature set, using sensitivity analysis to indicate inputs that were

not important during training. All features used as input to the neural networks are described in

Section 9.1.4.

After optimizing the feature set, we optimized the size of the window over which we

collected input features, where a window size of one would collect data merely on the column in

question and a window size of three would collect data on the two adjacent columns as well. Finally,

we optimized the network architecture.

For the FSSP neural network, only �ve features proved to be worth including in the

neural network. In order of importance, they are the posterior-decoded column cost, the column

savings, locations of gaps within the window, the predicted secondary structure similarity, and the

posterior-decoded insertion cost. Each of these features is described in Section 9.1.4.

For the neural network to evaluate Target99 alignments, seven features proved worthwhile.
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In order of importance, they are the posterior-decoded column cost, the column savings, distance

in alignment columns from where the residue is aligned to where its transition-based posterior

decoding cost is minimized, distance in alignment columns to where the character-based posterior

decoding cost is minimized, the predicted secondary structure similarity, location of gaps within

the window, and the posterior-decoded insertion cost.

Features which did not prove worthwhile in either case include the column log odds, the

non-loop distance, the transition-based posterior decoding cost, the di�erence in posterior decoding

costs between the position aligned and the lowest-cost position. Note that this does not mean these

features are of no value. More likely, it indicates that other quantities conveyed similar information

but were slightly more informative.

After network optimization, the �nal architecture for the global posterior-decoded FSSP

alignments used a window of thirteen alignment columns centered at the position in question, for

a total of 65 inputs. It had a hidden layer with one hidden unit. When a neural network has a

hidden layer with one single hidden unit, the e�ect of the hidden layer is to permit the network to

represent a wider variety of higher-order functions, due to the presence of the additional activation

function. For Target99-based alignments, the optimized neural network used a window of �fteen

alignment columns centered at the position in question, for a total of 105 inputs. It had a hidden

layer with ten hidden units. In both cases, windowing was applied to the outer layer of network

inputs only; the hidden layer involved no windowing.

9.2.2 Selecting prediction thresholds

For all of the predictors, including the neural network, we selected a trimming thresh-

old empirically, as follows. First, for each alignment to be trimmed, we measured the predictive

quantity for each column where a target residue was aligned. Next, for each predictive quantity,

we experimented with a range of threshold values. We de�ned a trimming range as from some

minimal value to the threshold for cases where a small quantity suggests a less-reliable position, or
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Predictor Shift Score Range for Removal
None 0.402 Nothing removed
Non-loop Distance 0.402 Greater than 5
Column Log Odds 0.405 Less than -2.7
Posterior Decoding Column Cost 0.417 Greater than 1.9
Neural Network 0.418 Less than 0.20

Table 9.1: On FSSP alignments, we realized minor improvements by trimming out positions aligned to
the middle of long loops or positions scoring as very unlikely given the column log odds. More substantial
improvements were realized by trimming according to the posterior decoding column cost or the neural
network prediction. For each predictor, this table describes the trimming ranges that yielded best results
for the threshold selection alignments. For comparison, the average optimal subalignment score for the
untrimmed alignments was 0.533. The shift score for local posterior-decoded alignments was 0.366, and
the shift score for local Viterbi alignments was 0.269..

from the threshold to some maximal value for cases where a large quantity suggests a less-reliable

position. Then, for each alignment to be trimmed, we removed any target sequence positions for

which the predictive value fell within the trimming range. To remove a position, we modi�ed the

alignment so that where a target sequence residue was previously aligned to a column, the target

residue was instead inserted before the column and the column remained empty. Finally, we scored

the trimmed alignments against FSSP structural alignments, and measured the mean shift score

for the trimmed alignments. For each predictor, we chose the threshold according to the value that

yielded the best shift score.

As described in Section 9.1.3, we trained the neural networks on one set of alignments

and estimated the thresholds with a di�erent set of alignments. The data used to estimate the

thresholds had never been seen by the neural networks until they were fully optimized.

Table 9.1 shows the threshold values that yielded the best results for the posterior-decoded

FSSP alignments. All predictors had some threshold value that yielded an improvement to the

alignments. For the non-loop distance, we found our best results by removing the middle of

long loops; removing alignment positions where the number of template sequence residues to the

nearest non-loop residue was more than �ve. Performance improvements were realized by removing

positions with a column log odds of less than -2.7 or a posterior decoding column cost of greater than

1.9. Neither of these represents a very stringent threshold; it indicates removing only those positions
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Predictor Shift Score Range for Removal
None 0.259 Nothing removed
Non-loop Distance 0.262 Greater than 3
Column Log Odds { No e�ective range found
Posterior Decoding Column Cost 0.287 Greater than 0.7
Neural Network 0.294 Less than 0.15

Table 9.2: On Target99 alignments, we realized improvement by trimming according to the distance
to the nearest non-loop residue, the posterior decoding column cost, or according to the neural network
prediction. No improvement was realized by trimming according to the column log odds. For each predictor,
this table describes the trimming ranges that yielded best results on the threshold selection alignments.
For comparison, the average optimal subalignment score for the untrimmed alignments was 0.408; the shift
score for Viterbi local alignment was 0.251 and the shift score for posterior-decoded local alignment was
0.270

of rather low con�dence. The neural network predictions yielded the best performance gain when

we removed positions with less than a 20% prediction of reliability. Again, this corresponds to

removing those positions where some target residue is aligned, but the alignment signal is weak.

Table 9.2 shows the thresholds found best for the Target99 alignments. Compared to the

global posterior-decoded FSSP alignments, these alignments are of lower quality. Trimming by

column log odds was not e�ective on these alignments. So many low-probability positions were

aligned that any threshold value cut away too much of the alignment: while the remaining positions

tended to be accurate, the alignments were too short to yield good shift scores.

For both the non-loop distance and the posterior decoding column cost, the best threshold

found was lower than that for the global posterior-decoded FSSP alignments. Compared to the

FSSP-based alignments, they achieved their best performance in this case with lower thresholds.

More positions were inaccurate, and the lower thresholds correspond to more trimming.

In contrast, the best threshold for the neural network was slightly lower than it had been

for the global posterior-decoded FSSP alignments. This does not indicate that fewer positions

should be trimmed: 54% of all positions in the global Viterbi Target99 alignments have a neural

net prediction of less than 0.15 while 53% of the positions in the FSSP-based alignments have a

prediction of less than 0.2. Rather, it reects that a greater portion of training data was unreliable

alignment positions, leaving the network with a greater bias toward predicting unreliability.
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Shift Score
Method FSSP VAST Yale Closest
Original Alignments 0.369 0.365 0.334 0.404
Local Posterior-decoded Alignments 0.311 0.309 0.289 0.340
Trimming by Non-loop Threshold 0.373 0.368 0.337 0.408
Trimming by Column Log Odds 0.371 0.367 0.336 0.407
Trimming by Posterior Decoding Column Cost 0.377 0.371 0.340 0.412
Trimming by Neural Network 0.382 0.372 0.344 0.414
Optimal 0.512 0.464 0.437 0.520

Table 9.3: Results on trimming the 140 validation alignments according to the various predictors of
alignment reliability: posterior-decoded FSSP global alignments. The shift scores for posterior-decoded
FSSP local alignments are shown for comparison. The best results in each category are shown in boldface..

9.2.3 Validation results with three structural aligners

Using the thresholds derived in Section 9.2.2, we applied the predictors to a library of

130 validation alignments. As described in Section 9.1.3, these alignments was not seen during

neural network training or threshold selection. For global Viterbi Target99 alignments, we had not

found an e�ective threshold for the column log odds predictor, and therefore did not apply it to

the validation alignments.

For each alignment in the validation set, we measured the remaining predictive quantities

for all positions where some target sequence residue is aligned. We then removed positions from the

alignment according to the threshold value for each predictor, and scored each alignment according

to the structural alignments. Tables 9.3 and 9.4 show the average shift score comparing each set of

trimmed alignments to structural alignments from FSSP, VAST, the Yale aligner, and to whichever

of the three the trimmed alignment was closest. The results for global posterior-decoded FSSP

alignments are shown in Table 9.3, and Table 9.4 shows the results for global Viterbi Target99

alignments.

In Table 9.3, we see that all methods tested yielded an improvement over the original

alignments. The best performance is achieved by the neural network and by posterior decoding

column cost. These methods yield an improvement of 2 to 3.5%. While this might sound like a

modest gain, recall the method used to build these alignments, posterior-decoded global alignments
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Shift Score
Trimming Method FSSP VAST Yale Closest
Original Alignments 0.193 0.207 0.206 0.238
Local Viterbi Alignments 0.178 0.188 0.189 0.208
Local Posterior-decoded Alignments 0.214 0.216 0.223 0.251
Trimming by Non-loop Threshold 0.193 0.206 0.206 0.237
Trimming by Posterior Decoding Column Cost 0.222 0.225 0.230 0.257
Trimming by Neural Network 0.233 0.235 0.236 0.267
Optimal 0.352 0.330 0.330 0.368

Table 9.4: Results on trimming the 140 validation alignments according to the various predictors of
alignment reliability: Target99 global alignments. The shift scores for local Viterbi and local posterior-
decoded alignments are shown for comparison. The best results in each category are shown in boldface.

with FSSP seed alignments, is one of our best methods. Therefore, any improvement over the

original alignments is noteworthy.

In Table 9.4, we see that the non-loop threshold method was not e�ective at the global

Viterbi Target99 alignments. However, the other two methods were, and yielded an improvement

of approximately 15% where an optimal method might yield an improvement of about 45%. As

this improvement is shown relative to three structural alignments, there is little risk that the

improvement is coupled somehow to one of the structural aligners.

To further explore which positions are removed and which are retained by trimming, we

further analyzed the validation alignments relative to the FSSP structural alignments. We focused

on three categories of alignment positions: aligned accurately, over-aligned, and misaligned by �ve

or more positions. We counted the number of positions in each category before and after trimming.

This data is shown in Table 9.5.

Two points are clear from Table 9.5. First, both methods are doing something right. For

the Target99 global alignments, they remove approximately 60% of the positions that are signif-

icantly misaligned and 85% of the over-aligned columns while retaining as much as 89% of the

accurately-aligned columns. Similar results are seen for the global posterior-decoded FSSP align-

ments. Second, the neural network does not seem to yield much performance gain over posterior

decoding column cost. Posterior decoding column cost had been the dominant source of information
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Positions Remaining After Trimming: Global Posterior Decoding FSSP Alignments

Total Aligned Greatly
Trimming Positions Accurately Over-aligned Misaligned

None 24802 8987 8972 5661
Posterior Decoding Column Cost 19514 8270 4277 3745
Neural Network 16164 7700 3064 2725

Percentages Remaining After Trimming: Global Posterior Decoding FSSP Alignments

Total Aligned Greatly
Trimming Positions Accurately Over-aligned Misaligned

Posterior Decoding Column Cost 78.7% 92.0% 47.7% 66.2%
Neural Network 65.2% 85.7% 34.2% 48.1%

Positions Remaining After Trimming: Global Viterbi Target99 Alignments

Total Aligned Greatly
Trimming Positions Accurately Over-aligned Misaligned

None 27101 6121 8522 9701
Posterior Decoding Column Cost 13317 5264 3566 2941
Neural Network 13955 5460 3418 3400

Percentages Remaining After Trimming: Global Viterbi Target99 Alignments

Total Aligned Greatly
Trimming Positions Accurately Over-aligned Misaligned

Posterior Decoding Column Cost 49.1% 85.9% 41.8% 30.3%
Neural Network 51.5% 89.2% 40.1% 35.0%

Table 9.5: Analysis of what positions are removed in alignment trimming from the validation alignments.
Alignment positions were divided into categories according to the shift of the target residue relative to the
FSSP structural alignments: aligned accurately, where the shift is zero; over-aligned; and greatly misaligned,
shifted by �ve or more residues. For each category, shown is the number and percentage of positions
remaining after trimming for global posterior-decoded FSSP alignments (top) and global Viterbi Target99
alignments (bottom). The trimming thresholds used are those derived in Section 9.2.2
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in the neural network. It is likely that this is the main source of information, and the other inputs

might not be as signi�cant as they appeared. Where the two methods appear to yield di�erent

results, much of the distinction might come from the di�erences in their threshold values. Because

posterior decoding column cost is far simpler, it is the superior predictor.

9.2.4 Further investigation of posterior decoding column cost

Previously, we examined the e�ects of trimming alignments using posterior decoding col-

umn cost on global alignments built with two methods: one of our best methods, global posterior-

decoded FSSP alignments; and a more general method, global Viterbi Target99 alignments. We

saw that posterior decoding information was e�ective in both cases; alignment trimming removed

most of the over-aligned positions and many of the greatly misaligned positions while retaining

most of the accurate positions. Now, we shall address the question of how this trimming method

fares on alignments built with other methods.

For both Target99 and FSSP seed alignments, we tested alignment trimming by posterior

decoding column cost on alignments built with the following methods: global posterior decoding

alignment, local posterior decoding alignment, and global Viterbi alignment. According to the

results in Chapter 5, all three alignment strategies could bene�t from alignment trimming, as all

have substantially larger optimal subalignment scores than shift scores. We did not explore local

Viterbi alignment because the results in Chapter 5 for two reasons. First, the gap between shift

score and optimal subalignment score is not as large as for the other alignment methods; it does

not stand to bene�t as much from alignment trimming. Second, local Viterbi alignments tend to be

short compared to global Viterbi alignments or posterior-decoded alignments; if they were trimmed

further,the remaining alignment might not be long enough to be useful.

Previously, we derived results for global posterior decoding alignment with FSSP seed

alignments and global Viterbi alignment with Target99 seed alignments. For the work in this

section, we derived results for four additional methods: global Viterbi alignment and local posterior
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Shift Optimal Trimmed Trimming
Alignment Method Score Subalignment Alignment Threshold
FSSP Global Posterior Decoding 0.402 0.533 0.417 1.9
FSSP Local Posterior Decoding 0.366 0.466 0.377 1.8
FSSP Global Viterbi 0.337 0.493 0.376 1.2
Target99 Global Posterior Decoding 0.271 0.410 0.293 0.9
Target99 Local Posterior Decoding 0.270 0.338 0.271 1.2
Target99 Global Viterbi 0.259 0.408 0.262 0.7

Table 9.6: Shown are trimming results on the threshold selection alignments for each of the alignment
methods tested. The results shown for each method are the shift score, optimal subalignment score,
trimmed alignment score,and trimming threshold. The alignments were trimmed by removing positions
with a posterior decoding column cost that exceeded the threshold. For comparison, the local Viterbi
alignment scores for these structures are 0.269 for FSSP seed alignments and 0.251 for Target99 seed
alignments.

decoded alignment with FSSP seed alignments, and global and local posterior decoding alignment

with Target99 seed alignments. Along with the results on these four new methods, we reported the

results of the two previous ones for the convenience of the reader. For all six cases the alignments

were built with the w0.5 weighted build method.

For consistency with the previous results, we followed the same experimental scheme.

First, we built alignments for the threshold selection structures listed in Section 9.1.3. For each

alignment building method, we experimented with trimming the alignments according to the pos-

terior decoding column cost, and empirically selected a threshold value for each alignment building

method. Next, we built alignments for the validation structures listed in Section 9.1.3, and trimmed

each alignment according to the threshold determined for its building method.

Table 9.6 lists the thresholds selected for each building method along with a number of

average shift scores to reect trimming e�ectiveness: the score for untrimmed alignments, the score

for trimmed alignments, and the optimal subalignment score for untrimmed alignments. In all six

cases, we found some threshold that yielded an improvement in alignment quality.

Recall from Chapter 5 that for the w0.5 weighted build, local Viterbi alignment performed

slightly better than global Viterbi alignment with Target99 seed alignments, and slightly worse than

global Viterbi with FSSP seed alignments. Here, local Viterbi alignment performs substantially
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Shift Score
Alignment Method Score FSSP VAST Yale Closest
Fssp Global Untrimmed 0.369 0.365 0.334 0.404
Posterior Decoding Trimmed 0.377 0.371 0.340 0.412

Optimal 0.512 0.464 0.437 0.520
Fssp Local Untrimmed 0.311 0.309 0.289 0.340
Posterior Decoding Trimmed 0.328 0.323 0.302 0.355

Optimal 0.421 0.384 0.365 0.424
FSSP Global Untrimmed 0.297 0.294 0.266 0.333
Viterbi Trimmed 0.339 0.323 0.295 0.364

Optimal 0.462 0.418 0.392 0.471
Target99 Global Untrimmed 0.231 0.242 0.242 0.278
Posterior Decoding Trimmed 0.241 0.247 0.247 0.284

Optimal 0.387 0.358 0.360 0.401
Target99 Local Untrimmed 0.214 0.216 0.223 0.251
Posterior Decoding Trimmed 0.218 0.224 0.227 0.254

Optimal 0.304 0.272 0.280 0.312
Target99 Global Untrimmed 0.193 0.207 0.206 0.238
Viterbi Trimmed 0.222 0.225 0.230 0.257

Optimal 0.352 0.330 0.330 0.368

Table 9.7: Results of alignment trimming by alignment method, validation set. For each alignment
method, the alignments were trimmed according to posterior decoding column cost and the threshold
values listed in Table 9.6. This table scores the alignments against each set of structural alignments before
and after trimming.

worse than global Viterbi. The set of structure pairs used here is harder than the set used in

Chapter 5. Recall further that the di�erence between local and global alignment is that in local

alignment, low-scoring regions at the beginning and end of the alignment can be omitted without

incurring large gap costs. Because of the diÆculty of these alignment tests, much of the alignments

tend to be low-scoring. In consequence, the local alignments tend to be very short, and often

misaligned. That is the reason why the global alignment scores are stronger in this case, and not

in Chapter 5. The score for local Viterbi alignment with FSSP seed alignments might strike the

reader suspicious, strangely like the scores for Target99 seed alignments. However, it is not the

result of some accidental substitution of seed alignment. When local Viterbi alignments were built

using FSSP seed alignments, the alignments were often entirely misaligned. Because the structures

included in this set tend to have a global structural similarity, global alignment is more likely to

�nd a correct alignment on the basis of a small region of high signal.
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Table 9.7 assesses the performance of the alignment trimming against four sets of struc-

tural alignments for the validation structures. For each alignment method, the table lists the shift

score and optimal subalignment score of the alignment before trimming, and the shift score of the

alignment after trimming. In all cases, alignment trimming yielded some improvement in alignment

quality. For global Viterbi alignment, it yielded a substantial improvement.

9.2.5 Validation results compared with other methods

To put these results into perspective, we applied the completed alignment trimming meth-

ods to the 170 pairs of structures used in Chapter 5 to optimize SAM alignment methods. We had

concluded Chapter 5 by describing the �ve methods with best overall performance. Now, as we

conclude this chapter, we will compare the best of those methods to the trimming methods de-

scribed in this chapter. Table 9.8 shows the best results overall on FSSP alignments, and Table 9.9

shows the best results overall on global Viterbi Target99 alignments.

The three best methods for aligning remote homologs to FSSP seed alignments involve the

alignment trimming methods of this chapter. Either the neural network or the posterior decoding

column cost yields a substantial improvement over untrimmed alignments. All of the seven best

methods involve some form of alignment trimming, either the trimming methods in this chapter or

\poor man's alignment trimming", the consensus between two di�erent alignments.

For Target99 seed alignments, the best method is a consensus method involving one seed

alignment of the template sequence plus homologs and one seed alignment of the target sequence

plus homologs. After that, the next three methods involve the alignment trimming methods of this

chapter. Most of the best methods involve some form of alignment trimming. The only exception

is posterior-decoded local alignment.

Trimming did not greatly bene�t posterior-decoded local alignment. For FSSP seed align-

ments, it yielded a very minor improvement, though not enough to make the list of the best methods.

For Target99 seed alignments, it slightly worsened alignment quality. Recall that Table 9.7 showed
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Shift
Score Description

0.519
Character-based (-adp5) posterior-decoded w0.5 global, trimmed according to
neural network predictions

0.508 w0.5 global Viterbi, trimmed according to the posterior decoding column cost

0.507
Character-based (-adp5) posterior-decoded w0.5 global, trimmed according to
the posterior decoding column cost

0.503
Consensus between -adp5 posterior-decoded w0.5 global and -adp5 posterior-
decoded fw0.5 global

0.501
Consensus between -adp5 posterior-decoded fw0.5 global and -adp5 posterior-
decoded w0.5 global

0.499 Consensus between -adp5 posterior-decoded fw0.5 global and fw0.5 global Viterbi

0.499 Consensus between -adp5 posterior-decoded w0.5 global and fw0.5 global Viterbi

Table 9.8: Shown are the seven best methods for building an alignment with FSSP seed alignments.
This assessment includes both methods involving alignment trimming and those not involving alignment
trimming. For comparison, w0.5 local Viterbi alignment yielded an average shift score of 0.415. The shift
scores for untrimmed posterior decoding alignment were 0.486 for global alignment and 0.491 for local
alignment. Other methods that did not score as well are shown in Chapter 5.
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Shift
Score Description

0.402
Consensus between an -adp5 posterior-decoded w0.5 global alignment of the tar-
get sequence to the template family and and -adp5 posterior-decoded w0.5 global
alignment of the template sequence to the target family

0.397 w0.5 global Viterbi, trimmed according to the posterior decoding column cost

0.396 w0.5 global Viterbi, trimmed according to the neural network predictions

0.396
-adp5 posterior-decoded w0.5 global alignment, trimmed according to the posterior
decoding column cost

0.395
Consensus between an -adp5 posterior-decoded w0.5 global alignment of the target
sequence to the template family and a Viterbi w0.5 global alignment of the template
sequence to the target family

0.395 An -adp5 posterior-decoded w0.5 local alignment

0.383
-adp5 posterior-decoded w0.5 local alignment, trimmed according to the posterior
decoding column cost

Table 9.9: Shown are the seven best methods for building an alignment with Target99 seed alignments.
This assessment includes both methods involving alignment trimming and those not involving alignment
trimming. For comparison, w0.5 local Viterbi alignment yielded a shift score of 0.368, untrimmed global
posterior decoding scored 0.377, and untrimmed global Viterbi scored 0.356. Other methods that did not
score as well are shown in Chapter 5.
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that trimming yielded only a slight improvement for local posterior decoding. Since the perfor-

mance gain did not carry over to this validation set, it appears to be a uke of one dataset rather

than a signi�cant trend. However, trimming made a consistent improvement to global alignment

with both the Viterbi and posterior decoding alignment algorithm.

In summary, based on the data from this chapter and from Chapter 5, the best way to align

two remote homologs is as follows. If there is an FSSP alignment available for the template sequence

with at least a couple homologs, use it as a seed alignment; preliminary investigation suggests

that the performance advantage of FSSP seed alignments is realized with only a few homologous

sequences. If no FSSP seed alignment is available, use a Target99 seed alignment. Align the

target sequence to the seed alignment with global posterior decoding, and trim it according to the

posterior decoding column cost. If one is using a Target99 seed alignment, it might be instructive

to align the template sequence to the target sequence and homologs with global posterior decoding,

and study the consensus of the two alignments. However, most of the performance gain will be

realized by trimming one posterior-decoded global alignment.

9.3 Summary

Alignment methods make mistakes. However, some of the mistakes can be identi�ed. We

have explored four methods for identifying suspect positions in HMM-generated alignments: three

simple predictors and a more complex neural network. We have applied these predictors successfully

on hard remote homologs. When we have removed positions predicted as reliable, we have seen

substantial improvement in overall alignment quality, with an experimental process involving an

number of careful experimental safeguards. The results shown here should hold up in practice.

A simple predictor explored was the number of template sequence positions to the nearest

residue not in a loop. When we trimmed out positions aligning to the middle of long loops, this

simple predictor yielded modest improvement, but improvement nonetheless.



201

A second simple predictor explored was the column log odds: given the probability of

the amino acid conditioned on the residues appearing in the column, and given the unconditioned

probability of the amino acid, this predictor measures the log likelihood of the conditioned and

unconditioned probability for the target amino acid aligned to the column. This predictor yielded

modest improvement on good-quality alignments, but failed to yield improvement as the quality of

the untrimmed alignments dropped.

The predictors that we found most successful both focus on posterior decoding informa-

tion. Posterior decoding is a member of the family of near-optimal alignment algorithms: algo-

rithms that estimate alignment information according to many potential alignments of the target

sequence and the seed alignment. For a target sequence residue aligned to some column in the

alignment, posterior decoding reects the probability of the residue aligning to the column given

all possible alignments of target sequence and seed alignment. One simple predictor we explored

was the posterior decoding column cost, the cost with which each target residue was aligned to each

column. A simple threshold on this cost yielded a 3% improvement over one of our best alignment

methods, and a 15% improvement on our more commonly-used alignment methods. Our second

successful predictor was a neural network that accepted as input this cost, plus other information.

It yielded consistent results to the posterior decoding column cost, and might merely be a more

complex representation of this cost. In analysis of the positions retained after trimming, we saw

that the two posterior decoding-based methods removed 65 to 70% of the columns misaligned by

more than a few residues and 60% of the over-aligned positions while retaining 85% and 89% of

the accurate positions.

We investigated posterior decoding column cost for trimming additional alignment meth-

ods { global Viterbi, global posterior decoding, and local posterior decoding { for both Target99

and FSSP seed alignments. It did not appear to make a signi�cant di�erence on local posterior

decoding alignments. In some cases, it yielded a minor improvement; in others, it worsened the

alignment somewhat. however, it yielded a reliable improvement to global alignment for both
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Viterbi and posterior decoding alignment methods. Many of our best alignment building strategies

involve trimming a global alignment according to posterior decoding column cost.

At this time, we have not built a general-purpose predictor. Our focus has been proving

if this methodology can work. At this point, we can say that the methodology can work. When

we developed separate predictors for di�erent alignment methods, we arrived ultimately at very

similar predictors. This �nding begs for a general-purpose predictor, which is in the plans.
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Chapter 10

Conclusion

The most concise summary of this thesis is as follows: near-optimal sequence alignment information

is valuable. This point is apparent in many places within this thesis.

In Chapters 5 and 6, we showed that posterior decoding yields signi�cantly better HMM-

based alignments than the standard Viterbi algorithm. The standard algorithm estimates the

likelihood of aligning each residue to each column according to the column's amino acid posterior

probability distribution. Posterior decoding, in contrast, estimates these likelihoods according to

all possible alignments of target sequence and seed alignment: near-optimal sequence alignment

information.

In Chapter 5, we demonstrated a simple alignment trimming method that yielded sig-

ni�cant improvement in overall alignment quality. That method is to start with two di�erent

alignments, built with slightly di�erent methods, and remove the positions where they disagree

signi�cantly. This is a simple example of near-optimal alignment information, but an example

nonetheless.

In the related work section of Chapter 6, we saw that the literature comparing sequence

alignment methods is often contradictory. There are many papers in which the authors report

favorable results with their own methods, but other authors cannot always reproduce these results.
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The papers by Marcella McClure and co-authors [77, 118, 119] have the major advantage that the

authors have not developed an alignment method of their own; therefore, they are more impartial.

In addition, they carefully optimize all methods before comparison, and therefore use the methods

to their best advantage. In their most recent investigation [77], the method that they found most

e�ective at aligning conserved motifs was PROBE [132], a Gibbs sampling method. Gibbs sampling

involves sampling various alignments according to some probability function. Once again, this is

an application of near-optimal alignment information.

When considering how to best validate alignments produced by hidden Markov models,

we explored pairwise contact potentials. These potentials report the statistical likelihood that

two amino acids found in proximity in a predicted structure, as compared to actual protein struc-

tures. Pairwise contact potentials have a long history as one component of successful threading

algorithms. The HMM-based alignments described in this thesis are built without structural infor-

mation. For this reason, structural information should be e�ective for validating them. However,

when we studied the amount of signi�cant mutual information in pairwise contacts, the amount

past what can be attributed to small sample-size e�ects, we observed that pairwise contact poten-

tials are signi�cant but weak. We found that the most substantial source of pairwise information

was tertiary contacts between �-strand residues, and chose to explore these further. We built a

potential function to estimate when two �-strands are in contact given their amino acid sequence.

Our potential function showed some signal, but nothing strong enough to warrant application in

alignment validation. Even in the best case, we found pairwise contact potentials to be signi�cant

yet weak.

In Chapter 9, we explored prediction of the reliability of individual alignment positions.

Given an alignment in which some target sequence was aligned to a seed alignment of a template

sequence and its homologs, we examined the positions where the target residues align to the columns

of the seed alignment. Our predictions were able to identify close to 90% of the accurately-aligned

positions, weeding out 70% of the positions misaligned by more than a few residues and 60% of
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the over-aligned positions. The most signi�cant source of information for this prediction was the

posterior decoding column cost, the cost of aligning each target sequence residue to each column

in the seed alignment, given all possible alignments of target sequence and seed alignment. Once

again, this is an application of near-optimal sequence alignment information.

What makes near-optimal alignment information so e�ective? According to Gibbs sam-

pling authority Chip Lawrence in a related tutorial [107], when one estimates the overall probability

of a sequence alignment, the numbers are large in one sense, small in another. In the �rst sense,

the probability of the alignment might be very signi�cant relative to the null model. In the sec-

ond sense, the absolute probabilities are still very small numbers; a strong alignment might have a

probability on the order of 1%. According to the author's experience in applying probability theory

to horse racing, if no horse has more than a 1% chance of winning, you should not bet on one single

horse. Instead, you should select a number of horses to wager on, weighing the amount wagered

according to the chance that the horse will win. In a biological context, this means that when

aligning a sequence to a model, one should look for a way to harness the information of various

alignments of the sequence to the model to obtain an overall consensus.

In a biological perspective, why does this approach work? Consider the evolution of a

protein, relative to homologous proteins. Certain positions are more conserved in evolution, namely

those important to the structure of the protein family, and a good alignment should align these

positions accurately. Conservation is not consistent across protein families: there are varied regions,

and there are conserved regions corresponding to conserved domains. This is even true with very

remote homologs [159]. However, alignment estimation is no trivial task, and is notoriously sensitive

to settings of parameters such as gap costs. A slight miscalculation of such parameters can align

one position incorrectly. Because amino acids within a protein are sequential, this mistake tends to

be propagated to later residues, yielding large misaligned regions. As observed by Vingron and co-

authors [188], slight variation of alignment parameters will yield a number of di�erent alignments,

with some interesting patterns. There will tend to be regions where most alignments agree: most
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alignments will place certain target sequence residues in exactly the same column. There will also

be regions where alignments disagree, where there is no one consensus position. Finally, there

are residues that are not aligned to the same position by an overall consensus, but are aligned to

one position most frequently. Recall that whenever a sequence is aligned, the alignment reects

two things: the parameter settings and the biological data. When one looks at various di�erent

alignments, the biological data is the same; it is the parameter values that have changed. When

one aligns a sequence according to the consensus of many di�erent alignments, the alignment is less

sensitive to the parameter settings and more focused on the biological data. Therefore, it aligns

with greater probability where the biological signal is strongest: at the conserved domains.
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Chapter 11

Future Work

The work in this thesis demonstrates a proof-of-concept, showing that we can predict the accuracy

of alignment positions. When we apply these accuracy predictions, we can yield a signi�cant

improvement in overall alignment quality, even when we start with alignments built with the best

methods we have available. However, to put this work into practice, a few steps remain.

First, in pursuit of the ultimate goal of a general-purpose predictor, we must train a

predictor according to alignments made by a variety of methods, not one method. When we

built predictors for two di�erent classes of alignments, the �nal, optimized predictors were very

similar. This bodes well for the goal of building a general-purpose predictor. This predictor will

not necessarily generate better results than our best alignment method, because it will not be

optimized to beat it. Even so, it should generate useful information on what columns are likely

to be misaligned or over-aligned, information that could be very useful to a person or application

seeking to build on the alignment.

Second, no method is valuable unless it is used, and a method cannot be used until it

is made available. In the short-term, I am planning to put up a web server for use by the larger

research community. I look forward to turning my focus to that project, as soon as a certain writing

project no longer occupies the center of my life.
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Third, removing positions strictly by a score and a threshold is not the right thing to do.

Long regions of the alignment might score close to the threshold value, dipping below the threshold

briey or rising above it briey. This can yield alignments with short aligned regions or small gaps

in structurally-unlikely positions, neither of which make much sense biologically. While application

of a score and threshold is suÆcient for a proof-of-concept, a better approach would be to devise

some heuristic to remove large, contiguous regions from the alignment rather than single columns.

This heuristic could permit gaps according to the secondary structure of the template sequence

or predicted secondary structure of the target sequence, or it could involve a simple gap penalty

system. Both approaches have their merits.

Fourth, while we have made progress toward to goal of predicting the reliability of positions

in an alignment, there is a larger goal of predicting overall alignment reliability. If the reliability of

individual positions of an alignment can be predicted accurately { which they can { then it should

be feasible to combine these predictions to form an overall prediction of alignment quality.

Finally, there is work to be done concerning applying the probability of target alignment

reliability to the applications of sequence alignment. Most alignment applications treat all positions

in the alignment with equal con�dence. If we could tell the application what positions are most

trustworthy, we should be rewarded with greater application accuracy. The proper way to handle

this information will vary with the application. For example, phylogenic analysis and prediction

of functional residues depend on proper analysis of the non-conserved positions in the alignment.

For such applications, measures of the variation in the alignment might be scaled according to the

probability of position reliability. As another example, homology modeling works best with a long

alignment, because a portion of the sequence not aligned means a portion not modeled. Therefore,

one probably would not want to trim the alignments, but rather to prioritize the positions modeled

according to the alignment con�dence. By allowing the positions aligned with greatest reliability to

assume their preferred romaters, the model would reect the most accurate regions of the alignment,

and predicted alignment reliability would limit the immense homology modeling search space.
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Appendix A

Glossary of biological terms

�A: Symbol for angstrom, a unit of measure equal to 10�10 meters.

Ab Initio prediction: A family of algorithms that predict the structure of a protein \from

scratch", without predicting its relation to some other protein.

Accessibility: See solvent accessibility.

Active site: The amino acids of a protein that interact directly with some other molecule when

the protein performs its function within the cell.

Alignment: A textual arrangement of two or more proteins, arranged to indicate regions of ob-

served sequence similarity or observed or predicted structural similarity.

Alignment length: The number of columns in the alignment.

�-carbon: The carbon atom within an amino acid that the side chain branches o� from. The

�-carbon is part of the polypeptide backbone.

�-helix: A secondary structure class in which the amino acids in a contiguous segment of the

protein arrange themselves in a right-handed corkscrew-like conformation.
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Angstrom: A unit of length de�ned as 10�10 meters. Symbol: �A.

Antiparallel �-sheet: A �-sheet in which the neighboring �-strands point in opposite directions

relative to the N- and C-termini.

Backbone: The "spinal column" of a protein, consisting of a contiguous linkage of the nitrogen,

�-carbon, and carbonyl carbon atoms of the protein's amino acids.

Backbone atoms: The group of atoms, common to all amino acids, which together form the

backbone of a protein: nitrogen, �-carbon, carboxyl carbon, and carboxyl oxygen.

�-carbon: For all amino acids except glycine, the beta-carbon is the �rst atom in the side chain,

bonded directly to the �-carbon.

�-sheet: A secondary structure class in which the protein folds back on itself to form a at or

slightly rounded surface, with short segments of the protein chain linking with short segments

from other regions of the protein chain.

�-strand: A contiguous segment of protein forming one portion of a �-sheet.

�-turn: A short, 180-degree turn between two antiparallel �-strands close to each other in the

protein sequence.

C-terminus: The end of a protein chain.

Chain: The contiguous sequence of amino acids forming one single protein.

Column: Within an alignment, a column is a vertical arrangement of amino acids from di�erent

proteins, indicating similarity in sequence or structure.

Comparative modeling: See homology modeling.

Conserved: Unchanged through evolution.
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Contact: Refers to two or more amino acids close enough to interact in the tertiary protein

structure.

Contact potential: The statistical likelihood of two or more amino acids to be in contact, given

such information as their amino acid type.

Covalent bond: A strong, semi-permanent chemical bond between two atoms.

Coverage: An alignment quality measure describing the proportion of target sequence residues

that were aligned to residues in the template sequence.

Deletion: A gap in the alignment of a sequence to another sequence or to a sequence family.

De novo: From scratch.

Disul�de bridge: A covalent bond between the sulfur atoms in two di�erent cysteine amino acids.

Divergent: Di�ering, or changed through evolution.

Docking: During the functioning of a protein, docking refers to the precise interaction between

the active site residues of the protein and the atoms of the other compound.

Domain: A compact subunit of the three-dimensional structure of a protein.

Exposure: See solvent exposure.

Fold: A protein's structural class or family.

Fold recognition: A class of algorithms that predict the structure of a protein by predicting its

relation to some protein of known structure.

FSSP: A database of families of proteins of similar structures [68].

Function: The protein's role within the cell.

Functional residues: The residues involved directly with the protein's function.
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Gap: When one sequence is aligned to another, a gap is a break in the alignment, indicating that

the second sequence contains a region of one or more amino acids that do not correspond to

anything in the �rst. Gaps are typically indicated by dashes in the sequence in the columns

where it does not align.

Homolog: A protein descended from a common ancestor.

Homology: Similarity and likely evolutionary relation between two or more proteins.

Homology modeling: A class of algorithms that yield very detailed predictions of the structure

of a target protein based on its alignment to a template protein and the template protein

structure. Homology modeling is usually applied only to cases where there is clear homology

between the template and target sequences.

HSSP: A database of families of proteins of similar sequence [158].

Hydrogen bond: A weak bond formed by the attraction of the partially-charged hydrogen of one

molecule and some partially-charged atom on another molecule.

Hydrophilic: Describes an amino acid or a portion of a protein structure that can interact with

water.

Hydrophobic: Describes an amino acid or a portion of a protein structure that cannot interact

with water.

Indel: A break in an alignment, either an insert or a deletion.

Insertion: When one sequence is aligned to another, an insertion is a break in the alignment

indicating that the �rst sequence contains one or more amino acids that do not correspond

to anything in the second. Insertions are typically indicated by lowercase amino acids in the

inserting sequence, and dots in the corresponding columns of the other sequence.
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Loop: A secondary structure class in which the amino acids lack regular structure. Loops usually

connect two secondary structural elements.

Macromolecule: A large molecule, such as a protein, RNA, or DNA.

Motif: A short region of a protein sequence with previously recognized sequence similarity to

segments found in other proteins.

Multiple alignment: An alignment of more than two sequences. Most often, a multiple alignment

contains related sequences, arranged to represent common features in their sequence family.

N-terminus: The beginning of a protein chain.

NMR spectroscopy: A method of determining the structure of a protein using Nuclear Magnetic

Resonance, by concentrating the protein at slightly-lowered pH, applying RF pulses, and

analyzing the emitted radiation.

Optimal superposition: A superposition of the atoms of one protein onto those of another pro-

tein that most emphasizes the structural similarity between the two proteins.

Pairwise alignment: An alignment of two protein sequences.

Pairwise contact potential: The statistical likelihood of two amino acids to interact, given such

information as their amino acid type.

Parallel �-sheet: A �-sheet in which the �-strands point in the same direction, relative to the

N- and C-termini.

PDB: The Protein Data Bank, the world's central repository of protein structure information [13],

located at http://www.rcsb.org/pdb/.

Peptide: A small protein of approximately 2-40 amino acids.

Peptide bond: The amide linkage between two amino acids in a peptide or protein.
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Phylogenic analysis: Prediction of the precise evolutionary relations within a family of related

proteins or DNA sequences.

Phylogeny: The evolution of a family of related proteins or DNA sequences.

Polypeptide: A large peptide.

Potential function: An energy function that predicts the conformation of a region of the protein,

or the stability of one or more amino acids within a predicted structure.

Primary structure: The sequence of amino acids forming a protein.

Protein: A compound common to all living matter, consisting of multiple amino acids linked in

sequence by covalent bonds.

Quaternary structure: The three-dimensional structure of a protein, consisting of multiple pro-

tein chains arranged into a single complex.

Random coil: See loop.

Residue: General term for a subunit of a macromolecule. In the context of this thesis, residue

refers to one amino acid within a protein.

RMSD: See RMS deviation.

RMS deviation: The root mean-squared deviation, in �A, between the positions of the backbone

atoms in two protein structures.

Rotamer: One of many common conformations adopted by an amino acid side chain.

Sequence positions: Amino acids in a protein sequence.

Shift: A measure of alignment error describing the number of sequence positions between where

a residue was aligned and where it should have been aligned.
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Side chain: The portion of an amino acid that branches o� the protein backbone. Each type of

amino acid has a di�erent side chain, and the side chain is what gives the amino acid its

characteristics.

Secondary structure: The arrangement of amino acids within short regions of a protein chain

into speci�c, regular patterns, as identi�ed by the angles between their backbone atoms.

Secondary structural elements: The sections of a protein which adopt a regular secondary

structure such as �-helix or �-strand, as opposed to those which form loops or random coil.

Sequence: The series of amino acids forming a protein.

Sequence alignment: An alignment of two or more protein sequences, arranged to indicate re-

gions of similar sequence.

Solvent: That which dissolves. Within this thesis, solvent refers to the aqueous solution in which

most proteins exist.

Solvent accessibility: Describes the extent to which a residue within a protein is exposed to the

solvent outside the protein, as computed by the DSSP program [88]

Solvent exposure: Describes the extent to which a residue within a protein is exposed to the

solvent outside the protein. Within this thesis, solvent accessibility and solvent exposure

describe similar measures computed with di�erent algorithms.

Structure determination: The process of ascertaining the structure of a protein by means of

X-ray crystallography or NMR spectroscopy.

Structural alignment: An alignment built by examining the structure of two or more proteins

to highlight regions of similar structure.

Structural homolog: Typically refers to a sequence with very similar structure but weak se-

quence similarity.
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Subfamily: A group of protein structures with obvious structural similarity, and generally the

same function and the same active site residues.

Superfamily: A group of protein structures consisting of one or more subfamilies. Proteins in the

same superfamily have similar structures and similar functions but not necessarily the same

active site residues.

Target sequence: In a structure prediction scenario, a protein whose structure is not known, or

whose known structure is ignored during the structure prediction process.

Template sequence: In a structure prediction scenario, a protein whose structure is known, and

is predicted to be similar to that of the target sequence.

Tertiary structure: The three-dimensional structure of a single protein.

Threading: A class of algorithms that predict the structure of a target protein by predicting

relation to some template protein of known structure, and searching for an arrangement of the

target protein residues into the template structure such that predicted energy is minimized.

In this context, minimizing energy can be viewed as equivalent to maximizing stability.

X-ray crystallography: A method of determining the structure of a protein by growing crystals

of the protein, applying X-ray beams to the crystals, and analyzing their di�raction pattern.
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