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Cryptography

0 Rich array of
applications and
powerful
implementations.

0 In some cases (e.g
Lero-Knowledge),
more than we would
have dared to ask for.




Cryptography

N
0 Proofs of security
very important

0 BUT, almost entirely based
on computational hardness
assumptions (factoring is

hard, cannot find collisions
in SHA-1, ...)




One Way Functions (OWF)

O Easy to compute
O Hard to invert (even on the average) I R - f(x)

The most basic, unstructured form of cryptographic hardness
[Impagliazzo-Luby ‘95]

Major endeavor: base as much of Crypto on existence of
OWFs — Great success (even if incomplete)
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Intermediate primitives




Primitives Hierarchy

Pseudorandom
generators [Hastad-Impagliazzo-Levin-Luby ’91 ]]
Private Key M P seudorondom

corresponds to secrecy. But
Crypto is also about

Unforgeability (preventing
cheating)




Primitives Hierarchy

from optimal

Very involved and seems far L
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 Simplifications and improvements in efficiency

A

_* Based on new notions of computational entropy




Primitives Hierarchy
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Building the First Layer
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Entropy and Pseudoentropy

0 For a random variable X denote by H(X) the entropy of
X. Intuitively: how many bits of randomness in X.

0 Various measures of entropy: Shannon entropy (H(X) =
E.. ([log(1/Pr[X=x)]), min-entropy, max-entropy, ...

0 For this talk, enough to imagine X that is uniform over 2*
elements. For such X, H(X)=k.

0 X has pseudoentropy = k if 4 Y with H(Y) > k such that
X and Y are computationally indistinguishable [HILL]



Pseudorandom Generators [BM,Yao]
]
Efficiently computable function G:{0,1}s — {0, 1}m

x | 6(x)
0 Stretching (m > )

0 Output is computationally indistinguishable from uniform
(i.e., has pseudoentropy m).




False Entropy Generator
]

0 Loosely, the most basic object in HILL is:
G (x,9,)=H(x),9,9(x), ;
(think of g as matrix multiplication).

Lemma Let k=log | f-'(f(x))|, then when i=k+log n then
9,9(x), . is pseudorandom (even given f(x)).

0 Intuition: first K-C-l0Q n bits are statistically close to
uniform (Leftover Hash Lemma) and next (c+1)log n
bits are pseudorandom (GL Hard-Core Function).



False Entropy Generator (ll)

Gy (x,9,1)=1(x),9,9(x), ;
Lemma: For the variable G, _(x,9,i) (with random inputs)
A = pseudoentropy — real entropy > (log n)/n

Reason: w.p 1/n over choice of i (when i=k+log n) the
output G, _(x,g,i) is indistinguishable from distribution
with entropy | x|+ |g|+log n (whereas real entropy
<[x[+]|gl)

0 Disadvantages: A rather small, value of real entropy
unknown, pseudoentropy < entropy of input



Building Block of [HRV "10]
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0 Simply do not truncate:
G,p(x,9)=t(x),9, g(x)

0 Nonsense: G, (x,g) is invertible and therefore
has no pseudoentropy!

0 Well yes, but: G, (x,g) does have pseudoentropy
from the point of view of an online distinguisher
(getting one bit at a time).



an(X,g):f(X)lglg(X)l,...n

Next-Bit Pseudoentropy

0 X has pseudoentropy = k if 3 Y with H(Y) = k such that X and Y are
computationally indistinguishable

0 X=(X,...X,) has next-bit pseudoentropy > k if 3 {Y },_, with
o X H(Y.[X,...X_ ;) = k such that
O X, and Y. are computationally indistinguishable given X,,..., X, |
0 Remarks:
o X and {Y,} are jointly distributed
0 The two notions are identical for k=n [BM, Yao, GGM]
0 Generalizes to blocks (rather than bits)
0 Next-bit pseudoentropy is weaker than pseudoentropy



Our Next-Block Pseudoentropy Generator
-5

0 G,,(x,9)=f(x),9,9(x)
0 Next-block pseudoentropy > | x|+ |g| +logn

o X=G(x,g) and {Y.} obtained from X by replacing first k+logn

bits of g(x) with uniform bits, where k=log|f'(f(x))|

0 Advantages:

O A = (next-block pseudoentropy — real entropy) > logn

O Entropy bounds known (on total entropy)

o “No bit left behind”



Simple form of PRGs in OWFs
]
In conclusion: for OWF f:{0,1}" — {0O,1}" & (appropriate)
pair-wise independent hash function 9:{0,1}” — {0,1}n

X —) f(x), g, g(x)

0 Has pseudoentropy in the eyes of an online distinguisher
(i.e., next-block pseudoentropy)

O [Vadhan-Zheng ‘12] Don’t need g at all + additional
efficiency improvement.




Pseudoentropy vs. Inaccessible Entropy
.,

[HILL ‘91]: A distribution X has ps
indistinguishable from X' such ’r Secrecy

0 X looks like it has more entropy than it really does

[HRVW ’09] X has in inaccess =
efficient algorithm A, if A {FEitelde[=lelolIip4 Wort” of
X then H(A(-)) < H(X)

0 X has entropy but some of it is inaccessible




Universal One-Way Hash Functions [NY]
I
62{9} a family of efficiently computable hash functions
such that

0 (2" pre-image) Given random g and X, hard to find X’
such that g(x):g(x').

0 Compare with collision resistance: Given g, hard to find
X and X such that g(x)=g(x').



Simple form of UOWHFs in OWFs

]
OWF £:{0 13" — {0 1}r
0 Define F(x,i)= first | bits of f(x)

0 Given random X,i may be possible to find X' such that
F(x,1)= F(x',i) = F may be broken as a UOWHF

0 But it is infeasible to sample such X' with full entropy =
F is “a bit like” a UOWHF




Simple form of UOWHFs in OWFs

]
Proof idea: Assume that given X,i. algorithm A samples X’
with full entropy such that F(x,i)= F(x',i).
In other words, X' is uniform such that first | bits of f(x)
equal first i bits of f(x')
Given y find X:f'l(y) (breaking f) as follows:
O Let X; be such that f(X;) and y agree on first i bits.

O To get X, from X, use A on input (X;,1) until it samples X such
that f(x'} and Y agree on first i+1 bits (set X,;= X)).

O Output X=X,.




Inaccessible Entropy Generator
]

OWF f:{0 1)1 — {0 1}r
0 Inaccessible entropy generator:

Define G, (x)=f(x){,f(x),,...,f(x),,x

0 Informal thm: There is no algorithm that produces each
one of the n+1 blocks (in an online fashion) with full
entropy (hence an inaccessible entropy generator).

0 Useful in construction of statistically hiding commitment
schemes and inspiring in construction of UOWHFS

(slightly different analysis).




Connection to Statistical Commitment
.,
0 Inaccessible entropy generator:

Define G..(8)=21,Z,,...Z,

0 Assume Z is a uniform bit (from the point of view of an
observer) but is completely fixed conditioned on the
internal state of any algorithm generating it.

0 Use Z, to mask a bit ¢ (output Z,25,....L. 1, L D o).

0 Then o is statistically hidden (for outside observer) but
the committer can only open a single value.



Two Computational Entropy Generators
.,

f{0,1}" - {0,1}» OWF.
0 Next block pseudoentropy generator:
G, (X)=F(x),X1,X5,.... %,
O Looks (on-line) like it has en’rropy|X|+|Og n.
0 Inaccessible entropy generator:

Gio(X)=F(X)1.F(X)z,... f (X)n, X

o Can generate (on-line) at mos’rle - |09 N bits of entropy.



Summary
-5

0 When viewed correctly, one-way functions rather
directly imply simple forms of the “first layer” of
cryptographic primitives.

0 This view relies on setting the “right” computational
notions of entropy.

0 Open problems: Beyond the world of OWFs, Use
for lower bounds, Further Unifications, Better
constructions,
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