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1. Discrete Filters: The z-transform of a discrete time filter h(k) at a 1Hz sample rate is: 
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a. Let u(k) and y(k) be the discrete input and output of this filter. Find a difference 
equation relating u(k) to y(k). 
 

b. Find the natural frequency and damping of the filter’s poles. 
 

c. Is the filter stable? 
 

2. Discrete Bode: The following transfer function is a lead network designed to add about 60° of 
phase at ω1 = 3 rad/sec:  
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a. Assume a sampling period of T = 0.25 seconds, and compute and plot in the z-plane 

the pole and zero locations of the digital implementations of H(s) using: 
 

i. Tustin (trapezoidal integration) 
ii. Euler (backwards difference) 

iii. Pole-Zero mapping (𝑠 = 1
∆𝑇

ln 𝑧) 
 

For each case, compute the amount of phase lead provided by the network at 
𝑧1 = 𝑒−𝑗𝜔1𝑇 

 
b. Using a log-log scale for the frequency range of ω = 0.1 to ω = 100 rad/s, plot the 

magnitude bode plots for each of the equivalent digital systems you found in the 
first part (a), and compare with H(s).  Hint: Magnitude plots are given by |𝐻(𝑧)| =
 �𝐻(𝑒𝑗𝜔𝑇)�. 

 
 
 



3. Distortion of Lead Networks: In the s-domain, the magnitude and phase introduced by a lead 
compensator depend only on the ratio of its zero and pole. This is independent of your 
choice of center frequency. Things are different in the z-domain. 

 
Consider the lead compensator K(s) below. This has a peak phase and a gain of one at 
𝜔𝑐 =  √𝑎𝑎. Let the center frequency ωc = 1 and let b/a = 4. This will yield 36° of phase lead 
at ω = 1. 
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a. Overplot the magnitude and phase vs. frequency of K(s) and K(z) where K(z) is found 
using the Tustin transformation (𝑠 = 2

𝑇
𝑧−1
𝑧+1

). Do this for both of the sampling times,  
T = 0.1*π/ωc and T = 0.8*π/ωc (Nyquist frequency is w=π/T). What is your K(z)? 
 
 

b. Redo part (a), using the Tustin Transformation with pre-warping. That is: 
𝑠 = 𝜔𝑐
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. Hint: it is OK to use dbode.m and c2d.m on this problem. 

 
 

4. Consider the system:   

𝐺(𝑠) =
1

(𝑠2 + 1) 

 
a. Design a compensator, D1(s), that will place the closed-loop roots of this system at 

sd = -1 ± 2j (use a unity gain feedback configuration). Use a simple lead 
compensator, and don't worry about DC gain. Plot the impulse response of your 
resulting closed loop system. 
 

b. Assume that you want to implement the compensator of (a) in a digital computer 
using a sample time of T = 0.5sec. Convert D1(s) into D1(z) using the Tustin mapping. 
Write the difference equation that would represent D1(z), and write some “pseudo-
code” to show how you would implement it. Hint: The Tustin mapping is 𝑠 = 2

𝑇
𝑧−1
𝑧+1

. 
 

c. Redo parts (a) and (b), but this time design a compensator, D2(s) that “accounts for” 
the T/2 time delay in the system. Do this by adding a first order Pade approximation 
to your plant (i.e.: design a compensator for the plant 𝐺(𝑠) ∗ −𝑠+4/𝑇

𝑠+4/𝑇
.. Again, use 

Tustin to convert D2(s) to D2(z). 
 

d. What is your phase margin for part (a)? How much phase margin did you lose when 
you implemented your design in part (b)? What is your phase margin in part (c)? Did 
you recover your lost phase margin? (Put these in a table). 

 
e. Prove that the ZOH equivalent of G(s) is 𝐺(𝑧) = 0.1224 𝑧+1

𝑧2−1.7552𝑧+1
. 

 



f. Analyze the designs you created in parts (b) and (c). In particular, calculate the 
closed-loop z-plane roots using the ZOH-equivalent, G(z), and your compensators 
D(z). Then map these roots back to the s-plane using the relation s = (1/T )ln(z). How 
do the ωn and ζ compare with what you were trying to achieve? Note that this 
analysis is exact. 

 
g. Create a new compensator D3(z) by doing your design directly in the z-plane. First, 

pick your desired z-plane pole locations to be 𝑧𝑑  =  𝑒𝑠𝑑𝑇  . Then, use root-locus in 
the z-plane to find a D3(z) that will yield closed loop roots at zd. 

 
h. Overplot the impulse responses of the four closed-loop systems: 

 
i. D1(s) and G(s) (this is the “ideal”) 

ii. D1(z) and G(z) 
iii. D2(z) and G(z) 
iv. D3(z) and G(z) 

 
Comment on how well each of the designs works. Try to draw some conclusions. 
Note: you might want to shift your time axes so they line up. Your continuous 
response will start at t = 0 whereas your discrete responses will start at t = T = 0.5. 
Hint: check out IMPULSE.M, DIMPULSE.M, EXP.M, LOG.M, and DAMP.M 


