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1. Put the following transfer functions into state space using the controller canonical form (use 
MATLAB to check your answers after you have done them by hand): 
 
 

a. 𝐺(𝑠) = 1
4𝑠+1

 
 

b. 𝐺(𝑠) = 5(𝑠 2� +1)
𝑠
10� +1

 

 
 

2. Given the following system, with zero initial conditions, find the steady state value of x to a step 
input: 

 

�̇� = �−4 1
−2 −1� 𝕩 + �01� 𝕦 

 
 

3. Consider the following two mass problem that we have been looking at in class. Let the mass of 
the first mass equal the second mass: m1 =  1Kg, m2 = 1Kg, k1 = 50 N/m and b1 = 1 Ns/m: 

 
 
 
 
 
 
 
 
 
 
 
 
 

a. Derive the state space equations using the state vector:  𝕩 = [𝑥1 𝑥1̇ 𝑥2 𝑥2̇]𝑇  
 

b. Find a similarity transform that will convert your answer in part (a) into a new set of 
equations with the state vector: 𝕩𝑛𝑒𝑤 = [𝑥1 𝑥1̇ 𝑥𝑅𝐸𝐿 𝑥𝑅𝐸𝐿̇ ]𝑇, where xrel refers to 
the distance between the two masses (x2-x1). 

 
i. What is the similarity transform: T and/or T-1 

ii. What are the new state matrices (A,B,C,D)? 



 
For parts (c) – (g) use the state: 𝕩 = [𝑥1 𝑥1̇ 𝑥2 𝑥2̇]𝑇 

 
c. Find the feedback gain matrix, 𝑢 = −𝑲𝕩, that will place the closed loop poles at a place 

that gives nice low frequency response and damps the high frequency mode. Use the 
pole locations: sdes = -3±2.5j, and-5±10j. 
 

d. Compute the initial condition response of the closed loop system of Part (c) with an 
initial state vector 𝕩 o = [1 0 0 0]T. Plot the time histories 𝑥2(t) and u(t). 

 
e. Use the Symmetric Root Locus (SRL) to find a new set of desired pole locations that will 

have roughly the same low-frequency closed loop pole locations as in Part (c). 
 

f. Find a new feedback gain matrix, 𝑢 = −𝑲𝕩, that will put the closed loop poles at the 
locations found in part (e). 

 
g. Plot the initial condition responses of the new system as you did in Part (d), and 

compare both of them (over plot the two responses). Note the difference in the amount 
of control effort required. 

 
Addition of an Estimator: Everything done in the parts above assumed we could measure all of the states. 
That is, you used the control, 𝑢 = −𝑲𝕩. Let’s now assume that you can only have one measured quantity, 
y = x2, and design an estimator that will allow the use of the control 𝑢 = −𝑲𝕩�. 

 
h. Design an estimator gain matrix, L, that will place the estimator roots at 10*[-10 -11 -12 

-13]T. These roots are roughly 10× faster than the closed loop controller poles (I chose 
these rather than four poles at -10 to avoid the repeated roots).  
 

i. Find the state matrices that describe the combined controller and estimator for the 
regulator problem (no reference input). That is, the combined state is 𝕩𝐶 = [𝕩 𝕩�], and 
the control is: 𝑢 = −𝑲𝕩�. Verify that the closed loop roots of this system (eigenvalues of 
the combined A matrix) are the closed loop controller poles and the closed loop 
estimator poles. 

 
j. Compute the initial condition response of the closed loop system from Part (i), and use 

the initial state: 𝕩 o = [1 0 0 0 | 0 0 0 0]T. Again, plot the time histories 𝑥2(t) and u(t). 
 

k. Repeat Parts (h) – Parts (j), but this time use estimator roots at 0.1*[-10 -11 -12 -13]T. 
The point of this is to show you that the estimator roots can dominate the response if 
you let them get into the same frequency range at the controller response. 

 
l. Find the equivalent compensator, u(s) = K(s)y(s) (where y = x2) of the system using the K 

from part (f) and the L from part (h). This K(s) should look familiar, it will have a zero to 
deal with the two poles at the origin, and a notch to deal with the high frequency lightly 
damped poles. It will also have some poles and zeros off at “infinity.” 

 
Advanced State Space methods: these parts will be very similar to what is going to be on the exam, so you 
might as well try them all. 

 
m. Find the feedback gain matrix, 𝑢 = −𝑲𝕩, that will minimize the cost function 

𝐽 = ∫ 𝑦𝑇𝑄𝑦 + 𝜌𝑢2 𝑑𝑡∞
0 . Adjust ρ until you get about the same low frequency closed 

loop pole locations as in Part (e). Note that these “optimal” gains should be very close to 



what you found in Part (f). Use the MATLAB function “LQR.” You could also try using 
Bryson’s rule to design your gains. 
 

n. Add in reference inputs. Design the Nx and Nu matrices that will cause the system you 
designed in Part (f) to track a reference step command in y=x2. That is, C = [0 0 1 0]T. 
Find the matrices of the closed loop system. That is, the input r = yc = x2c. 

 
Design in the discrete domain. We are going to redo the problem, but this time sampled in the digital 
domain: 

 
o. Find the Φ, Γ, H, and D matrices that correspond to the system in Part (a) with a sample 

rate of 20Hz (T = 0.05). 
 

p. Find the closed loop pole locations in the z-domain corresponding to the desired pole 
locations in Part (e). 

 
q. Find the feedback gain matrix, 𝑢 = −𝑲𝕩, for this discrete domain system. 

 
r. Compute the initial condition response of this discrete domain closed loop system. 

Again, use 𝕩 o = [1 0 0 0]T, and plot the time histories of x2 and u. Compare this with the 
continuous time systems responses in Part (g). 

 
s. Repeat Parts (o) – Parts (r) with slower sample rates. How big can T get before the 

responses start to diverge? 


