Simulink Basics Tutorial

Starting Simulink
Basic Elements
Building a System
Running Simulations

Simulink is agraphical extension to MATLAB for the modeling and simulation of systems. In
Simulink, systems are drawn on screen as block diagrams. Many elements of block diagrams are
available (such as transfer functions, summing junctions, etc.), aswell as virtual input devices
(such as function generators) and output devices (such as oscilloscopes). Simulink isintegrated
with MATLAB and data can be easily transferred between the programs. In this tutorial, we will
introduce the basics of using Simulink to model and simulate a system.

Simulink is supported on Unix, Macintosh, and Windows environments, and it isincluded in the
student version of MATLAB for personal computers. For more information on Simulink, contact
the MathWorks.

The idea behind these tutorialsis that you can view them in one window while
running Simulink in another window. Do not confuse the windows, icons, and
menus in the tutorials for your actual Simulink windows. Most imagesin these
tutorials are not live - they ssmply display what you should see in your own
Simulink windows. All Simulink operations should be done in your Simulink
windows.

Starting Simulink

Simulink is started from the MATLAB command prompt by entering the following command:

si mul i nk
Alternatively, you can click on the "Simulink Library Browser" button at the top of the MATLAB
command window as shown below:

<} MATLAB Command Window M=l B3
File Edit %iew ‘window Help

| s R @38 Rl 2 |
S = i e 1
1 Simulink: Library Browser| & I

This version is for educational classroom use only.

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, type tour or wisit www.mathworks.com.

e

" o

Shaw the Simulink Litrary Brovser | [NUM | o

The Simulink Library Browser window should now appear on the screen. Most of the blocks
needed for modeling basic systems can be found in the subfolders of the main "Simulink™ folder
(opened by clicking onthe "+" in front of "Simulink™). Once the "Simulink” folder has been
opened, the Library Browser window should look like:

mﬁimulink Library Browser

&]ﬁ_—} Continuous
F—_'E Dizcrete

[4;?} - ﬂ;: Functions & T ables
-2 Math

&]ﬁ_—! Manlinear

F—_' # Signals & Systems
- 3 Sinks

w2 Sources

E| Control Spstem Toolbox
- W Meural Metwork Blockzet
B FealTime Workshop
B Stateflow

E| Sirmulink Extras

- El Syztem 1D Blocks

1
d

TE

-4

1
d

“Simulink’ loaded

Basic Elements

There are two major classes of elementsin Simulink: blocks and lines. Blocks are used to
generate, modify, combine, output, and display signals. Lines are used to transfer signals from
one block to another.

Blocks

The subfolders underneath the "Simulink™ folder indicate the general classes of blocks available
for usto use:

Continuous: Linear, continuous-time system elements (integrators, transfer functions,
state-space models, etc.)

Discrete: Linear, discrete-time system elements (integrators, transfer functions, state-
space models, etc.)

Functions & Tables. User-defined functions and tables for interpolating function values
Math: Mathematical operators (sum, gain, dot product, etc.)
Nonlinear: Nonlinear operators (coulomb/viscous friction, switches, relays, etc.)

Signals & Systems: Blocks for controlling/monitoring signal(s) and for creating
subsystems

Sinks: Used to output or display signals (displays, scopes, graphs, etc.)
Sources: Used to generate various signals (step, ramp, sinusoidal, etc.)

Blocks have zero to severa input terminals and zero to several output terminals. Unused input
terminals are indicated by a small open triangle. Unused output terminals are indicated by a
small triangular point. The block shown below has an unused input terminal on the left and an
unused output terminal on the right.

T
L = =)
Integratar

Lines

Lines transmit signalsin the direction indicated by the arrow. Lines must always transmit signals
from the output terminal of one block to the input terminal of another block. One exception to
thisisthat aline can tap off of another line. This sends the original signal to each of two (or
more) destination blocks, as shown below:

1

T [
=
Integratar Scope

L

Scoped

Lines can never inject asignal into another line; lines must be combined through the use of a
block such as a summing junction.

A signal can be either a scalar signal or avector signal. For Single-Input, Single-Output systems,
scalar signals are generally used. For Multi-Input, Multi-Output systems, vector signals are often
used, consisting of two or more scalar signals. The lines used to transmit scalar and vector
signas areidentical. Thetype of signal carried by alineis determined by the blocks on either
end of theline.

Building a System

To demonstrate how a system is represented using Simulink, we will build the block diagram for
asimple model consisting of a sinusoidal input multiplied by a constant gain, which is shown
below:

EI example H=]

File: Edi.t Wiews Simulation Format Tool

DEEE LB 2 - » = &

i —F

Sine Wawe zain Scope

Feady [100% i i lodeds o

Thismodel will consist of three blocks: Sine Wave, Gain, and Scope. The Sine Waveisa

Sour ce Block from which asinusoidal input signal originates. Thissignal is transferred through
alinein the direction indicated by the arrow to the Gain Math Block. The Gain block modifies
itsinput signal (multipliesit by a constant value) and outputs a new signal through aline to the
Scope block. The Scopeisa Sink Block used to display asignal (much like an oscilloscope).

We begin building our system by bringing up a new model window in which to create the block
diagram. Thisisdone by clicking on the "New Model" button in the toolbar of the Simulink
Library Browser (looks like a blank page).

Building the system model is then accomplished through a series of steps:

1. The necessary blocks are gathered from the Library Browser and placed in the model
window.

2. The parameters of the blocks are then modified to correspond with the system we are
modelling.

3. Finally, the blocks are connected with lines to complete the model.

Each of these steps will be explained in detail using our example system. Once asystemis built,
simulations are run to analyze its behavior.

Gathering Blocks

Each of the blocks we will usein our example model will be taken from the Simulink Library
Browser. To place the Sine Wave block into the model window, follow these steps:

1. Click onthe"+" infront of "Sources" (thisis a subfolder beneath the "Simulink™ folder)
to display the various source blocks available for usto use.

2. Scroll down until you see the "Sine Wave" block. Clicking on thiswill display a short
explanation of what that block does in the space below the folder list:

=l

= 3+ Sources -]

& Band-Limited White Noise
. @ Chirp Signal

.. i@ Clock

. &y Constant

... @ Dighal Clack

& Discrete Pulse Generator
. @ Fram “Workspace

. &y From File

& Pulse Generator

0 Ramp

i @ Randam MNurmber

Q R epeating Sequence
- & Signal Generator

f Output 3 sine wave. ij

3. Toinsert a Sine Wave block into your model window, click on it in the Library Browser
and drag the block into your workspace.

The same method can be used to place the Gain and Scope blocks in the model window. The

"Gain" block can be found in the "Math" subfolder and the " Scope" block islocated in the "Sink"
subfolder. Arrange the three blocks in the workspace (done by selecting and dragging an
individual block to a new location) so that they ook similar to the following:

=] example = =10]]

File: Edit “iew Simulabion Format. Tools

D eE& + =By = | &

ﬁu} D; []

Sine Wave 3in Scope

Ready [100% loded5 7

Modifying the Blocks

Simulink allows us to modify the blocks in our model so that they accurately reflect the
characteristics of the system we are analyzing. For example, we can modify the Sine Wave
block by double-clicking on it. Doing so will cause the following window to appear:

Block Parameters: Sine \Wave

- Sine Wave
Output & zine wave,

— Parameters
Amplitide;

|
Freguency [rad/zec];
|
Phaze [radj:
0

Sampletirme:

|o

Cancel ﬂn_ali:u el

Thiswindow allows usto adjust the amplitude, frequency, and phase shift of the sinusoidal
input. The"Sampletime" value indicates the time interval between successive readings of the
signal. Setting this value to 0 indicates the signal is sampled continuously.

L et us assume that our system's sinusoidal input has:
Amplitude=2

Frequency = pi

Phase = pi/2

Enter these values into the appropriate fields (leave the "Sample time" set to 0) and click "OK" to
accept them and exit the window. Note that the frequency and phase for our system contain 'pi’
(3.1415...). These values can be entered into Simulink just as they have been shown.

Next, we modify the Gain block by double-clicking on it in the model window. The following
window will then appear:

Black Parameters: Gain

~TGain
Scalaror vector gaif. p = ko

— Parameters
EETH

¥ Saturate on integer averflow

k. I Cancel l Help I o] I

Note that Simulink gives a brief explanation of the block's function in the top portion of this
window. Inthe case of the Gain block, the signal input to the block (u) is multiplied by a
constant (k) to create the block's output signal (y). Changing the "Gain" parameter in this
window changes the value of k.

For our system, we will let k = 5. Enter thisvaluein the "Gain" field, and click "OK" to close
the window.

The Scope block simply plotsitsinput signal as afunction of time, and thus there are no system
parameters that we can change for it. We will look at the Scope block in more detail after we
have run our ssimulation.

Connecting the Blocks

For ablock diagram to accurately reflect the system we are modeling, the Simulink blocks must
be properly connected. In our example system, the signal output by the Sine Wave block is
transmitted to the Gain block. The Gain block amplifies this signal and outputs its new value to
the Scope block, which graphs the signal as a function of time. Thus, we need to draw lines from
the output of the Sine Wave block to the input of the Gain block, and from the output of the Gain
block to the input of the Scope block.

Lines are drawn by dragging the mouse from where a signal starts (output terminal of a block) to
where it ends (input terminal of another block). When drawing lines, it isimportant to make sure
that the signal reaches each of itsintended terminals. Simulink will turn the mouse pointer into
acrosshair when it is close enough to an output terminal to begin drawing aline, and the pointer
will change into a double crosshair when it is close enough to snap to an input terminal. A signal
is properly connected if its arrowhead isfilled in. If the arrowhead is open, it meansthe signal is
not connected to both blocks. To fix an open signal, you can treat the open arrowhead as an
output terminal and continue drawing the line to an input terminal in the same manner as

explained before.

8", ’D} s D}

Sine Wiave zain Sine Wiave] zain

Properly Connected Signal Open Signal

When drawing lines, you do not need to worry about the path you follow. The lineswill route
themselves automatically. Once blocks are connected, they can be repositioned for a neater
appearance. Thisisdone by clicking on and dragging each block to its desired location (signals
will stay properly connected and will re-route themselves).

After drawing in the lines and repositioning the blocks, the example system model should look
like:

5] example =l

File: Edi.t Wiews Simulation Format Tool

DEEE LB 2 - » = &

i —F

Sine Wawe zain Scope

Feady [100% i i lodeds o

In some models, it will be necessary to branch asignal so that it is transmitted to two or more
different input terminals. Thisisdone by first placing the mouse cursor at the location where the
signal isto branch. Then, using either the CTRL key in conjunction with the left mouse button
or just the right mouse button, drag the new line to itsintended destination. This method was
used to construct the branch in the Sine Wave output signal shown below:

E! example * =]

Eile Edit Miew Simulation Formatb Tools

e EdS s =8 22 = B

[]
Lals L.
¥
Sine Wiave Zain Scope
I (.
Scoped

Feady 100% | | loded5 o

The routing of lines and the location of branches can be changed by dragging them to their
desired new position. To delete an incorrectly drawn line, smply click on it to select it, and hit
the DELETE key.

Running Smulations

Now that our model has been constructed, we are ready to simulate the system. To do this, go to
the Simulation menu and click on Start, or just click on the " Start/Pause Simulation” button in
the model window toolbar (looks like the "Play" button on a VCR). Because our exampleisa
relatively ssmple model, its simulation runs almost instantaneously. With more complicated
systems, however, you will be able to see the progress of the simulation by observing its running
time in the the lower box of the model window. Double-click the Scope block to view the output
of the Gain block for the ssmulation as a function of time. Once the Scope window appears,
click the "Autoscale" button in its toolbar (looks like a pair of binoculars) to scale the graph to
better fit the window. Having done this, you should see the following:

5 15| W/ | &

10

Time affset: 0

Note that the output of our system appears as a cosine curve with a period of 2 seconds and
amplitude equal to 10. Does this result agree with the system parameters we set? Its amplitude
makes sense when we consider that the amplitude of the input signal was 2 and the constant gain
of the systemwas 5 (2 x 5= 10). The output's period should be the same as that of the input
signal, and this value is a function of the frequency we entered for the Sine Wave block (which
was set equal to pi). Finally, the output's shape as a cosine curve is due to the phase value of
pi/2 we set for the input (sine and cosine graphs differ by a phase shift of pi/2).

What if we were to modify the gain of the system to be 0.5? How would this affect the output of
the Gain block as observed by the Scope? Make this change by double-clicking on the Gain
block and changing the gain value to 0.5. Then, re-run the simulation and view the Scope (the
Scope graph will not change unless the simulation is re-run, even though the gain value has been
modified). The Scope graph should now look like the following:

ime offset: O

Note that the only difference between this output and the one from our original systemisthe
amplitude of the cosine curve. In the second case, the amplitudeisequal to 1, or 1/10th of 10,
which isaresult of the gain value being 1/10th aslarge as it originally was.

Author: RDM
Updated: 6/13/00

Modeling a First Order System in Simulink

Free Body Diagram and System Equation
Building System Model

System Response to Step/Pulse Inputs
Additional Examples

The idea behind these tutorialsis that you can view them in one window while
running Simulink in another window. Do not confuse the windows, icons, and
menus in the tutorials for your actual Simulink windows. Most imagesin these
tutorials are not live - they ssmply display what you should see in your own
Simulink windows. All Simulink operations should be done in your Simulink
windows.

Free Body Diagram and System Equation

To demonstrate how Simulink can be used to investigate a real-world system, we will ook at a
simplified, first-order model of the motion of acar. If we assume the car to be travelling on a
flat road, then the horizontal forces on the car can be represented by:

ey

bv

In this diagram:

v isthe horizontal velocity of the car (units of m/s).
F isthe force created by the car's engine to propel it forward (units of N).

b is the damping coefficient for the car, which is dependent on wind resistance, wheel
friction, etc. (units of N*s/m) We have assumed the damping force to be proportional to
the car's velocity.

M isthe mass of the car (units of kg).

Writing Newton's Second Law for the horizontal direction thus gives:

MY _F_by
dt
For our system, we will assume that:

M = 1000 kg (a Dodge Neon has amass of about 1100 kg)
b =40 N*sec/m

Building System M odel

This system will be modeled in Simulink by using the system equation derived above. This
equation indicates that the car's accel eration (dv/dt) is equal to the sum of the forces acting on the
car (F-bv) divided by the car's mass:

dv F-bv_ F-40v

dt M 1000

To model this equation, we begin by inserting a Sum block and a Gain block (both found in the
Math subfolder of the Simulink folder in the Library Browser) into a new model window. The
Sum block represents adding together the forces and the Gain block symbolizes dividing by the
mass. Connecting the blocks with aline gives the following in the model window:

Eicar_euample = | [O) x]
File Edit Miew Simulation Format® Toole
Nezde s2e oz o | B
Zain
Beady (100 | | |oded5 s

Next, we modify these blocks to properly represent our system. The Sum block needs to add the
motor force (F) and subtract the damping force (bv). Thus, we double-click on this block and
change the second "+" inthe "List of signs' box into a"-". The Sum Block Parameters window
should now look like:

Block Parameters: Sum

= Sum

‘#Add or subtract inputs. Specify one of the fallowing:
a] shing containing +or - for sach input port, | for spacer bebween ports
[£.0. ++-}++]

!:u] sca_lar #= 1. A value > 1 sums all inputs: 1 sums elements of a single
INpUE ector
- Parameters
lgon shape: | round =]
List of zigns;

-

¥ Saturate an integer overtlow

Ok I Cancel Help e el

We also modify the Gain block so that it divides by the car's mass. Double-click on the block
and change the Gain to 1/1000 (dividing by 1000 is the same as multiplying by 1/1000).

To keep our block diagram organized and easy to understand, we next add labels to the signals
and blocks we have included so far. A signal islabeled by double-clicking onitsline and
entering the desired description into the text box that appears. These labels can be moved by
dragging the text boxesto their desired location on the lines. A block islabeled by clicking on
the text underneath it and editing the description.

Draw linesto the open input terminals of the Sum block and open output terminal of the Gain
block and label the signals and blocks in the model so that they ook like:

m car_example * M= E3
File Edit Miew Simulstion Format Tools
IDER&E| =R |2 = » 5 |
F I Farzes ’{-K- w_dot
Criwide by hd
b
Ready 1003 | | {odeds 7

To relate the car's acceleration (v_dot in the Simulink model) to its vel ocity-dependent damping
force, we will integrate the v_dot signal. Place an Integrator block (from the Continuous
subfolder) in the model (you do not need to change its parameters), and draw and label the
velocity signal so that the model looks like:

EI car_example * P =]
File” Edit ‘iew Simulation Format Tools
NeH&E 22| v
1 W
F = Famzes ’{-K- w_dot ™ ;
Crivide by b Integratar
b

Ready 11003 i i loded5 o

To obtain the damping force from the velocity, we need to branch the velocity signal and
multiply it by the damping coefficient (b). Branching the velocity signal is done by clicking the
right mouse button anywhere on its line (or hold down CTRL and use the left mouse button) and
dragging away anew signal. A Gain block isthen used to multiply the velocity by the damping
coefficient. Add this block to the model (from the Math subfolder) and flip it to so that it outputs
to the left by clicking on Format then Flip Block (the Gain block must be selected in the model
window when thisisdone). Finally, edit the Gain block's parameters so that its gain equals the
damping coefficient of the system (40 N*sec/m). These additions to the model should causeit to
look like:

ﬁ car_example =]
File Edit “iew Simulabion Format Tools
Ned&| fee|o |y o5
1 W
F - Farzes ’{-K- w_dot > ;
Crivide by hd Inte grator
b
2l
hultiply by b
Ready (1003 i i lodeds o

Note that the block diagram is now set up with input F (engine force) and output v (car
velocity).

System Responseto Step/Pulse [nputs

Step Input

To be able to successfully simulate the system, we need to specify an applied input, F. Let us
assumethe car isinitially at rest, and that the engine applies astep input of F=400 N at t = 0.
Thisis approximately equivalent to the car's driver quickly pushing down and holding the gas
pedal in a steady position starting from a stoplight. Insert a Step block from the Sources
subfolder into the model, and also add a Scope block from the Sinks subfolder to monitor the
system'svelocity, v. The Simulink model window should now look like:

Ei car_example * =]
File Edit ‘iew Simulation Formab Tools
0 e & 4=z r | &
B 1 v W]
F - Forces ’{-K- w_dot > ; >
Step Crivvide by b Integrator Scope
b
e
hMultiply by b
Ready (1002 ' ' ladedb o

The Step block must be modified to correctly represent our system. Double-click on it, and
change the Step Time to 0 and the Final Value to 400. The Initial Value can be left as O, since
the F step input startsfrom O at t = 0. The Sample Time should remain O so that the Step block's
input is monitored continuously during simulation.

Next, run asimulation of the system (by clicking the " Start/Pause Simulation” button or selecting
Simulation, Start). Once the simulation has finished, double-click on the Scope block to view
the velocity response to the step input. Clicking on the "Autoscale” button (looks like a pair of
binoculars) in the Scope window will produce the following graph:

Scope [_ (O]

pE R

.Trl.'IEl'ZI:_rEE_:EEt.:. E]

Note that this graph does not appear to show the velocity approaching a steady-state value, as we
would expect for the first-order response to a step input. Thisresult is due to the settling time of
the system being greater than the 10 seconds the smulation was run. To observe the system
reaching steady-state, click Simulation, Parameter s in the model window, and change the Stop
Timeto 150 seconds. Now, re-run the simulation and note the difference in the velocity graph:

¥ |Scope | _ (O] =]

25 2

.Trl.'IEl':I:_rEE_:Eet.;. EI

From this graph, we observe that the system has a steady-state velocity of about 10 m/s (about 22

mph), and atime constant of about 25 seconds. Let's check these results with our original
equation. For astep input of F =400 N, the system equation is:

1DDD%+ 40v = 400

Setting dv/dt = 0 gives a steady-state velocity of 10 m/s, aresult which agrees with the velocity
graph above. Next, we find the time constant of the system using the characteristic equation,
whichis:

1000s+40 =0

Solving this gives the characteristic root, s = -0.04, and thus the time constant is indeed 25
seconds (tau = -1/s), as we predicted using the graph.

Pulse I nput

Now, we consider the response of the system if a pulse, instead of a step, input isapplied. This
is approximately equivalent to the car's driver pressing and holding the gas pedal in a constant
position for a specified period of time, and then releasing the pedal. To model a pulse input
using Simulink, insert another Step block and a Sum block in the system as shown:

E& pulze_input = _ | O]

File Edit “iew Simulation Farmat: Toals

IDleaa =8l -

R

1 v 1
K- =
| 3 F - Forces ’{ w_dat » z ™
Step Crivide by b Integrator Scope
] br

Stepi a0 }4

Multiply by b

Fready 100z | |T=0.000 lnded5 o

The parameters for the original "Step” block can be left as they were before. Modify the
"Stepl" block parametersto the following:

Step Time = 100
Initial Value=0
Fina Vaue=-400

These settings enable the "Step1" block to cancel out the input from the "Step” block starting at t
= 100.

To monitor the input of the system, F, we insert another scope into the model window as shown

below:
E! pulze_input I [=]
File Edit Miew Simulation Fomat Tools
IO sEd&| s = r = | 5k
[] F 1 w
| T =/ Foroes ’{-K- w_dot > ;
Step Divide by bl Integrator
[| b
;apﬂ a0 }‘
+|:| hultiply by b
F
Ready 1100% | |T=0.000 {odeds o

Modify the simulation time (found by going to Simulation, then Par ameter s) to 200 seconds,
then run the simulation. After autoscaling the scopes recording the F and v signals, you should
see graphs that look like:

522 BB 4 8l

- w
[ime aifset: 0

100

. TrnEL':ljlrEE:gej;.;. g i

A couple of important features of the system are visible from comparing the input and output
plots above. First of al, aswe stated previously, the time constant of the system is 25 seconds.
Thus, the time it will take for the system to reach steady-state (the settling time) should be about
100 seconds (4 * time constant). At t = 100 seconds in the simulation, the system is within 2%
of its steady-state response to the original step input of 400 N. When F is instantaneously
reduced to O at t = 100 seconds, it takes the system another 100 seconds (until t = 200 seconds) to
respond to this new input. Also, notice that the steady-state response of the system to an input of
F=0isv =0. Physically, thismeansthat if the driver of the car drops the accelerator while
moving at any speed, the car will eventually come to rest.

Additional Examples

Variations of the mass-damper problem we have been studying can be found by following the
links below:

First Order System: Ramp Response
First Order System: Linearizing System Equation
First Order System: System Identification

Author: RDM
Updated: 5/18/00

First Order System: Ramp Response

Developing Model
Simulating a Ramp | nput
Ramp Input with Saturation

The idea behind these tutorialsis that you can view them in one window while
running Simulink in another window. Do not confuse the windows, icons, and
menus in the tutorials for your actual Simulink windows. Most imagesin these
tutorials are not live - they ssmply display what you should see in your own
Simulink windows. All Simulink operations should be done in your Simulink
windows.

Developing M odd

Recall the free body diagram devel oped previoudly for acar traveling on aflat road:

ey

bv

Where:
v isthe horizontal velocity of the car (units of m/s).

F isthe force created by the car's engine to propel it forward (units of N).

b is the damping coefficient for the car, which is dependent on wind resistance, wheel
friction, etc. (units of N*sec/m) We have assumed the damping force to be proportional
to the car's velocity.

M isthe mass of the car (units of kg).
For our system, we assumed that:

M = 1000 kg (a Dodge Neon has a mass of about 1100 kg)
b =40 N*sec/m

With these parameters, the system equation was.

dv F-bv_ F-40v

dt M 1000

And, the system's basic block diagram looked like:

Ei car_example [_ O] |

File Edit “iew Simulation Format: Tools
Deea =gz = | R
1 ¥
F e Farzes >{-K- w_dot > ;
Drivide by b Integratar
b
J
Multiply by b
Feady (1003 [oded5 o

Simulating a Ramp I nput

We now apply aramp input, F, to the system starting from rest. Thisis approximately equivalent
to the car's driver steadily depressing the gas pedal as the vehicle accelerates from a stop light.
To model this, insert a Ramp block from the Sources subfolder and connect it so that it produces
the system input signal, F. Also, insert Scope blocks (Sinks subfolder) into the model to monitor
the engine force, F, and the car's velocity, v. These additions make the block diagram look like:

=] ramp_input = | [O) x]
File Edit “iew Simulation Format® Tools
DEda s=e(azr | B
/ F - Forces ’{'K' T :]
Ramp Divide by b Inte grator W
bt
2Je
‘FI:I Multiply by b
:
Ready (1003 | | |oded5 s

Double-click on the Ramp block to modify it, and set the Slope equal to 80 N/s (you can leave
the Start Time and Initial Output as 0). These settings cause the engine force to steadily increase
80 N every second, starting fromF=0at t = 0. Also, set the simulation Stop Time to 100
seconds (click on Simulation, then Parameters), and run the simulation. Opening the two
Scope blocks should produce the following graphs:

=1 E3

. TrnEu:rELE-t o

These plots show us that if the input force of the engine, F, isincreased steadily, the velocity of
the car, v, will continue to rise, and thus does not approach a specific steady-state VALUE. Also
note that as time passes, the velocity curve eventually settlesinto a straight line. So, the steady-
state RESPONSE to the ramp input is linear, and it has a positive slope (i.e. the velocity of the
system goes to infinity as time goes to infinity).

Let's verify these results by solving the differential equation for the ramp input. Rewriting the
system equation with F = 80t yields:

dv
— 4 =
1000 dt 40v = 80t

Taking the Laplace transform of this equation (with initial condition v(0) = 0) and solving for
V(s) yidds:

80
1000s V(s) +40V(s) = =

0.08
Vis) =
(s) sZ(s+0.04)
2 50 50
= —
VeI= 7 - 5 Y srom

Converting back to the time domain gives us the solution for v(t):
v(t) = 2t - 50 + 50 e V-04

In this solution, the exponential term diesout ast increases. We can estimate how long it takes
for thistransient part of the solution to be negligible by noting that its time constant is 1/0.04 =

25 seconds. Thusits settling time, which is about 4 times as large as the time constant, is about
100 seconds. So, after 100 seconds, the solution is approximately equivalent to the straight line
(2t - 50). Theresults of our ssmulation thus agree with the analytic solution to the equation.

Note that in this example, the velocity of the car increases without bound, a result of the steadily-
increasing engine force. Intuition tells us that thistype of behavior isunrealistic. A Dodge Neon
is not capable of going 100 m/s (about 225 mph), yet our simulation shows the car reaching
velocitieswell over thisvalue. In redlity, there is a maximum force that the car'sengineis
capable of producing (and thus a maximum velocity that the vehicle can attain), so F cannot take
avalue above this upper limit. Thisidea of a saturated input is the topic of the next section of
thistutorial.

Ramp Input with Saturation

In this section, we will apply aramp input to our system (as before), with the following
alteration: The engineforce, F, will not be allowed to exceed 2000 N. Thus, the system's input
will appear as aramp until its value reaches 2000 N. From that time forward, the saturated input
will remain at 2000 N. This situation can be thought of as being similar to the car's driver, with
the vehicle starting from rest, steadily pushing down on the gas pedal until it reaches the floor
(i.e. the maximum force that the engine can provide), and then holding the pedal there for an
indefinite time.

To model thisinput in Simulink, we insert a Saturation block (from the Nonlinear subfolder)
right after the Ramp block in the model window. With this addition, our sytem model should
now appear as below:

m ramp_input * =] E3
File Edit Miew Simulation Format Tools
IDeE&E| ta22 oz » = | R
; i I [
_/ » - Farzes w_dot ; >
Ramp Saturation Crivide by hd Integrator W
b
s
+|:| bultiply by b
F
Ready 1005 i i lodeds o

The Saturation block allows us to set an upper and lower limit for itsinput signal. If the signal
to the block is between the minimum and maximum values we have set, the Saturation block
passes it through unaltered. If theinput signal is greater than the maximum, however, it outputs
the set maximum value. Similarly, if the input signal isless than the minimum, the Saturation

block simply outputs this user-defined minimum value. Double-click on the Saturation block to
modify its parameters, and change its Upper Limit to 2000 and its Lower Limit to 0. Now, run
the simulation (change the Stop Time to 120 seconds), and view the F and v scope blocks. They
should look like:

REETEEE

2000 -

1500

120

.Trl.'IEl':I:_rEE_:Eet.;. EI

We notice a number of interesting features of the system by analyzing these graphs. First of all,
note that the engine force plot, F, looks like we predicted it would. It appears as aramp input
until it reaches 2000 N, and then stays at that maximum as time continues to pass. Also notice
that up to about t = 25 seconds, the velocity response of the car, v, isidentical to what it was for
the ramp input we analyzed previously. Beyond that time, the two plots take on very different
shapes, and in this example, the velocity appearsto level off at 50 m/s (about 110 mph). This
result is of course due to theinput, F, reaching its saturation value of 2000 N at t = 25 seconds.

What would you expect the steady-state velocity of the system to be if a step input of 2000 N
were applied at t = 0? Setting dv/dt equal to O in the system equation, you should find the
answer to also be 50 m/s.

Why do this step input and the ramp input with saturation we simulated have the same steady-
state velocity? Thetwo systems are similar in that, after appearing very different at smaller t
values, their engine force inputs stay constant at 2000 N as time goes to infinity. Thus, itis
logical that both would have the same steady-state vel ocity.

Using which input, the step or the ramp with saturation, would you expect the system to reach its
steady-state velocity more quickly? If the answer to thisis not clear to you, think of the physical
system we are modeling. If you were driving a car, would you expect to reach your top speed
more quickly by stomping the gas pedal to the floor and holding it there (step input) or by
gradually pressing down on it until you reach its maximum position (ramp with saturation)?
Clearly, the step input would give the smaller settling time.

Author: RDM
Updated: 5/18/00

	Simulink Basics Tutorial
	Modeling a First Order System
	First Order System Ramp Response

