
A Logic of Object-Oriented Programs

Mart́ın Abadi1 and K. Rustan M. Leino2

1 Computer Science Department, University of California at Santa Cruz, CA, USA
2 Microsoft Research, Redmond, WA, USA

Abstract. We develop a logic for reasoning about object-oriented pro-
grams. The logic is for a language with an imperative semantics and
aliasing, and accounts for self-reference in objects. It is much like a type
system for objects with subtyping, but our specifications go further than
types in detailing pre- and postconditions. We intend the logic as an
analogue of Hoare logic for object-oriented programs. Our main techni-
cal result is a soundness theorem that relates the logic to a standard
operational semantics.

1 Introduction

In the realm of procedural programming, Floyd and Hoare defined two of the
first logics of programs [9, 11]; many later formalisms and systems built on their
ideas, and addressed difficult questions of concurrency and data abstraction,
for example. An analogous development has not taken place in object-oriented
programming. Although there is much formal work on objects (see Section 6),
the previous literature on objects does not seem to contain an analogue for
Floyd’s logic or Hoare’s logic. In our opinion, this is an important gap in the
understanding of object-oriented programming languages.

Roughly imitating Hoare, we develop a logic for the specification and verifica-
tion of object-oriented programs. We focus on elementary goals: we are interested
in logical reasoning about pre- and postconditions of programs written in a ba-
sic object-oriented programming language (a variant of the calculi of Abadi and
Cardelli [1]). Like Hoare, we deal with partial correctness, not with termination.

The programming language presents many interesting and challenging fea-
tures of common object-oriented languages. In particular, the operational se-
mantics of the language is imperative and allows aliasing. Objects have fields
and methods, and the self variable permits self-reference. At the type level, the
type of an object lists the types of its fields and the result types of its meth-
ods; a subtyping relation supports subsumption and inheritance. However, the
language lacks many class-based constructs common in practice. It also lacks
“advanced” features, like concurrency; some of these features have been studied
in the literature (e.g., see [6, 14, 42]).

Much like Hoare logic, our logic includes one rule for reasoning about pre-
and postconditions for each of the constructs of the programming language. In
order to formulate these rules, we introduce object specifications. An object spec-
ification is a generalization of an object type: it lists the specifications of fields,

the specifications of the methods’ results, and also gives the pre/postcondition
descriptions of the methods.

Some of the main advantages of Hoare logic are its formal precision and
its simplicity. These advantages make it possible to study Hoare logic, and for
example to prove its soundness and completeness; they also make it easier to
extend and to implement Hoare logic. We aim to develop a logic with some of
those same advantages. Our rules are not quite as simple as Hoare’s, in part
because of aliasing, and in part because objects are more expressive than first-
order procedures and give some facilities for higher-order programming (see [5,
3]). However, our rules are precise; in particular, we are able to state and to prove
a soundness theorem. We do not know of any previous, equivalent soundness
theorem in the object-oriented literature.

In the next section we describe the programming language. In Section 3
we develop a logic for this language, and in Section 4 we give some examples
of the use of this logic in verification. In Section 5, we discuss soundness and
completeness with respect to the operational semantics of Section 2. Finally, in
Sections 6 and 7, we review some related work, discuss possible extensions of our
own work, and conclude. A preliminary version of this work has been presented
in a conference [2]. The present version incorporates several improvements; in
particular, it includes proofs.

2 The Language

In this section we define a small object-oriented language similar to the calculi
of Abadi and Cardelli. Those calculi have few syntactic forms, but are quite
expressive. They are object-based; they do not include primitives for classes and
inheritance, which can be simulated using simpler constructs.

We give the syntax of our language, its operational semantics, and a set of
type rules. These aspects of the language are (intentionally) not particularly
novel or exotic; we describe them only as background for the rest of the paper.

2.1 Syntax and Operational Semantics

We assume we are given a set V of program variables (written x, y, z, and w
possibly with subscripts), a set F of field names (written f and g, possibly with
subscripts), and a set M of method names (written m, possibly with subscripts).
These sets are disjoint.

The grammar of the language is:

a, b ::= x variables
| false | true constants
| if x then a0 else a1 conditional
| let x = a in b let
| [fi = xi

i∈1..n, mj = ς(yj)bj
j∈1..m] object construction

| x.f field selection
| x.m method invocation
| x.f := y field update

Throughout, we assume that the names fi and mj are all distinct in the con-
struct [fi = xi

i∈1..n, mj = ς(yj)bj
j∈1..m], and we allow the renaming of bound

variables in all expressions.
Informally, the semantics of the language is as follows:

– Variables are identifiers; they are not mutable: x := a is not a legal state-
ment. This restriction is convenient but not fundamental. (We can simulate
assignment by binding a variable to an object with a single field and updating
that field.)

– false and true evaluate to themselves.
– if x then a0 else a1 evaluates a0 if x is true and evaluates a1 if x is false.
– let x = a in b evaluates a and then evaluates b with x bound to the result of

a. We define a ; b as a shorthand for let x = a in b where x does not occur
free in b.

– [fi = xi
i∈1..n, mj = ς(yj)bj

j∈1..m] creates and returns a new object with
fields fi and methods mj . The initial value for the field fi is the value of xi.
The method mj is set to ς(yj)bj , where ς is a binder, yj is a variable (the self
parameter of the method), and bj is a program (the body of the method).

– Fields can be both selected and updated. In the case of selection (x.f), the
value of the field is returned; in the case of update (x.f := y), the value of
the object is returned.

– When a method of an object is invoked (x.m), its self variable is bound to the
object itself and the body of the method is executed. The method does not
have any explicit parameters besides the self variable; however, additional
parameters can be passed via the fields of the object.

Objects are references (rather than records), and the semantics allows aliasing.
For example, the program fragment

let x = [f = z0] in let y = x in (x.f := z1 ; y.f)

allocates some storage, creates two references to it (x and y), updates the storage
through x, and then reads it through y, returning z1.

In order to formalize the operational semantics, we use some notations for
partial functions. We write A ⇀ B for the set of partial functions from A to B.
We write ∅ for the totally undefined partial function. When f ∈ A ⇀ B, a ∈ A,
and b ∈ B, we write f.(a 7→ b) for the function that coincides with f except
possibly at a, and that maps a to b. When ai ∈ A i∈1..n are distinct and bi ∈
B i∈1..n, we write (ai 7→ bi

i∈1..n) for the function in A ⇀ B that maps ai to bi

for i ∈ 1..n and is otherwise undefined.
The formal operational semantics is in terms of stacks and stores. A stack

maps variables to booleans or references. A store maps object fields to booleans
or references and maps object methods to closures. We write σ, S ` b ; v, σ′ to
mean that, given the initial store σ and the stack S, executing the program b
leads to the result v and to the final store σ′.

We define the notions of store, stack, and result as follows:

– We assume we are given a set of object names H. The set of results R is
H ∪ {false, true}.

– A stack is a function in V ⇀ R.
– A method closure is a triple of a variable x ∈ V (standing for self), a program

b, and a stack S; we write it 〈ς(x)b, S〉. The set of method closures is C.
– A store is a function σ in H ⇀ ((F ∪M) ⇀ (R ∪ C)). There is a condition

on σ: if h ∈ H, f ∈ F , and σ(h)(f) is defined, then σ(h)(f) ∈ R; if h ∈ H,
m ∈ M, and σ(h)(m) is defined, then σ(h)(m) ∈ C. In other words, field
names are mapped to results and method names to closures.

The operational semantics is represented with a set of rules, given below.
According to these rules, a variable x reduces to its value in the stack, without
change in the store. The constants false and true reduce to themselves, without
change in the store. The execution of a conditional expression consists in eval-
uating the guard and, depending on the outcome of this evaluation, evaluating
one of the branches. The let construct evaluates an expression, binds a local
variable to the result of that evaluation, and then evaluates another expression.
The execution of an object construction requires evaluating the fields, construct-
ing method closures, picking a new location, and mapping that location to an
appropriate suite of fields and methods. The execution of a field selection on an
object requires evaluating the object and then extracting the value of the appro-
priate field from the store. The execution of a method invocation is similar, but
there the value returned is the result of evaluating the appropriate method body
with an extended stack that maps the self variable to the value of the object.
Finally, the execution of a field update modifies the store and returns the value
of the object being affected.

Operational semantics

Variables
S(x) = v

σ, S ` x ; v, σ

Constants

σ, S ` false ; false, σ σ, S ` true ; true, σ

Conditional
S(x) = false σ, S ` a1 ; v, σ′

σ, S ` if x then a0 else a1 ; v, σ′

S(x) = true σ, S ` a0 ; v, σ′

σ, S ` if x then a0 else a1 ; v, σ′

Let
σ, S ` a ; v, σ′ σ′, S.(x 7→ v) ` b ; v′, σ′′

σ, S ` let x = a in b ; v′, σ′′

Object construction

S(xi) = vi
i∈1..n h 6∈ dom(σ) h ∈ H

σ′ = σ.(h 7→ (fi 7→ vi
i∈1..n, mj 7→ 〈ς(yj)bj , S〉 j∈1..m))

σ, S ` [fi = xi
i∈1..n, mj = ς(yj)bj

j∈1..m] ; h, σ′

Field selection
S(x) = h h ∈ H σ(h)(f) = v

σ, S ` x.f ; v, σ

Method invocation

S(x) = h h ∈ H σ(h)(m) = 〈ς(y)b, S′〉
σ, S′.(y 7→ h) ` b ; v, σ′

σ, S ` x.m ; v, σ′

Field update
S(x) = h h ∈ H σ(h)(f) is defined
S(y) = v σ′ = σ.(h 7→ σ(h).(f 7→ v))

σ, S ` x.f := y ; h, σ′

The judgment σ, S ` b ; v, σ′ represents only computations that terminate
with a result, not computations that do not terminate or that terminate with an
error. For example, intuitively, the execution of let x = [m = ς(y) true] in x.m
terminates with the output true. Formally, we can derive

σ, S ` let x = [m = ς(y) true] in x.m ; true, σ′

for all σ and S and for some σ′. On the other hand, intuitively, the execution
of let x = true in x.m yields an error, while the execution of let x = [m =
ς(x) x.m] in x.m does not terminate. Formally,

σ, S ` let x = true in x.m ; v, σ′

and

σ, S ` let x = [m = ς(x) x.m] in x.m ; v, σ′

cannot be derived for any σ, S, v, and σ′. The search for a derivation of the
former judgment “gets stuck”, while the search for a derivation of the latter
judgment diverges.

We have defined a small language in order to simplify the presentation of our
rules. In examples, we sometimes extend the syntax with additional, standard
constructs, such as integers. The rules for such constructs are straightforward.

2.2 Types

We present a first-order type system for our language. The types are Bool and
object types, which have the form:

[fi:Ai
i∈1..n, mj :Bj

j∈1..m]

This is the type of objects with a field fi of type Ai, for i ∈ 1..n, and with a
method mj with result type Bj , for j ∈ 1..m. The order of the components does
not matter.

The type system includes a reflexive and transitive subtyping relation. A
longer object type is a subtype of a shorter one, and in addition object types are
covariant in the result types of methods. More precisely, the type [fi:Ai

i∈1..n+p,
mj :Bj

j∈1..m+q] is a subtype of [fi:Ai
i∈1..n, mj :B′

j
j∈1..m] provided Bj is a

subtype of B′
j , for j ∈ 1..m. Thus, object types are invariant in the types of

fields; this invariance is essential for soundness [1].
Formally, we write ` A to express that A is a well-formed type, and ` A <: A′

to express that A is a subtype of A′. We have the rules:

Well-formed types

` Bool
` Ai

i∈1..n ` Bj
j∈1..m

` [fi:Ai
i∈1..n, mj :Bj

j∈1..m]

Subtypes

` Bool <: Bool

` Ai
i∈1..n+p ` Bj <: B′

j
j∈1..m ` Bj

j∈m+1..m+q

` [fi:Ai
i∈1..n+p, mj :Bj

j∈1..m+q] <: [fi:Ai
i∈1..n, mj :B′

j
j∈1..m]

A typing environment is a (possibly empty) list of pairs x:A, where x is a
variable and A is a type. The variables of each environment are distinct. We
write ∅ for the empty environment, and say that x is in E when it appears in
some pair x:A in E. We write E ` � to express that E is a well-formed typing
environment. We have two rules for forming typing environments:

Well-formed typing environments

∅ ` �
E ` � ` A x not in E

E, x:A ` �

We write E ` a : A to express that, in environment E, program a has
type A. There is one typing rule for each construct, and an additional rule for
subsumption. We write syn= for the relation of syntactic equality (up to reordering
of object components).

Well-typed programs

Subsumption
` A <: A′ E ` a : A

E ` a : A′

Variables
E, x:A,E′ ` �

E, x:A,E′ ` x : A

Constants
E ` �

E ` false : Bool
E ` �

E ` true : Bool

Conditional

E ` x : Bool E ` a0 : A E ` a1 : A

E ` if x then a0 else a1 : A

Let
E ` a : A E, x:A ` b : B

E ` let x = a in b : B

Object construction for A
syn= [fi:Ai

i∈1..n, mj :Bj
j∈1..m]

E ` � E ` xi : Ai
i∈1..n E, yj :A ` bj : Bj

j∈1..m

E ` [fi = xi
i∈1..n, mj = ς(yj)bj

j∈1..m] : A

Field selection
E ` x : [f:A]
E ` x.f : A

Method invocation
E ` x : [m:B]
E ` x.m : B

Field update for A
syn= [fi:Ai

i∈1..n, mj :Bj
j∈1..m]

E ` x : A k ∈ 1..n E ` y : Ak

E ` x.fk := y : A

This type system is much like those of common programming languages in
that it is independent of verification rules. In particular, types are not auto-
matically associated with specifications, and subtyping does not impose any
“behavioral” constraints (as in the work of Liskov and Wing [23], for example).
However, as the next section explains, specifications are a generalization of types.

3 Verification

In this section, which is the core of the paper, we give rules for verifying object-
oriented programs written in the language of Section 2. We start with an informal
explanation of our approach.

3.1 Transition Relations

The purpose of our verification rules is to allow reasoning about pre- and post-
conditions. These pre- and postconditions concern the initial and final stores,
the stack, and the result of the execution of a given program.

In our rules, we express pre- and postconditions in formulas of standard,
untyped first-order logic that we call transition relations. These formulas mention
the unary predicates `alloc and ´alloc, two binary functions σ̀ and σ́, and the
special variable r (which is not in the set V of program variables). Intuitively,
σ̀(x, f) is the value of field f of object x before the execution, and σ́(x, f) is its
value after the execution. Similarly, `alloc(x) and ´alloc(x) indicate whether x has
been allocated before and after the execution. Finally, the variable r represents
the result of the execution.

For example, we may want to prove that, after any execution of the program
x.f := y, the result is x and the field f of x equals y. We can express this
with the transition relation r = x ∧ σ́(x, f) = y. As a second example, we may
want to prove that, after any execution of x.f, the result equals the initial value
of the field f of x, and that the store is not changed by the execution. This
statement is captured by the transition relation r = σ̀(x, f) ∧ (∀ y, z . σ̀(y, z) =
σ́(y, z) ∧ (`alloc(y) ≡ ´alloc(y))).

We work in standard first-order logic, so the functions σ̀ and σ́ are total.
Hence, σ̀(x, f) is defined even if `alloc(x) does not hold, and σ́(x, f) is defined
even if ´alloc(x) does not hold. In those cases, the values of σ̀(x, f) and σ́(x, f) are
not important. Similarly, the values of expressions such as σ̀(f, x) and `alloc(f),
which are intuitively meaningless, are not important.

Given a program, a transition relation is much like a Hoare triple from
the point of view of expressiveness. For example, a transition relation such as
(σ̀(x, f) = σ̀(x, g)) ⇒ (σ́(x, f) = σ́(x, g)) can be understood as assuming a pre-
condition (σ̀(x, f) = σ̀(x, g)) and asserting a postcondition (σ́(x, f) = σ́(x, g)).
However, the precondition and postcondition are given by separate formulas in
a Hoare triple, while there is no such formal separation in a transition relation.
This difference is largely a matter of convenience.

Formally, we write that T is a transition relation to mean that T is a well-
formed formula of the standard, untyped first-order logic, made up only of:

– the constants false and true;
– the variable r, the binary functions σ̀ and σ́, and the unary predicates `alloc

and ´alloc;
– constants for field names (such as f);
– other variables (such as x);
– the usual logical connectives ¬, ∧, and ∀, and the equality predicate = (from

which ∨, ⇒ , ≡, ∃, and 6= can be defined as abbreviations).

The grammar for transition relations is thus:

T ::= e0 = e1 | `alloc(e) | ´alloc(e) | ¬T | T0 ∧ T1 | (∀x . T)
e ::= false | true | r | x | f | σ̀(e0, e1) | σ́(e0, e1)

3.2 Specifications and Subspecifications

In order to permit reasoning about pre- and postconditions, our verification rules
also deal with specifications, which generalize types. A specification can be either
Bool or an object specification, of the form:

[fi:Ai
i∈1..n, mj : ς(yj)Bj ::Tj

j∈1..m]

where each Ai and Bj is a specification, and each Tj is a transition relation. The
variable yj is bound in Bj and Tj . Informally, an object satisfies the specification
[fi:Ai

i∈1..n, mj : ς(yj)Bj ::Tj
j∈1..m] if, for i ∈ 1..n, it has a field fi that satisfies

specification Ai, and, for j ∈ 1..m, it has a method mj with a result that satisfies
Bj and whose execution satisfies Tj when yj equals self. We may think of Bj

as a predicate on the result, and then we may read Bj ::Tj as the conjunction
of that predicate and Tj . As for object types, the order of the components of
object specifications does not matter.

Just like there is a subtyping relation on types, there is a subspecification
relation on specifications. This relation is reflexive and transitive. A longer ob-
ject specification is a subspecification of a shorter one, and in addition object
specifications are covariant in the result specifications and in the transition re-
lations for methods. Intuitively, when A and A′ are object specifications, A is a
subspecification of A′ only if any object that satisfies A also satisfies A′.

3.3 Rules for Specifications

In our rules for specifications, we use several judgments analogous to those in-
troduced for types in Section 2.2, and in those cases we use similar notations
but with a
 instead of a `. In particular, we write
 A to express that A is a
well-formed specification, and
 A <: A′ to express that A is a subspecification
of A′. The following rules for specifications generalize the corresponding rules
for types:

Well-formed specifications

 Bool

 Ai
i∈1..n
 Bj

j∈1..m

Tj is a transition relation j∈1..m

 [fi:Ai
i∈1..n, mj : ς(yj)Bj ::Tj

j∈1..m]

Subspecifications

 Bool <: Bool

 Ai
i∈1..n+p
 Bj <: B′

j
j∈1..m
 Bj

j∈m+1..m+q

fol Tj ⇒ T ′
j

j∈1..m

Tj is a transition relation j∈1..m+q T ′
j is a transition relation j∈1..m

 [fi:Ai
i∈1..n+p, mj : ς(yj)Bj ::Tj

j∈1..m+q]
<: [fi:Ai

i∈1..n, mj : ς(yj)B′
j ::T ′

j
j∈1..m]

In this last rule,
fol represents provability in first-order logic with the standard
axioms for = and the axioms false 6= true and f 6= g for every pair of different
field names f and g.

3.4 Specification Environments

A specification environment is much like a typing environment, except that it
contains specifications instead of types. We write E
 � to mean that E is a
well-formed specification environment. We have the rules:

Well-formed specification environments

∅
 �
E
 � E
 A x not in E

E, x:A
 �

Here, given a well-formed specification environment E, we write E
 A to mean

 A and that all the free program variables of A are in E. We omit the obvi-
ous rule for this judgment. Similarly, when all the free program variables of a
transition relation T are in E, we write:

E
 T is a transition relation

In order to formulate the verification rules, we introduce the judgment:

E
 a : A :: T

This judgment states that, in specification environment E, the execution of a
satisfies the transition relation T , and its result satisfies the specification A.

For this judgment, there is one rule per construct plus a subsumption rule;
the rules are all given below. The rules guarantee that, whenever E
 a : A :: T
is provable, all the free program variables of a, A, and T are in E. The rules
have interesting similarities both with the rules of the operational semantics
(Section 2.1) and with the typing rules (Section 2.2). The treatment of transition
relations reiterates parts of the operational semantics, while the treatment of
specifications generalizes that of types.

The subsumption rule enables us to weaken a specification and a transition
relation; it generalizes both the subsumption rule for typing and the standard
rule of consequence from Hoare logic. The rule for if-then-else allows the re-
placement of the boolean guard with its value in reasoning about each of the
alternatives. The rule for let achieves sequencing by representing an intermedi-
ate state with the auxiliary binary function σ̌ and unary predicate ˇalloc. (Note
that the grammar for transition relations does not allow the auxiliary symbols
σ̌ and ˇalloc; however,
fol applies to any first-order formula, even one that is
not a transition relation.) The variable x bound by let cannot escape because of
the hypotheses that E
 B and that E
 T ′′ is a transition relation. The rule
for object construction has a complicated transition relation, but this transition
relation directly reflects the operational semantics; the introduction of an object
specification requires the verification of the methods of the new object. The rule

for method invocation takes advantage of an object specification for yielding a
specification and a transition relation; in these, the formal self is replaced with
the actual self. The remaining rules are mostly straightforward.

In several rules, we use transition relations of the form Res(e), where e is a
term; Res(e) is defined by:

Res(e) ∆= r = e ∧ (∀x, y . σ̀(x, y) = σ́(x, y) ∧ (`alloc(x) ≡ ´alloc(x)))

and it means that the result is e and that the store does not change. We also
write u1[u2/u3] for the result of substituting u2 for u3 in u1.

Well-specified programs

Subsumption

 A <: A′
fol T ⇒ T ′ E
 a : A :: T
E
 A′ E
 T ′ is a transition relation

E
 a : A′ :: T ′

Variables
E, x:A,E′
 �

E, x:A,E′
 x : A :: Res(x)

Constants

E
 �
E
 false : Bool :: Res(false)

E
 �
E
 true : Bool :: Res(true)

Conditional

E
 x : Bool :: Res(x)
E
 a0 : A0 :: T0 A0[true/x] syn= A[true/x] T0[true/x] syn= T [true/x]
E
 a1 : A1 :: T1 A1[false/x] syn= A[false/x] T1[false/x] syn= T [false/x]

E
 if x then a0 else a1 : A :: T

Let
E
 a : A :: T E, x:A
 b : B :: T ′

E
 B E
 T ′′ is a transition relation

fol T [σ̌/σ́, ˇalloc/ ´alloc, x/r] ∧ T ′[σ̌/σ̀, ˇalloc/ `alloc] ⇒ T ′′

E
 let x = a in b : B :: T ′′

Object construction for A
syn= [fi:Ai

i∈1..n, mj : ς(yj)Bj ::Tj
j∈1..m]

E
 � E
 xi : Ai :: Res(xi) i∈1..n E, yj :A
 bj : Bj :: Tj
j∈1..m

E
 [fi = xi
i∈1..n, mj = ς(yj)bj

j∈1..m] : A ::
¬ `alloc(r) ∧ ´alloc(r) ∧
(∀ z . z 6= r ⇒ (`alloc(z) ≡ ´alloc(z))) ∧
σ́(r, f1) = x1 ∧ · · · ∧ σ́(r, fn) = xn ∧
(∀ z, w . z 6= r ⇒ σ̀(z, w) = σ́(z, w))

Field selection
E
 x : [f:A] :: Res(x)

E
 x.f : A :: Res(σ̀(x, f))

Method invocation
E
 x : [m: ς(y)B ::T] :: Res(x)

E
 x.m : B[x/y] :: T [x/y]

Field update for A
syn= [fi:Ai

i∈1..n, mj : ς(zj)Bj ::Tj
j∈1..m]

E
 x : A :: Res(x) k ∈ 1..n E
 y : Ak :: Res(y)
E
 x.fk := y : A ::

r = x ∧ σ́(x, fk) = y ∧
(∀ z, w . ¬(z = x ∧ w = fk) ⇒ σ̀(z, w) = σ́(z, w)) ∧
(∀ z . `alloc(z) ≡ ´alloc(z))

4 Examples

We discuss a few instructive examples, some of them with derivations. From now
on, we use some abbreviations, allowing general expressions to appear where the
grammar requires a variable. In case a, ai

i∈1..n, and b are not variables, we
define:

if b then a0 else a1
∆= let x = b in if x then a0 else a1

[fi = ai
i∈1..n, mj = ς(yj)bj

j∈1..m] ∆= let x1 = a1 in · · · let xn = an in
[fi = xi

i∈1..n, mj = ς(yj)bj
j∈1..m]

a.f ∆= let x = a in x.f
a.m ∆= let x = a in x.m

a.f := b
∆= let x = a in

(x.f ; let y = b in x.f := y)

where the variables x and xi
i∈1..n are fresh. Rules for these abbreviations can

be derived directly from the rules for the language proper. For example, for field
selection, we may use the rule:

E
 a : [f:A] :: T

E
 a.f : A :: (∃x . T [x/r] ∧ Res(σ́(x, f)))

4.1 Field Update and Selection

Our first example concerns the program:

([f = false].f := true).f

This program constructs an object with one field, f, whose initial value is false.
It then updates the value of the field to true. Finally, a field selection retrieves
the new value of the field.

Using our rules, we can prove that r = true holds upon termination of this
program. Formally, we can derive the judgment:

∅
 ([f = false].f := true).f : Bool :: (r = true)

4.2 Aliasing

The following three programs exhibit the rôle of aliasing:

let x = [f = false] in let y = [g = false] in (y.g := true ; x.f)

let x = [f = false] in let y = [f = false] in (y.f := true ; x.f)

let x = [f = true] in let y = x in (y.f := false ; x.f)

For each of these programs we can verify that r = false. The first program
shows that an update of a field g has no effect on another field f. The second
program shows that separately constructed objects have different fields, even if
those fields have the same name. The third program shows that an update of a
field of an aliased object can be seen through all the aliases.

4.3 Method Invocations and Recursion

The next example illustrates the use of method invocation; it shows how object
specifications play the rôle of loop invariants for recursive method invocations.

We consider an object-oriented implementation of Euclid’s algorithm for com-
puting greatest common divisors. This implementation uses an object with two
fields, f and g, and a method m:

[f = 1, g = 1,
m = ς(y) if y.f < y.g then (y.g := y.g − y.f ; y.m)

else if y.g < y.f then (y.f := y.f − y.g ; y.m)
else y.f]

Setting f and g to two positive integer values and then invoking the method m
has the effect of reducing both f and g to the greatest common divisor of those
two values.

We can prove that this object satisfies the following specification:

[f:Nat , g:Nat ,
m: ς(y) Nat :: 1 ≤ σ̀(y, f) ∧ 1 ≤ σ̀(y, g) ⇒

r = σ́(y, f) ∧ r = σ́(y, g) ∧ r = gcd(σ̀(y, f), σ̀(y, g))]

(The proof relies on the addition of standard axioms about integers to the un-
derlying first-order logic.) In verifying the body of the method m, we can use
the specification of m, recursively. The derivation included in the next example
demonstrates how a method specification can be used recursively in a formal
proof.

4.4 Nontermination

As we mentioned initially, our rules are for partial correctness, not for termina-
tion. Nontermination can easily arise because of recursive method invocations.
Consider, for example, the nonterminating program:

[m = ς(x) x.m].m

Using our rules, we can prove that anything holds upon termination of this
program, vacuously. Formally, we can derive the judgment:

∅
 [m = ς(x) x.m].m : A :: T

for any specification A and transition relation T without free variables.
We show the proof as a sequence of judgments, from the desired conclusion

back to “true”, indicating between braces the rules applied and other justifica-
tions. We write False and True as abbreviations for the formulas (false = true)
and (false = false), respectively.

∅
 [m = ς(x) x.m].m : A :: T
⇐ { subsumption, using the assumptions and
fol False ⇒ T }

∅
 [m = ς(x) x.m].m : A :: False
≡ { shorthand }

∅
 let x = [m = ς(x) x.m] in x.m : A :: False
⇐ { let }

∅
 [m = ς(x) x.m] : [m: ς(x)A ::False] :: True
∅, x: [m: ς(x)A ::False]
 x.m : A :: False
∅
 A
E
 False is a transition relation

fol True ∧ False ⇒ False

⇐ { assumptions and first-order logic }
∅
 [m = ς(x) x.m] : [m: ς(x)A ::False] :: True
∅, x: [m: ς(x)A ::False]
 x.m : A :: False

⇐ { subsumption; object construction }
∅
 �
∅, x: [m: ς(x)A ::False]
 x.m : A :: False
∅, x: [m: ς(x)A ::False]
 x.m : A :: False

⇐ { well-formed specification environments; simplification }
∅, x: [m: ς(x)A ::False]
 x.m : A :: False

⇐ { method invocation }
∅, x: [m: ς(x)A ::False]
 x : [m: ς(x)A ::False] :: Res(x)

⇐ { variables }
∅, x: [m: ς(x)A ::False]
 �

⇐ { well-formed specification environments }
∅
 �

 A
False is a transition relation

⇐ { well-formed specification environments; assumptions }
true

Note that in the step that uses the rule for object construction we derive

∅
 [m = ς(x) x.m] : [m: ς(x)A ::False] :: True

from
∅, x: [m: ς(x)A ::False]
 x.m : A :: False

The assumption x: [m: ς(x)A ::False] then enables us to check that the method
body x.m implements the specification for m given in [m: ς(x)A ::False]. Thus,
recursively, we use the specification of an object in verifying its implementation.

4.5 Putting It All Together

Let a0 be the following object:

[f = false, m = ς(s) if s.f then false else true]

Below we give a detailed proof that this object satisfies the following specifica-
tion:

[f:Bool ,
m: ς(s) Bool :: (σ̀(s, f) = false ⇒ r = true) ∧

(σ̀(s, f) = true ⇒ r = false)]

The specification says that the object’s m method returns the negation of the
object’s f field. Below we also give a detailed proof of the following judgment,
illustrating the use of a0:

∅
 let x = a0 in (x.f := true ; x.m) : Bool :: r = false

The proofs include applications of all our verification rules.
For convenience in the proofs, we define a transition relation T , as follows:

T
∆= (σ̀(s, f) = false ⇒ r = true) ∧ (σ̀(s, f) = true ⇒ r = false)

We also define A0 to be the specification of a0:

A0
∆= [f:Bool , m: ς(s)Bool ::T]

We begin with a proof of the specification of a0, more precisely, with a proof
of the judgment E
 a0 : A0 :: r = r. We omit some easy steps, and use our
standard abbreviations. For any well-formed environment E not containing s,
we calculate:

E
 a0 : A0 :: r = r
⇐ { subsumption }

E
 a0 : A0 ::
¬ `alloc(r) ∧ ´alloc(r) ∧ (∀ z . z 6= r ⇒ (`alloc(z) ≡ ´alloc(z))) ∧
σ́(r, f) = false ∧ (∀ z, w . z 6= r ⇒ σ̀(z, w) = σ́(z, w))

⇐ { object construction }

E
 �
E
 false : Bool :: Res(false)
E, s:A0
 if s.f then false else true : Bool :: T

⇐ { E is well-formed; constants }
E, s:A0
 if s.f then false else true : Bool :: T

⇐ { conditional }
E, s:A0
 s.f : Bool :: Res(σ̀(s, f))
E, s:A0
 false : Bool ::

(true = false ⇒ r = true) ∧ (true = true ⇒ r = false)
E, s:A0
 true : Bool ::

(false = false ⇒ r = true) ∧ (false = true ⇒ r = false)
⇐ { field selection; subsumption, using ¬(false = true) }

E, s:A0
 s : A0 :: Res(s)
E, s:A0
 false : Bool :: Res(false)
E, s:A0
 true : Bool :: Res(true)

⇐ { variables; constants }
E, s:A0
 �

⇐ { well-formed specification environments }
E
 �
E
 A0

s not in E
⇐ { E is well-formed and does not contain s; misc. rules }

true

Next, we prove that the program

let x = a0 in (x.f := true ; x.m)

which contains a0, yields the result false:

∅
 let x = a0 in (x.f := true ; x.m) : Bool :: r = false
⇐ { let }

∅
 a0 : A0 :: r = r
∅, x:A0
 x.f := true ; x.m : Bool :: r = false
∅
 Bool
∅
 (r = false) is a transition relation

fol x = x ∧ r = false ⇒ r = false

⇐ { previous proof about a0; misc. rules }
∅, x:A0
 x.f := true ; x.m : Bool :: r = false

⇐ { definition of ; }
∅, x:A0
 let z = x.f := true in x.m : Bool :: r = false

⇐ { let }
∅, x:A0
 x.f := true : A0 :: σ́(x, f) = true
∅, x:A0, z:A0
 x.m : Bool :: σ̀(x, f) = true ⇒ r = false
∅, x:A0
 Bool
∅, x:A0
 (r = false) is a transition relation

fol σ̌(x, f) = true ∧ (σ̌(x, f) = true ⇒ r = false) ⇒ r = false

⇐ { misc. rules }

∅, x:A0
 x.f := true : A0 :: σ́(x, f) = true
∅, x:A0, z:A0
 x.m : Bool :: σ̀(x, f) = true ⇒ r = false

⇐ { subsumption; field update; method invocation }
∅, x:A0
 x : A0 :: Res(x)
∅, x:A0, z:A0
 x : A0 :: Res(x)

⇐ { variables; misc. rules }
true

5 Soundness and Related Properties

In this section we discuss the relation between verification and typing, obtain-
ing two simple results. We then discuss the relation between verification and
operational semantics, proving in particular a soundness theorem. The sound-
ness theorem is the main technical result of this paper. Finally, we comment on
completeness.

5.1 Typing versus Verification

Our first result establishes a correspondence between typing rules and verifica-
tion rules: it says that only well-typed programs can be verified.

Proposition 1. If E
 a : A :: T then E′ ` a : A′ for some E′ and A′ (obtained
from E and A by deleting transition relations).

This result provides a first formal sanity check for the verification rules. It also
highlights a limitation of the verification rules: for example, it implies that the
verification rules do not enable us to derive that the program

if true then true else (true.f)

yields r = true, because this program is not well-typed. We do not view this
limitation as a serious one because we are primarily interested in well-typed
programs.

Conversely, every well-typed program can be verified, at least in a trivial
sense:

Proposition 2. If E′ ` a : A′ then E
 a : A :: (r = r) for some E and A
(obtained from E′ and A′ by inserting trivial transition relations).

5.2 Soundness

We have both an axiomatic semantics (the verification rules) and an operational
semantics. As we prove next, the two semantics agree in the sense that all that
can be derived with the verification rules is true operationally. For example,
if a program yields a result according to the operational semantics, and the
axiomatic semantics says that the result is true, then indeed the result is true.
We call this property soundness.

A special case of our soundness theorem is:

Theorem 1. Assume that the operational semantics says that program b yields
result v when run with an empty stack and an empty initial store (that is, ∅, ∅ `
b ; v, σ′ is provable with the rules of Section 2.1 for some σ′). If ∅
 b : Bool ::
(r = true) is provable then v is the boolean true. Similarly, if ∅
 b : Bool :: (r =
false) is provable then v is the boolean false.

The statement of this theorem clearly expresses the consistency of the verification
rules with the operational semantics. It is however unsatisfactory in at least two
respects: (i) it does not apply to programs with free variables, to programs that
return objects, or to programs that start running with a nonempty store; (ii) it
cannot be proved directly anyway.

Going a little beyond the first special case, we can show that if b yields result
v when run with an empty stack and an empty initial store, and if ∅
 b : A :: T
is provable, then v “satisfies” A, and T holds when interpreted as a predicate on
the initial and the final stores, with v as the value of r.

The full statement of our soundness theorem is as follows.

Theorem 2. Assume that σ, S ` a ; v, σ′ is provable and that Σ |= σ. If
E
 a : A :: T is provable and Σ |= S : E, then (S, σ, σ′, v) |= T and there exists
Σ′ such that Σ′ � Σ, Σ′ |= σ′, and Σ′ |= v : (A,S).

The notations used in this statement are defined precisely in the appendix, where
we also prove the theorem. Here we explain these notations only informally. The
hypothesis Σ |= σ means that the store σ meets the store specification Σ. The
hypothesis Σ |= S : E means that the variables in the stack S meet the specifica-
tions given in E in the context of Σ. The store specification Σ is needed because
the initial store σ may be nonempty; similarly, the use of E as a specification
for the stack S is needed because the program b may have free variables. The
conclusion (S, σ, σ′, v) |= T means that the transition relation holds when we in-
terpret its symbols using S, σ, σ′, and v (for example, taking v as the value of r).
The conclusions Σ′ � Σ and Σ′ |= σ′ imply that Σ′ agrees with Σ but possibly
specifies additional objects in the store (those allocated in going from σ to σ′);
these two conclusions appear in order to permit a direct inductive proof. Finally,
the conclusion Σ′ |= v : (A,S) means that the output v meets the specification
A in the context of Σ′ and S.

Theorem 1 is a corollary of Theorem 2. As another corollary, we obtain a
soundness theorem for the type system of Section 2.2. Therefore, as might be
expected, our soundness proof is no less intricate than proofs of type soundness
for imperative languages. In fact, Theorem 2 generalizes concepts developed for
sophisticated proofs of type soundness [1, 10, 22, 36, 41]. New techniques are re-
quired because specifications, unlike ordinary (non-dependent) types, may con-
tain occurrences of program variables.

5.3 Completeness Issues

While we have soundness, we do not have its converse, completeness. Unfortu-
nately, our rules do not seem to be complete even for well-typed programs.

Careful examination of the following three similar programs reveals a first
difficulty:

b1
∆= let x = (let y = true in [m = ς(z) y]) in x.m

b2
∆= let y = true in (let x = [m = ς(z) y] in x.m)

b3
∆= let x = (let y = true in [f = y, m = ς(z) z.f]) in x.m

All three programs are well-typed and yield the result true. Using our rules,
we can prove ∅
 b2 : Bool :: (r = true) and ∅
 b3 : Bool :: (r = true)
but not ∅
 b1 : Bool :: (r = true). A reasonable diagnosis is that the judgment
E
 a : A :: T does not allow sufficient interaction between A and T (particularly
in the rule for let). One remedy is transforming b1 into b2 (by let-floating [28])
or into b3 (by adding an auxiliary field). We have considered other remedies, but
do not yet know which is the “right” one.

A deeper difficulty arises because the verification rules rely on a “global store”
model. As Meyer and Sieber have explained [24], the use of this model is a source
of incompleteness for procedural languages with local variables. Some of their
remarks apply to our language as well. For example, the following program is
reminiscent of their Example 2: let x = [f = true] in (y.m ; x.f). This program will
always return true because the method invocation y.m cannot affect the field f
of the newly allocated object x. We can prove this, but only by adopting a strong
specification for y, for example requiring that y.m not modify the field f of any
object. Since the work of Meyer and Sieber, there has been considerable progress
in the semantics of procedural languages with local variables (e.g., see [26, 29]).
Some of the insights gained in that area should be applicable to reasoning about
objects.

6 Related Work

As we mentioned in the introduction, there has been much research on speci-
fication and verification for object-oriented languages. The words “object” and
“logic” are frequently used together in the literature, but with many different
meanings (e.g., [33]). We do not know of any previous Hoare logic for a language
like ours.

This section mentions several pieces of related work, emphasizing the most
closely related ones that preceded our research, but also mentioning some rele-
vant subsequent work. Since the initial presentation of our results [2], there has
been much activity around formal techniques for programs in Java and related
languages. In particular, this activity has resulted in semantics [13], in verifica-
tion systems such as LOOP [38], in program-checking tools such as ESC/Java
(which does not aim to be sound or complete) [8], and also in new Hoare log-
ics [25, 39, 40]. A detailed survey of all that recent work is beyond the scope of
the present paper. The interested reader may for example consult the programs
of the workshops titled “Formal Techniques for Java-like Programs” and the
papers presented there (e.g., [7]).

Our work is most similar to that of Leavens [17], who developed a Hoare
logic for a small language with objects. The language is statically typed and
includes a subtyping relation, but does not permit side-effects or aliasing. In an-
other related study, de Boer [6] gave verification rules for the parallel language
POOL. These rules apply to programs with side-effects and aliasing, but with-
out subtyping or recursive methods, and with only one global implementation
for each method (rather than one implementation per object). Both Leavens
and de Boer obtained soundness results. More recently, in his dissertation [30],
Poetzsch-Heffter considered how to integrate Larch-style interface specifications
with Hoare-style verification techniques for object-oriented programs. Further,
Poetzsch-Heffter and Müller [31] provided a proof system for a class-based lan-
guage, representing properties of the type system of the language in axioms.

Much of the emphasis of the previous research has been on issues of refine-
ment and inheritance. Lano and Haughton [15], Leavens [17, 18], and Liskov and
Wing [23] all studied notions of subtyping and of refinement of specifications
(similar to our subspecification relation, though in some respects more sophisti-
cated). Stata and Guttag [34] studied the notion of subclassing, and presented a
pre-formal approach for reasoning about inheritance. Utting [37] studied modu-
lar reasoning, allowing data refinement between the implementation and speci-
fication of an object. Lano and Haughton [16] have collected other research on
object-oriented specification.

In some existing formalisms (e.g., Leavens’s), specifications can be written
in terms of abstract variables. Specifications at different levels of abstraction
can be related by simulation relations or abstraction functions. Some results
on abstraction appear in Leino’s dissertation [19], which also gives a guarded-
command semantics for objects and uses this semantics for reasoning about
programs. Leino and Nelson [21] and Müller [25] have developed this approach
to abstraction further.

Recursive types and recursive specifications can be helpful in dealing with
programs that manipulate unbounded object data structures, which our logic
treats only in a limited way. Two continuations of this work consider recur-
sion [20, 32]. The most recent, due to Reus and Streicher, introduces a semantics
of object specifications.

In another direction, the work of Hofmann and Tang shows how our logic
can be embedded into a theorem prover for higher-order logic, and develops a
verification-condition generator [12, 35]. It also treats examples beyond those
shown in this paper.

Several other extensions of our work may be worthwhile. Some of those ex-
tensions appear straightforward; for example, it would be trivial to account for a
construct that compares the addresses of two objects, or for a cloning construct.
Rules for subclasses and inheritance would be important for treating standard
class-based languages like Modula-3 and Java; perhaps one could develop a for-
mal version of Stata’s and Guttag’s approach. The addition of concurrency prim-
itives would be more difficult; it would call for a change of formalism, similar to
the move from Hoare logic to Owicki-Gries logic [27].

7 Conclusions

In summary, the main outcome of our work is a logic that enables us (at least in
principle) to specify and to verify object-oriented programs. To our knowledge,
our notations and rules permit proofs that, despite their simplicity, are outside
the scope of previous methods. However, our work is only a first step. It has
already stimulated some further research, and we hope that it will continue to
do so.

Secondarily, we hope that our logic will serve as another datapoint on the re-
lations between types and specifications. In the realm of functional programming,
specifications can be seen as a neat generalization of ordinary types (through no-
tions such as dependent types, or in the context of abstract interpretations). In
our experience with imperative object-oriented languages, the step from types
to specifications is not straightforward; still, type theory is sometimes helpful,
for example in suggesting techniques for soundness proofs.

Acknowledgments

Luca Cardelli and Greg Nelson helped in the initial stages of this work. Gary
Leavens and Raymie Stata told us about related research. Krzysztof Apt, Frank
de Boer, Luca Cardelli, Rowan Davies, and David Naumann made useful com-
ments on drafts of this paper. This work was started at Digital Equipment Cor-
poration’s Systems Research Center. Mart́ın Abadi’s work is partly supported by
the National Science Foundation under Grant CCR-0204162. Last but not least,
Mart́ın Abadi’s work owes much to Zohar Manna, who taught him verification
and many other things.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In TAPSOFT

’97: Theory and Practice of Software Development, volume 1214 of Lecture Notes
in Computer Science, pages 682–696. Springer-Verlag, April 1997.

3. K. R. Apt. Ten years of Hoare’s logic: A survey—Part I. ACM Transactions on
Programming Languages and Systems, 3(4):431–483, October 1981.

4. J. Barwise. An introduction to first-order logic. In J. Barwise, editor, The Handbook
of Mathematical Logic, Studies in Logic and Foundations of Mathematics, pages
5–46. North Holland, 1977.

5. E. M. Clarke. Programming language constructs for which it is impossible to obtain
good Hoare axiom systems. Journal of the ACM, 26(1):129–147, January 1979.

6. F. S. de Boer. A proof system for the parallel object-oriented laguage POOL. In
M. S. Paterson, editor, Proceedings of the Seventeenth International Colloquium on
Automata, Languages and Programming, volume 443 of Lecture Notes in Computer
Science, pages 572–585. Springer-Verlag, 1990.

7. Special issue: formal techniques for Java programs. Concurrency and Computation:
Practice and Experience, 13(13), November 2001. Edited by S. Eisenbach and G.
T. Leavens.

8. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. ACM SIGPLAN Notices, 37(5):234–245, June
2002. Proceedings of the ACM SIGPLAN 2002 Conference on Programming Lan-
guage Design and Implementation.

9. R. W. Floyd. Assigning meanings to programs. In Proceedings of the Symposium
on Applied Math., Vol. 19, pages 19–32. American Mathematical Society, 1967.

10. R. Harper. A simplified account of polymorphic references. Information Processing
Letters, 51:201–206, 1994.

11. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–583, October 1969.

12. M. Hofmann and F. Tang. Implementing a program logic of objects in a higher-
order logic theorem prover. In Theorem Proving in Higher Order Logics, 13th
International Conference, TPHOLs 2000, volume 1869 of Lecture Notes in Com-
puter Science, pages 268–282. Springer-Verlag, 2000.

13. B. Jacobs and E. Poll. Coalgebras and monads in the semantics of Java. Theoretical
Computer Science, 291(3):329–349, 2003.

14. C. B. Jones. An object-based design method for concurrent programs. Technical
Report UMCS-92-12-1, University of Manchester, 1992.

15. K. Lano and H. Haughton. Reasoning and refinement in object-oriented specifica-
tion languages. In O. L. Madsen, editor, Proceedings of the 6th European Confer-
ence on Object-Oriented Programming (ECOOP), volume 615 of Lecture Notes in
Computer Science, pages 78–97. Springer-Verlag, June 1992.

16. K. Lano and H. Haughton. Object-Oriented Specification Case Studies. Prentice
Hall, New York, 1994.

17. G. T. Leavens. Verifying Object-Oriented Programs that Use Subtypes. PhD thesis,
MIT Laboratory for Computer Science, February 1989. Available as Technical
Report MIT/LCS/TR-439.

18. G. T. Leavens. Modular specification and verification of object-oriented programs.
IEEE Software, pages 72–80, July 1991.

19. K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California Insti-
tute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

20. K. R. M. Leino. Recursive object types in a logic of object-oriented programs.
Nordic Journal of Computing, 5(4):330–360, 1998.

21. K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM
Transactions on Programming Languages and Systems, 24(5):491–553, September
2002.

22. X. Leroy. Polymorphic typing of an algorithmic language. Technical report, Institut
National de Recherche en Informatique et en Automatique, October 1992. English
version of the author’s PhD thesis.

23. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, November 1994.

24. A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables:
Preliminary report. In Conference Record of the Fifteenth Annual ACM Symposium
on Principles of Programming Languages, pages 191–203, January 1988.

25. P. Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of Lecture Notes in Computer Science. Springer-Verlag, 2002. PhD
thesis, FernUniversität Hagen.

26. P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. Journal of
the ACM, 42(3):658–709, May 1995.

27. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6(4):319–340, 1976.

28. S. Peyton Jones, W. Partain, and A. Santos. Let-floating: moving bindings to
give faster programs. In Proceedings of the 1996 ACM SIGPLAN International
Conference on Functional Programming (ICFP ’96), pages 1–12, May 1996.

29. A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that
dynamically create local names, or: What’s new? In Mathematical Foundations of
Computer Science, Proc. 18th Int. Symp., Gdańsk, 1993, volume 711 of Lecture
Notes in Computer Science, pages 122–141. Springer-Verlag, 1993.

30. A. Poetzsch-Heffter. Specification and verification of object-oriented programs. Ha-
bilitationsschrift, Technische Universität München, 1997. Available at wwweickel

.informatik.tu-muenchen.de/persons/poetzsch/habil.ps.gz.
31. A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object-oriented

languages. In D. Gries and W.-P. de Roever, editors, Programming Concepts and
Methods (PROCOMET’98), IFIP, pages 404–423. Chapman & Hall, June 1998.

32. B. Reus and T. Streicher. Semantics and logic of object calculi. In Proceedings
of the Seventeenth Annual IEEE Symposium on Logic in Computer Science, pages
113–122, July 2002.

33. A. Sernadas, C. Sernadas, and J. F. Costa. Object specification logic. Journal of
Logic and Computation, 5(5):603–630, 1995.

34. R. Stata and J. V. Guttag. Modular reasoning in the presence of subclassing.
ACM SIGPLAN Notices, 30(10):200–214, October 1995. OOPSLA ’95 conference
proceedings.

35. F. H.-L. Tang. Towards feasible, machine-assisted verification of object-oriented
programs. PhD thesis, University of Edinburgh, 2002. Available at www.dcs

.ed.ac.uk/home/fhlt/docs/fhlt-thesis.pdf.
36. M. Tofte. Type inference for polymorphic references. Information and Computa-

tion, 89(1):1–34, November 1990.
37. M. Utting. An Object-Oriented Refinement Calculus with Modular Reason-

ing. PhD thesis, University of New South Wales, 1992. Available at www.cs

.waikato.ac.nz/~marku/phd.html.
38. J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In Tools and

Algorithms for the Construction and Analysis of Systems, 7th International Con-
ference, TACAS 2001 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2001, Proceedings, volume 2031, pages 299–313,
2001.

39. D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and Compu-
tation: Practice and Experience, 13(13):1173–1214, November 2001.

40. D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables,
side effects and virtual methods revisited. In Formal Methods – Getting IT Right,
volume 2391 of Lecture Notes in Computer Science, pages 89–105. Springer-Verlag,
July 2002.

41. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115(1):38–94, November 1994.

42. A. Yonezawa and M. Tokoro, editors. Object-oriented Concurrent Programming.
MIT Press, 1987.

Appendix: Soundness (Definitions and Theorems)

The soundness theorem requires several auxiliary notions. Before giving their
definitions, we motivate each of them informally.

As part of the soundness theorem, we show that if the verification rules say
that a satisfies the specification A and if, operationally, a yields the result v,
then v satisfies A. Making precise the assertion that v satisfies A is delicate for
several reasons.

One problem is that program variables may occur free in A. We surmount
this difficulty by considering specification closures. A specification closure is a
specification paired with a stack that gives values for the free program variables
of the specification. (See Definition 1.) Instead of saying that v satisfies A, we
can say that v satisfies the specification closure (A,S), where S is the stack used
for the execution of a.

Definition 1 (Specification closures).

– A specification closure is a pair (A,S) where A is a specification and S is a
stack such that the free program variables of A are all in the domain of S.

– Given a specification A and a stack S, we write AS for the result of replacing
the free program variables of A by the corresponding results from S. Similarly,
we write TS when T is a formula.

– We handle AS and TS as formal expressions by treating all object names as
free variables. In particular, we may write the subtyping assertion A′S′ <:
AS; this assertion is defined by the standard rules for subtyping. (We omit
a
 in A′S′ <: AS in order to stress that this is not a judgment of our
verification system.)

A second problem is that v may be an address in the store (that is, an object
name) and the store may contain cycles; cycles impede inductive definitions.
We surmount this difficulty by introducing store specifications, which associate
specification closures with object names.

Definition 2 (Store specifications).

– A store specification is a partial function that maps object names (from the
set H) to specification closures.

– Given store specifications Σ and Σ′, we write Σ′ � Σ if Σ′ extends Σ.
– Given a store specification Σ, a specification closure (A,S), and a result v,

Σ |=0 v : (A,S) holds if either A is Bool and v is one of false and true, or
if (A,S) is Σ(v) and v ∈ H.

– Σ |= v : (B,S) holds if there exist B′ and S′ such that B′S′ <: BS and
Σ |=0 v : (B′, S′).

The verification of a takes place with a particular specification environment,
and the execution of a takes place with a particular stack. The soundness theorem
assumes that the stack matches the environment, in the sense that if vi is the
value for xi in the stack, and Ai is its specification in the environment, then vi

satisfies a suitable specification closure (Ai, Si).

Definition 3 (Stacks vs. environments). The relation Σ |= S : E is defined
inductively by:

– If Σ is a store specification, then Σ |= ∅ : ∅.
– If Σ |= S : E, Σ |= v : (A,S), and x is not in E, then Σ |= S.(x 7→ v) :

(E, x:A).

For a store specification to be useful, it needs to be consistent with the
particular store under consideration. We define this consistency relation without
breaking cycles in the store, as follows.

Definition 4 (Stores vs. store specifications). Given a store σ and a store
specification Σ, Σ |= σ holds if Σ and σ have the same domain, and for every v
in their domain, Σ(v) has the form (A,S) where A is

[fi:Ai
i∈1..n, mj : ς(yj)Bj ::Tj

j∈1..m]

and

– for i ∈ 1..n, σ(v)(fi) is defined and Σ |= σ(v)(fi) : (Ai, S);
– for j ∈ 1..m, σ(v)(mj) is of the form 〈ς(yj)bj , S〉, and E, yj :A
 bj : Bj :: Tj

for some E such that Σ |= S : E.

As part of the soundness theorem, we show also that if the verification rules
say that a satisfies the transition relation T and if the execution of a with the
initial store σ yields the store σ′, then T is true when interpreted as a predicate
on the stores σ and σ′, with v as the value of r. Making precise the assertion
that T is true is not too difficult, since T is simply a formula in first-order logic.

In order to interpret a first-order-logic formula, all one does is give a domain
(a nonempty set), associate relations on this domain with predicate symbols,
associate operations on this domain with function symbols, and map variables
to elements of the domain [4]. Collectively, the domain, the relations, and the
operations are called a structure; the mapping of variables to elements is called
an assignment. In the case of T , we define the structure from the stores σ and σ′;
the assignment maps r to v, and maps any other free variables of T to their values
in the stack.

Definition 5 (Satisfaction for formulas). Given two stores σ and σ′, we
define a structure, as follows:

– The domain of the structure is {false, true} ∪ H ∪ F ∪ {⊥} (so it includes
booleans, object names, field names, and a special, distinct undefined value).

– false, true, and all field names are interpreted as themselves.
– σ̀ is interpreted as the binary function that maps any d1 and d2 to σ(d1)(d2)

if this is defined and to ⊥ otherwise.
– σ́ is interpreted as the binary function that maps any d1 and d2 to σ′(d1)(d2)

if this is defined and to ⊥ otherwise.
– `alloc is interpreted as the unary predicate that maps any d to true if and

only if d is in the domain of σ.
– ´alloc is interpreted as the unary predicate that maps any d to true if and

only if d is in the domain of σ′.

Given a stack S and a result v, we define an assignment of elements of the
domain to variables, as follows:

– r is interpreted as v.
– Any other variable x is interpreted as S(x) if this is defined and as ⊥ oth-

erwise.

Given a transition relation T , we write (S, σ, σ′, v) |= T if the assignment asso-
ciated with S and v satisfies T in the structure associated with σ and σ′.

Two simple lemmas, given next without proof, state some of the properties
of the notions defined above.

Lemma 1 (Substitution). If A and B are specifications such that
 A <: B,
and S is a stack, then AS <: BS.

Lemma 2 (Extension). If Σ |= S : E and Σ′ � Σ, then Σ′ |= S : E.

Theorem 1, given in the main body of this paper, is a special case of Theo-
rem 2, which we restate and prove here.

Theorem 2. Assume that σ, S ` a ; v, σ′ is provable and that Σ |= σ. If
E
 a : A :: T is provable and Σ |= S : E, then (S, σ, σ′, v) |= T and there exists
Σ′ such that Σ′ � Σ, Σ′ |= σ′, and Σ′ |= v : (A,S).

Proof. The proof is a direct induction on the derivation of σ, S ` a ; v, σ′.
There is a case for each of the rules of the operational semantics.

The consideration of the subsumption rule basically complicates the argu-
ments for all the cases. A different, more complex induction can avoid this com-
plication; see [20]. In any case, unlike in some proofs for Hoare logic [3], the
possibility of recursion does not lead to the consideration of approximations to
recursive procedures.

Variables
S(x) = v

σ, S ` x ; v, σ

Suppose Σ |= σ, Σ |= S : E, and E
 x : A :: T . Since E
 x : A :: T ,
the environment E must contain x:A′ for some A′ such that
 A′ <: A, and

fol Res(x) ⇒ T . We obtain:

– (S, σ, σ, v) |= T , since
fol Res(x) ⇒ T and (S, σ, σ, v) |= Res(x) (because
S(x) = v).

– Σ � Σ, trivially.
– Σ |= σ, by hypothesis.
– Σ |= v : (A,S): Since Σ |= S : E, we must have Σ |= v : (A′, S′) for some

prefix S′ of S, and hence Σ |=0 v : (A′′, S′′) for some (A′′, S′′) such that
A′′S′′ <: A′S′. Since
 A′ <: A, the substitution lemma yields A′S <: AS.
By transitivity, we obtain A′′S′′ <: AS, since A′S′ = A′S. Therefore, Σ |=
v : (A,S).

Constants

σ, S ` false ; false, σ σ, S ` true ; true, σ

We argue the case for false. Suppose Σ |= σ, Σ |= S : E, and E
 false : A :: T .
Since E
 false : A :: T , we must have A = Bool and
fol Res(false) ⇒ T . We
obtain:

– (S, σ, σ, false) |= T since
fol Res(false)⇒T and (S, σ, σ, false) |= Res(false).
– Σ � Σ, trivially.
– Σ |= σ, by hypothesis.
– Σ |= false : (Bool , S), by the definitions.

Conditional
S(x) = false σ, S ` a1 ; v, σ′

σ, S ` if x then a0 else a1 ; v, σ′

S(x) = true σ, S ` a0 ; v, σ′

σ, S ` if x then a0 else a1 ; v, σ′

We argue the case for false. Let a be if x then a0 else a1. Suppose Σ |= σ,
Σ |= S : E, and E
 a : A :: T . Since E
 a : A :: T , we must have E

x : Bool :: Res(x) and there must exist A1, A′

1, T1, and T ′
1 such that E
 a1 :

A1 :: T1, A1[false/x] = A′
1[false/x], T1[false/x] = T ′

1[false/x],
 A′
1 <: A, and

fol T ′
1 ⇒ T . By induction hypothesis, (S, σ, σ′, v) |= T1 and there exists Σ′ such

that Σ′ � Σ, Σ′ |= σ′, and Σ′ |= v : (A1, S). We obtain:

– (S, σ, σ′, v) |= T : Since (S, σ, σ′, v) |= T1 and S(x) = false, we have (S, σ,
σ′, v) |= T1[false/x]. But T1[false/x] = T ′

1[false/x], so we have (S, σ, σ′, v) |=
T ′

1[false/x]. Since S(x) = false, we have (S, σ, σ′, v) |= T ′
1. Finally,
fol

T ′
1 ⇒ T yields (S, σ, σ′, v) |= T .

– Σ′ � Σ.
– Σ′ |= σ′.
– Σ′ |= v : (A,S): Since Σ′ |= v : (A1, S), there exist A′ and S′ such that

Σ′ |=0 v : (A′, S′) and A′S′ <: A1S. Since S(x) = false and A1[false/x] =
A′

1[false/x], we obtain A1S = A′
1S. Since
 A′

1 <: A, the substitution
lemma yields A′

1S <: AS. We obtain A′S′ <: A1S = A′
1S <: AS, and hence

Σ′ |= v : (A,S).

Let
σ, S ` a ; v, σ′ σ′, S.(x 7→ v) ` b ; v′, σ′′

σ, S ` let x = a in b ; v′, σ′′

Let c be let x = a in b. Suppose Σ |= σ, Σ |= S : E, and E
 c : B :: T .
Since E
 c : B :: T , we must have E
 a : A :: R and E, x:A
 b : B′ :: T ′

for some R, B′, and T ′ such that
 B′ <: B and
fol R[σ̌/σ́, ˇalloc/ ´alloc, x/r] ∧
T ′[σ̌/σ̀, ˇalloc/ `alloc]⇒ T ; in addition, E
 B′ and E
 T is a transition relation,
so x does not occur free in either B′ or T , and σ̌ and ˇalloc do not occur in T .

By induction hypothesis, (S, σ, σ′, v) |= R and there exists Σ′ such that Σ′ � Σ,
Σ′ |= σ′, and Σ′ |= v : (A,S). Since Σ |= S : E, the extension lemma yields
Σ′ |= S : E. Therefore, Σ′ |= S.(x 7→ v) : (E, x:A). (Note that x cannot appear
in E because E, x:A
 b : B′ :: T ; hence x is not in the domain of S either.) By
induction hypothesis, (S.(x 7→ v), σ′, σ′′, v′) |= T ′ and there exists Σ′′ such that
Σ′′ � Σ′, Σ′′ |= σ′′, and Σ′′ |= v′ : (B′, S.(x 7→ v)). We obtain:

– (S, σ, σ′′, v′) |= T : Since (S, σ, σ′, v) |= R and (S.(x 7→ v), σ′, σ′′, v′) |= T ′, the
two models associated with (S.(x 7→ v), σ, σ′, v′) and (S.(x 7→ v), σ′, σ′′, v′)
can be extended to a model for R[σ̌/σ́, ˇalloc/ ´alloc, x/r]∧T ′[σ̌/σ̀, ˇalloc/ `alloc].
(The interpretation of σ̌ and ˇalloc in this model is easily determined from σ′.)
Since
fol R[σ̌/σ́, ˇalloc/ ´alloc, x/r] ∧ T ′[σ̌/σ̀, ˇalloc/ `alloc] ⇒ T , this is also a
model for T . Since σ̌ and ˇalloc do not occur in T and x does not occur free
in T , we conclude that (S, σ, σ′′, v′) |= T .

– Σ′′ � Σ, by transitivity.
– Σ′′ |= σ′′.
– Σ′′ |= v′ : (B,S): Since Σ′′ |= v′ : (B′, S.(x 7→ v)), there exist B′′ and S′′

such that Σ′′ |=0 v′ : (B′′, S′′) and B′′S′′ <: B′(S.(x 7→ v)). Since x does
not occur free in B′, we have B′(S.(x 7→ v)) = B′S. Since
 B′ <: B, the
substitution lemma yields B′S <: BS. Therefore, B′′S′′ <: BS, so Σ′′ |=
v′ : (B,S).

Object construction

S(xi) = vi
i∈1..n h 6∈ dom(σ) h ∈ H

σ′ = σ.(h 7→ (fi 7→ vi
i∈1..n, mj 7→ 〈ς(yj)bj , S〉 j∈1..m))

σ, S ` [fi = xi
i∈1..n, mj = ς(yj)bj

j∈1..m] ; h, σ′

Let c be [fi = xi
i∈1..n, mj = ς(yj)bj

j∈1..m]. Suppose Σ |= σ, Σ |= S : E,
and E
 c : A :: T . Since E
 c : A :: T , there exists A′ of the form
[fi:Ai

i∈1..n, mj : ς(yj)Bj ::Tj
j∈1..m] such that
 A′ <: A, E
 xi : Ai :: Res(xi)

for i ∈ i..n, and E, yj :A′
 bj : Bj :: Tj for j ∈ i..m. In addition, let T ′ be:

¬ `alloc(r) ∧ ´alloc(r) ∧
(∀ z . z 6= r ⇒ (`alloc(z) ≡ ´alloc(z))) ∧
σ́(r, f1) = x1 ∧ · · · ∧ σ́(r, fn) = xn ∧
(∀ z, w . z 6= r ⇒ σ̀(z, w) = σ́(z, w))

It must be that
fol T ′ ⇒ T . Let Σ′ be Σ.(h 7→ (A′, S)). We obtain:

– (S, σ, σ′, h) |= T , since (S, σ, σ′, h) |= T ′.
– Σ′ � Σ, since Σ and σ have the same domain and this domain does not

include h.
– Σ′ |= σ′: First, Σ′ and σ′ have the same domain, namely the domain of Σ

and σ extended with h. Since Σ |= σ, we need to check conditions only for
h; these conditions are determined by Σ′(h) = (A′, S).

• For i ∈ 1..n, σ′(h)(fi) is defined, and equals vi. Since E
 x : Ai ::
Res(xi), it must be that E contains xi:A′

i for some A′
i such that
 A′

i <:
Ai. Since Σ |= S : E and S(xi) = vi, we must have Σ |= vi : (A′

i, S
′
i) for

some prefix S′
i of S, and hence Σ |=0 vi : (A′′

i , S′′
i) for some (A′′

i , S′′
i) such

that A′′
i S′′

i <: A′
iS

′
i. Therefore, Σ′ |=0 vi : (A′′

i , S′′
i) (because Σ′ � Σ).

Since
 A′
i <: Ai, the substitution lemma yields A′

iS <: AiS. In addition
A′

iS
′
i = A′

iS. By transitivity, we obtain A′′
i S′′

i <: AiS. It follows that
Σ′ |= vi : (Ai, S).

• For j ∈ 1..m, σ′(v)(mj) is of the form 〈ς(yj)bj , S〉, and E, yj :A′
 bj :
Bj :: Tj . In addition, E is such that Σ |= S : E, and hence Σ′ |= S : E
by the extension lemma.

– Σ′ |= h : (A,S), since Σ′(h) = (A′, S) and A′S <: AS (because
 A′ <: A
and by the substitution lemma).

Field selection
S(x) = h h ∈ H σ(h)(f) = v

σ, S ` x.f ; v, σ

Suppose Σ |= σ, Σ |= S : E, and E
 x.f : A :: T . Since E
 x.f : A :: T ,
there exist B and A′ such that B has the form [. . . f:A′ . . .],
 A′ <: A, and the
environment E contains x:B. In addition,
fol Res(σ̀(x, f)) ⇒ T . We obtain:

– (S, σ, σ, v) |= T , since v = σ(S(x))(f) so (S, σ, σ, v) |= Res(σ̀(x, f)).
– Σ � Σ, trivially.
– Σ |= σ, trivially.
– Σ |= v : (A,S): Since Σ |= S : E and S(x) = h, we must have Σ |=

h : (B,S′) for some prefix S′ of S, and hence Σ(h) = (B′′, S′′) for some
(B′′, S′′) such that B′′S′′ <: BS′. Therefore, B′′ has the form [. . . f:A′′ . . .]
with A′′S′′ = A′S′. Moreover, A′S′ = A′S since A′ is a subexpression of
B, (B,S′) is a specification closure, and S′ is a prefix of S. Since Σ |= σ,
σ(h)(f) = v, and Σ(h) = ([. . . f:A′′ . . .], S′′), we have Σ |= v : (A′′, S′′), and
hence Σ |=0 v : (A′′′, S′′′) for some (A′′′, S′′′) such that A′′′S′′′ <: A′′S′′.
Since
 A′ <: A, the substitution lemma yields A′S <: AS. By transitivity,
we derive A′′′S′′′ <: AS. Therefore, Σ |= v : (A,S).

Method invocation

S(x) = h h ∈ H σ(h)(m) = 〈ς(y)b, S′〉
σ, S′.(y 7→ h) ` b ; v, σ′

σ, S ` x.m ; v, σ′

Suppose Σ |= σ, Σ |= S : E, and E
 x.m : A :: T . Since E
 x.m : A :: T ,
there exist B, A′, T ′, and T+ such that B has the form [. . .m: ς(y)A′ ::T ′ . . .],

 A′[x/y] <: A,
fol T ′ ⇒ T+, and
fol T+[x/y] ⇒ T , and the environment E
contains x:B. Since Σ |= S : E and S(x) = h, we must have Σ |= h : (B,S+)
for some prefix S+ of S, and hence Σ(h) = (B′′, S′′) for some (B′′, S′′) such
that B′′S′′ <: BS+. We assume (without loss of generality) that y is not in

the domain of S′′ or S. Therefore, B′′ has the form [. . .m: ς(y)A′′ ::T ′′ . . .] with
A′′S′′ <: A′S+ and T ′′S′′ ⇒ T ′S+. Since Σ |= σ, σ(h)(m) contains the stack S′,
and Σ(h) = ([. . .m: ς(y)A′′ ::T ′′ . . .], S′′), we obtain that S′′ = S′. In addition,
there exists E′ such that Σ |= S′ : E′ and E′, y:B′′
 b : A′′ :: T ′′. Since
Σ(h) = (B′′, S′′) and S′′ = S′, we obtain that Σ |= S′.(y 7→ h) : (E′, y:B′′).
(Note that y cannot appear in E′ because E′, y:B′′
 b : A′′ :: T ′′.) By induction
hypothesis, (S′.(y 7→ h), σ, σ′, v) |= T ′′ and there exists Σ′ such that Σ′ � Σ,
Σ′ |= σ′, and Σ′ |= v : (A′′, S′.(y 7→ h)), and hence there exists (C,U) such that
Σ′ |=0 v : (C,U) and CU <: A′′(S′.(y 7→ h)). We obtain:

– (S, σ, σ′, v) |= T : We have (S′.(y 7→ h), σ, σ′, v) |= T ′′, so (S′′.(y 7→ h), σ,
σ′, v) |= T ′′ since S′′ = S′. From T ′′S′′ ⇒ T ′S+ we deduce (S+.(y 7→
h), σ, σ′, v) |= T ′. The free variables of T ′ other than y are included in
the domain of S+, since (B,S+) is a specification closure and ς(y)A′ ::T ′ is
a subexpression of B. In addition, S+ is a prefix of S. Therefore, (S+.(y 7→
h), σ, σ′, v) |= T ′ implies (S.(y 7→ h), σ, σ′, v) |= T ′. We obtain (S.(y 7→
h), σ, σ′, v) |= T+ since
fol T ′ ⇒ T+, so (S, σ, σ′, v) |= T+[x/y] by substi-
tution and since S(x) = h, so (S, σ, σ′, v) |= T since
fol T+[x/y] ⇒ T .

– Σ′ � Σ.
– Σ′ |= σ′.
– Σ′ |= v : (A,S): We already have Σ′ |=0 v : (C,U). In addition, CU <:

A′′(S′.(y 7→ h)) = A′′(S′′.(y 7→ h)) <: A′(S+.(y 7→ h)) = A′(S.(y 7→ h)) =
A′[x/y]S <: AS. (The equality A′′(S′.(y 7→ h)) = A′′(S′′.(y 7→ h)) follows
from S′′ = S′. The relation A′′(S′′.(y 7→ h)) <: A′(S+.(y 7→ h)) is ob-
tained from A′′S′′ <: A′S+ by substitution. The equality A′(S+.(y 7→ h)) =
A′(S.(y 7→ h)) holds because ς(y)A′ ::T ′ is a subexpression of B, (B,S+) is a
specification closure, and S+ is a prefix of S. The equality A′(S.(y 7→ h)) =
A′[x/y]S holds because S(x) = h. The relation A′[x/y]S <: AS follows from

 A′[x/y] <: A by the substitution lemma.)

Field update

S(x) = h h ∈ H σ(h)(f) is defined
S(y) = v σ′ = σ.(h 7→ σ(h).(f 7→ v))

σ, S ` x.f := y ; h, σ′

Suppose Σ |= σ, Σ |= S : E, and E
 x.f := y : A :: T . Since E
 x.f := y : A ::
T , there exist A′ and C such that A′ has the form [. . . f:C . . .],
 A′ <: A, and
the environment E contains x:A′; and there exists C ′ such that
 C ′ <: C and
the environment E contains y:C ′. In addition, let T ′ be:

r = x ∧ σ́(x, fk) = y ∧
(∀ z, w . ¬(z = x ∧ w = fk) ⇒ σ̀(z, w) = σ́(z, w)) ∧
(∀ z . `alloc(z) ≡ ´alloc(z))

It must be that
fol T ′ ⇒ T . We obtain:

– (S, σ, σ′, h) |= T since (S, σ, σ′, h) |= T ′.

– Σ � Σ, trivially.
– Σ |= σ′: Since Σ |= σ, we need to check conditions only for σ′(h)(f). Since

Σ |= S : E and S(x) = h, we must have Σ |= h : (A′, S′) for some prefix S′

of S, and hence Σ(h) = (A′′, S′′) for some (A′′, S′′) such that A′′S′′ <: A′S′.
Therefore, A′′ has the form [. . . f:C ′′ . . .] with C ′′S′′ = CS′. Since Σ |= S : E
and S(y) = v, we must have Σ |= v : (C ′, U) for some prefix U of S, and
hence Σ |=0 v : (B′, U ′) for some (B′, U ′) such that B′U ′ <: C ′U . Because
Σ(h) has the form ([. . . f:C ′′ . . .], S′′), we need that Σ |= v : (C ′′, S′′). We
obtain this from Σ |=0 v : (B′, U ′) and B′U ′ <: C ′U = C ′S <: CS = CS′ =
C ′′S′′. (The relation C ′S <: CS follows from
 C ′ <: C by the substitution
lemma. The equality CS = CS′ holds because C is a subexpression of A′,
(A′, S′) is a specification closure, and S′ is a prefix of S.)

– Σ |= h : (A,S): We have A′′S′′ <: A′S′; moreover, A′S′ = A′S since (A′, S′)
is a specification closure and S′ is a prefix of S. Since
 A′ <: A, the
substitution lemma yields A′S <: AS. By transitivity, we derive A′′S′′ <:
AS. Therefore, Σ(h) = (A′′, S′′) yields Σ |= h : (A,S).

