Program Quality with Pair Programming in CS1

Brian Hanks and Charlie McDowell
Computer Science Department
University of California, Santa Cruz

{brianh, charlie}@soe.ucsc.edu

ABSTRACT

Prior research on pair programming has found that com-
pared to students who work alone, students who pair have
shown increased confidence in their work, greater success
in CS1, and greater retention in computer-related majors.
In these earlier studies, pairing and solo students were not
given the same programming assignments. This paper re-
ports on a study in which this factor was controlled by giving
the same programming assignments to pairing and solo stu-
dents. We found that pairing students were more likely to
turn in working programs, and these programs correctly im-
plemented more required features. Our findings were mixed
when we looked at some standard complexity measures of
programs. An unexpected but significant finding was that
pairing students were more likely to submit solutions to their
programming assignments.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science
Education]: Computer Science Education

General Terms

experimentation, measurement

Keywords
CS1, pair programming, collaboration, student perception
1. INTRODUCTION

Pair programming [8] transforms what has traditionally
been a solitary activity into a cooperative effort. While pair
programming, two software developers share a single com-
puter monitor and keyboard. One of the developers, called
the driver, controls the computer keyboard and mouse. The
driver is responsible for entering software design, source
code, and test cases. The second developer, called the nav-
igator, examines the driver’s work, offering advice, suggest-
ing corrections, and assisting with design decisions. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITICSE’04,June 28-30, 2004, Leeds, United Kingdom.

Copyright 2004 ACM 1-58113-836-9/04/000685.00.

David Draper and Milovan Krnjajic

Applied Mathematics and Statistics Department

University of California, Santa Cruz

{draper,milovan}@ams.ucsc.edu

developers switch roles at regular intervals. Although role
switching is an informal process, a typical interval is 20 min-
utes.

In an experiment conducted during the 2000-01 academic
year, students in three sections of a CS1 course (introduc-
tory programming) at UC Santa Cruz pair programmed.
Students in a fourth section of the course worked alone. Sig-
nificant findings from this research [6] include: (1) a larger
percentage of paired students passed the course; (2) students
who paired had greater confidence in their work, enjoyed
their work more and were more satisfied with the program-
ming process; (3) students who paired were more likely to
attempt CS2 and passed it at equal rates; and (4) a greater
percentage of students who paired were still in a computer-
related major one year later.

One uncontrolled variable in the above study was the pro-
gramming assignments; students who paired were not as-
signed the same programs as those who worked alone. So
that we could better compare the performance of pairing
and solo students, in the work reported on here we gave
the same programming assignments to pairing students in
the winter 2003 offering of the course that had been given
to the non-pairing students in the spring 2001 course (the
solo course from the 2000-01 study). Due dates were set so
that students in both courses had the same amount of time
available to complete their work. We expected that stu-
dents who paired would produce higher quality programs
than those who worked alone. We also wanted to confirm
the earlier findings that paired students have greater confi-
dence and are more satisfied in their work. Our study design
is observational (i.e., students were not assigned to the pair-
ing or non-pairing “treatments” at random), but we found
no major relevant differences, in variables correlated with
programming ability, between the pairing and non-pairing
students at baseline.

We hypothesized that pairing students would

H1 perform better in terms of the number of features suc-
cessfully implemented;

H2 produce programs that are shorter and less complex;

H3 produce programs that show a better understanding of
the basic programming concepts discussed in lecture;
and

H4 be more confident in their solutions and more satisfied
with the programming process.

We did not give the students in these two classes the same

examinations. Therefore, we did not compare student per-
formance on exams or on course grades.

2. PRIOR RESULTS

In addition to the findings described above, there is sub-
stantial evidence that pair programming provides significant
pedagogical benefits.

Williams [9] reported that advanced undergraduate stu-
dents who paired produced programs that successfully passed
more test cases than students who worked alone. These
higher quality programs took only slightly more total pro-
grammer time to develop. Other evidence that student pairs
create higher quality programs includes reports that student
pairs produce programs that are shorter, and thus easier to
maintain [1], or are better designed [5, 8].

For CS1 students, pair programming improves their lab-
oratory experience [7]. Pairing students are able to answer
more of their own questions, allowing the teaching assistant
to focus on more substantive issues. Pairing students in
these labs also have fewer “give-ups,” in which they have a
question but give up because the teaching assistant is busy
with other students. The pairing students in this study also
did well in CS2. They passed CS2 at the same rates as,
or better rates than, the non-pairing CS1 students, even
though all students worked alone in CS2.

3. PROGRAM EVALUATION

In the winter 2003 term, we gave pairing students in a
CS1 course the same set of programming assignments that
had been given to non-pairing students in spring 2001. For
each of five assignments, we have approximately 100 pro-
grams completed by non-pairs and 25 completed by pairs.
We evaluated the last three of these programs to see if there
are any qualitative differences between the sets of programs.
We decided not to evaluate the first two programming as-
signments, as we felt that they were so simple that there
would not be any pertinent quantifiable differences between
the programs produced by the pairing and solo students.

Programs were evaluated using both objective and sub-
jective measures. Objective measures included the num-
ber of features that the students correctly implemented, the
length of the programs, and the cyclomatic complexity num-
ber (CCN) of the programs. Subjective measures included
the use of meaningful identifiers, well-organized methods,
appropriate indentation and whitespace, and use of booleans
instead of two-valued integers as control predicates.

We used the open-source tool JavaNCSS [3] to calculate
source code metrics for the programs: the number of non-
comment lines of code, the number of methods, the length of
the longest method, the average method length, the average
method complexity, and the complexity of the most complex
method. Program and method lengths are measured in non-
comment source lines of code. JavaNCSS uses McCabe’s
cyclomatic complexity number [4] as its complexity measure.

3.1 Program Three

For programming assignment three, students were asked
to write a program to play the card game blackjack. Stu-
dents had just learned about methods and were expected to
write them in this assignment. They were given classes that
implemented the deck of cards.

For this assignment, we scored programs by counting the

number of features that the students correctly implemented.
From this score we subtracted the number of defects that the
program exhibited, and called the resulting variable DIFF3.
There were twenty features of interest, so the total score
ranged from 0 to 20. A program could not get a negative
score, because the defects were related to an attempt to
implement the feature. For example, programs that did not
compile exhibited none of the defects, and scored 0.

The sample size, mean, and standard deviation of DIFF3
for the paired students were np = 24, P = 13.67, and
5.30, respectively. For the solo students, these values were
ns = 105, S = 11.10, and 7.51. The paired mean was 23%
higher than the solo mean, a difference which we regard
as significant in practical terms. In a Bayesian analysis of
these data [2], focusing on posterior probability distribu-
tions for means in the populations of students exchangeable
with (similar to) those who took part in our study (and us-
ing diffuse prior distributions for those means), the posterior
probability that the population difference (up —pus) between
means on DIFF3 is positive is 98%, implying posterior odds
of 39.8 to 1 that pairing represents an improvement not just
in our sample but also in the underlying populations. (See
the Appendix for links between the Bayesian findings in this
paper and corresponding classical results based on p-values.)

An examination of the paired and solo distributions on
this variable revealed that much of this difference arose be-
cause pairing noticeably helped the students avoid getting
a 0: the rate of 0 scores in the paired group (8.3%) was
56% lower than the corresponding rate for solo students
(19.1%). The posterior probability that the population dif-
ference (solo — paired) between rates of 0 scores is positive
was 94%; this corresponds to posterior odds of 16.2 to 1 that
pairing yielded an improvement. A score of 0 was almost al-
ways due to the program failing to compile. That is, pairing
students were less likely to turn in programs that did not
compile.

We also used JavaNCSS to calculate size and complexity
measures for all programs that received a score of 12 or more.
Twelve was selected as the cutoff point for this exercise be-
cause there was a break in the score distribution at this
point, and because programs that scored at least that much
were mostly functional. Table 1 summarizes these measures
(sample sizes in this table were np = 20 and ns = 64, ex-
cept that one extremely outlying observation was set aside
in the program length analysis). For all six variables in this
table the mean with pair programming was smaller than
with solo programming (the relative decreases from the solo
means ranged from 4.7% to 22.7%); the posterior probabili-
ties that the population means under pair programming are
smaller than under solo programming ranged from .65 to
.94 (with corresponding posterior odds ranging from 1.8:1
to 19.6:1). Taken together the results in Table 1 offer mod-
erate support for the hypothesis that pairing students pro-
duce programs that are shorter and less complex, at least
for assignments like our program three.

3.2 Program Four

The fourth programming assignment asked students to
write a program that implemented a simple dice game. This
assignment required students to use one-dimensional arrays.

We evaluated this assignment against seventeen test cri-
teria. Only a small percentage of the programs were fully
functional. The majority exhibited serious problems. Only

(1P < ps)
Mean/SD £25 Prob. Odds

T T S e a w
Morhods | § ?gﬁi -083 76 3.1
T I
e e s
L L T

Table 1: Program 3 Complexity Measures

17 out of 127 programs (13.4%) received a score of 15 or
more on our scale, while 67 of the programs (52.8%) scored
7 or less.

Using statistical analyses like those on program three, for
program four we found no meaningful differences between
the programs produced by pairs and non-pairs on any of the
subjective or objective measures. Of course, since many of
the programs did not work, this evaluation may have had
limited value.

We have come to believe that this assignment was par-
ticularly difficult for the students. In the spring 2001 class,
the average grade on this assignment for programs that were
turned in was 2.94 on a 5 point scale, while the lowest aver-
age grade on the other assignments was 3.47. In the winter
2003 class, the average grade on this assignment was 3.44,
while the lowest average grade on the remaining assignments
was 4.30. (Students in both classes could get more than 5
points by doing extra-credit work.) The students were also
less confident in their solutions to this assignment (as dis-
cussed in Section 5.1 below).

We are concerned that this assignment was so challenging
for the students that they spent all of their effort just trying
to get the program to run. This prevented them from focus-
ing on other aspects of program development, such as the
use of meaningful variable names and well-organized control
flow.

3.3 Program Five

The fifth programming assignment asked students to write
a program to implement a text-based version of the Mine-
sweeper game. Students needed to use two-dimensional ar-
rays on this assignment.

As with assignment three, we scored these programs by
counting the number of features that the students correctly
implemented. From this score we subtracted the number of
defects that the program exhibited, and called the resulting
variable DIFF5. There were nine features of interest, so the
total DIFF5 score ranged from 0 to 9. A program could not
get a negative score, because the defects were related to an
attempt to implement the feature. For example, a program
that did not compile did not exhibit any of the defects, and
received a score of 0.

The sample size, mean, and standard deviation of DIFF5
for the paired students were 24, 5.89, and 2.91, respectively.

For the solo students, these values were 89, 5.01, and 3.43.
The paired mean was 17% higher than the solo mean, a
difference which we regard as significant in practical terms.
In a Bayesian analysis of these data, similar to the one de-
scribed in Section 3.1, the posterior probability that the pop-
ulation difference (paired — solo) between means on DIFF5
is positive is 89%, implying posterior odds of 8.3 to 1 that
pairing led to an improvement.

An examination of the paired and solo distributions on
this variable revealed that most of this difference again arose
because pairing noticeably helped the students avoid get-
ting a 0: the rate of 0 scores in the paired group (8.3%)
was 61% lower than the corresponding rate for solo students
(21.4%). The posterior probability that the population dif-
ference (solo — paired) between rates of 0 scores is positive
was 97%; this corresponds to posterior odds of 28.6 to 1 that
pairing yielded an improvement. As with program three, a
score of 0 was almost always due to the program failing to
compile; pairing students were substantially less likely to
turn in programs on assignment five that did not compile.

Mean/SD ~ £=5 Prob. Odds
e T I e o
Mochods | S ﬁé?gi +137 86 6.2
PN
NN T
MENT S Tan e ss e

Table 2: Program 5 Complexity Measures

As with program three, we used JavaNCSS to calculate
size and complexity measures for the programs that scored
seven or more (i.e., were considered to be mostly working);
Table 2 summarizes the findings (the sample sizes in this
table were np = 14 and ng = 44). Here the results were
surprising: the paired programs were 14% to 57% longer
and more complex than those produced by students work-
ing alone (the posterior probabilities and odds that up > us
ranged from .86 to .99 and from 6.2:1 to 577.2:1, respec-
tively). This is inconsistent with findings of previous inves-
tigators that pairing students produce shorter programs [1]
that are better designed [8, page 38], and stands in contrast
to the results in Section 3.1. Further investigation is needed
to understand what aspects of programs three and five have
led to these sharp differences.

4. HOMEWORK SUBMISSION RATE

The above analysis was performed on homework assign-
ments that were turned in by students. Unfortunately, some
students don’t do their homework.

Table 3 lists the number of students who turned in so-
lutions to the homework assignments. Only the 112 solo
students and 50 pairing students who took the final exam
are included in this table. (Five of the solo students were

enrolled in the pairing class, but worked by themselves for
the entire term. For each assignment, one out of the five stu-
dents did not submit a solution.) Pairing students turned
in solutions to their programming assignments at noticeably
higher rates (Rp) than solo students (Rgs), with the differ-
ences ranging from 7.6 to 14.8 percentage points; the poste-
rior probabilities that the population differences (Rp — Rs)
between submission rates for paired and solo students are
positive ranged from .94 to over .999.

No. A _ Diff. (Rp > Rs)

Sub. R (Rp— Rs) Prob. Odds
HW3 Is) gg :Zg +.076 94 16.9
HW4 1; gg .182 +.120 998 499.0
HWS5 1; gf :gf +.148 998 525.3
Total Is) ;gg :gg F113 >.999 > 999.9

Table 3: Submission Rate

We believe that it is especially noteworthy that pairing
students turned in their homework at higher rates than non-
pairing students on the fourth and fifth assignments. The
students disliked the fourth assignment and found it very
challenging. The fifth assignment was due during the last
week of the term, when students have many conflicting due
dates in their other courses.

We are very encouraged that students who pair attempt
the homework assignments at very high rates, even when
they are frustrated or feel overwhelmed by their workload.
Perhaps pairing students feel pressure not to let their part-
ner down, or they encourage and motivate each other when
they would otherwise give up. Pairing students’ increased
confidence and satisfaction may also be playing a role here.

5. CONFIDENCE AND SATISFACTION

We have previously reported [6] that students who paired
in CS1 had greater confidence in their work and had greater
satisfaction with the programming process than students
who worked alone. As noted above, one uncontrolled vari-
able in our earlier study was the programming assignments;
students who paired were not assigned the same programs
as those who worked alone. We have controlled this variable
in the study reported here.

Students in the earlier study were asked to respond to
questions regarding their confidence and satisfaction on each
programming assignment. These questions are reproduced
in Table 4. We asked the students in the 2003 paired class to
answer the same questions. Unfortunately, we do not have
their responses to these questions for the third assignment,
so it is not included in the analysis in this section.

5.1 Confidence

On every programming assignment except HW4, students
who paired were more confident in their solutions than those
who worked alone (see Table 5), by margins that are signifi-
cant both practically and statistically. Overall, aggregating
across all assignments, confidence was 12.2% higher in the
paired group on average, and the posterior probability that

Confidence | On a scale from 0 (not at all con-
fident) to 100 (very confident), how
confident are you in your solution to
this assignment?

Satisfaction | How satisfied are you with the way
(pairs only) | you and your partner worked to-
gether on this assignment? (1 =
very dissatisfied, 7 = very satisfied)
Satisfaction | How satisfied are you with how you
(non-pairs | spent your time on this assignment?
only) (1 = very dissatisfied, 7 = very sat-
isfied)

Table 4: Questions asked about each program

the population mean difference (up — pg) in confidence is
positive exceeded .999. These results strengthen our ear-
lier findings that students who pair are more confident than
students who work alone.

o (up > ps)

n Mean/SD P—gs Prob. Odds

HW1 g 32 23:;?;?:5 £158 999 > 999.9
HW2 00 D7 b8 o9 s
WA |5 7 231?32? —203 .05 0.051
HW5 g zg %:gg;g +147 97 349
Total g ;g? %:ggg:‘; F122 999 9415

Table 5: Student Confidence

5.2 Satisfaction

This study confirmed our earlier findings that students
who pair are more satisfied with the way they work (see
Table 6). Pairing students were more satisfied on every pro-
gram, by margins of 13.8% to 28.4% on average. Overall,
aggregating across all four assignments, on average satisfac-
tion was 22.0% higher for paired students, and the poste-
rior probability that the population aggregate mean differ-
ence (up — pg) was positive again exceeded .999. These re-
sults should be viewed with a bit of caution, because the
paired and non-paired students were not asked identical
questions. We are encouraged, however, that the results
here strengthen our earlier findings.

6. CONCLUSIONS

For two of the three assignments we studied our analysis
confirms hypothesis H1, that pairing students would per-
form better in terms of the number of features successfully
implemented. We did not detect any differences between the
two groups on one of the programming assignments.

We were not able to uniformly confirm our hypotheses H2
and H3, as we had mixed results. On the third assignment,
pairs wrote programs that were shorter and less complex; on
the fourth assignment, there were no significant differences

o (up > ps)
n Mean/SD £25 Prob. Odds

HWL| G g o T3 >0 >0
w2 | § 0 Tengy T 99 > om0
R
WS | ¢ e b4 907 s
Towl | § 0 Guoae F20 2990 >0

Table 6: Student Satisfaction

between the two groups on any of the complexity measures;
and on the last assignment, pairs wrote programs that were
longer and more complex. There is an evident trend for the
length and complexity of programs produced by the pairs to
increase as the difficulty of the assignments increased; this
trend was not uniformly present for the solo programmers.
There was no evidence that either group of students had a
better understanding of basic programming concepts.

We were able to confirm that paired students are more
confident in their programming solutions and are more sat-
isfied with the programming process than students who work
alone. This finding strengthens our earlier results, since stu-
dents in the pair and solo groups worked on the same as-
signments. Thus, hypothesis H4 is confirmed for confidence
and satisfaction.

We believe that one of the most significant findings of this
study is the increased homework submission rates observed
in pairing students. Learning to program is very difficult
for many students, and the best way to learn programming
is by writing programs. It appears that pair programming
encourages students to work on their programming assign-
ments. It seems likely that these students are learning more,
because they are actually attempting the homework.

As discussed earlier, students who paired were more likely
to turn in programs that compiled. Combined with the
greater submission rate, this shows that the pairing students
were much more successful at overcoming the hurdles that
frustrated solo students.

Although we cannot confidently state that pairing stu-
dents write programs that are better designed and show a
greater understanding of basic programming concepts, we
believe that the benefits of pair programming outweigh its
costs. Students who pair write programs with greater func-
tionality, are more confident in their work, are more satisfied
with the programming process, and are more likely to work
on their programming assignments. These findings add to
the growing body of evidence that pair programming in-
creases student success in computer science courses.

7. ACKNOWLEDGMENTS

This work was funded by National Science Foundation
grant EIA-0089989. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

Appendix

The explicit link between the Bayesian analyses presented
here and classical analyses based on significance testing is as
follows: a posterior probability of ¢ that (up—ps) is positive
(given the data and diffuse prior distributions) corresponds
to a p-value of (1 — ¢) when testing the null hypothesis that
pup < ps. Like many others (see, e.g., the references in [2])
we find the Bayesian analysis more directly interpretable.

8. REFERENCES

[1] A. Cockburn and L. Williams. The costs and benefits of
pair programming. In G. Succi and M. Marchesi,
editors, FExtreme Programming FExamined, pages
223-247. Addison-Wesley, 2001.

[2] A. Gelman, J. Carlin, H. Stern, and D. Rubin.
Bayesian Data Analysis. Chapman and Hall CRC, New
York, second edition, 2003.

[3] C. Lee. JavaNCSS - a source measurement suite for
Java.
http://www.kclee.com/clemens/-java/-javancss/,
current September 2, 2003.

[4] T. McCabe. A complexity measure. IEEE Transactions
on Software Engineering, SE-2(4):308-320, Dec. 1976.

[5] C. McDowell, B. Hanks, and L. Werner. Experimenting
with pair programming in the classroom. In Proceedings
of the 8th Annual Conference on Innovation and
Technology in Computer Science Education, June
30—-July 2, 2003.

[6] C. McDowell, L. Werner, H. Bullock, and J. Fernald.
The impact of pair programming on student
performance, perception and persistence. In Proceedings
of the International Conference on Software
Engineering (ICSE 2003), pages 602-607, May 3-10,
2003.

[7] N. Naggapan, L. Williams, E. Wiebe, C. Miller,

S. Balik, M. Ferzli, and J. Petlick. Pair learning: With
an eye toward future success. In Extreme Programming
and Agile Methods - XP/Agile Universe 2003, number
2753 in LNCS, pages 185-198. Springer, 2003.

[8] L. Williams and R. Kessler. Pair Programming
Illuminated. Addison-Wesley, 2002.

[9] L. A. Williams. The Collaborative Software Process.
PhD thesis, University of Utah, 2000.

