University of California, Santa Cruz Board of Studies in Computer Engineering

CMPE-242:

Applied Feedback Control

HOMEWORK \#1
Due 14-Jan-2013

1. Differential Equations: Consider the system defined by:
$m \ddot{x}+b \dot{x}=F(t)$ where $x(0)=0$ and $\dot{x}(0)=0$.
a. Find the step response of this system. That is, what is $x(t)$ if $F(t)=\mathbf{1}(t)$. Do this in a way that does NOT use Laplace Transforms. For example, you can solve the equation using the techniques you learning in your first DiffEq class (i.e.: find the forced and natural parts of the response, etc.). So that you might check this, the answer is $x(t)=\frac{1}{b}\left(t-\frac{m}{b}\left[1-e^{-\frac{b}{m} t}\right]\right)$.
b. The impulse response of the system, $h(t)$, is the derivative of the step response. What is $h(t)$?
c. Compute the step response using the convolution integral $x(t)=$ $\int_{0}^{t} u(\tau) h(t-\tau) d \tau$, where $u(\tau)=1$.
d. What is the transfer function, $\frac{X(s)}{F(s)}$, of this system? What is the Laplace Transform of a step input, $U(s)$?
e. Find the step response, $x(t)$, by taking the inverse Laplace Transform of $X(s)$. Use the table of Laplace Transforms.
f. Repeat part (e), but first do a partial fraction expansion of $X(s)$. Note that there are repeated roots (see Appendix A of FPE).
2. Block diagram reduction: Write down the transfer function $[Y(s) / U(s)]$ of the block diagram below:

3. Laplace transform: find the time function for each of the following using the Inverse Laplace Transforms and partial fraction expansion (look at Appendix A for distinct complex roots):
a. $\quad F(s)=\frac{2}{s(s+2)}$
b. $\quad F(s)=\frac{3 s+2}{s^{2}+4 s+20}$
c. $\quad F(s)=\frac{2(s+2)}{(s+1)\left(s^{2}+4\right)}$
4. Transfer Functions: Given the following mass-spring system, derive the transfer function from the position of the leftmost of the masses to the forcing function $X_{1}(s) / F(s)$:

5. Transfer Functions: Given the following simple electrical system, derive the transfer function from the input voltage to the output voltage $\left[\mathrm{V}_{2}(\mathrm{~s}) / \mathrm{V}_{1}(\mathrm{~s})\right]$:

6. Dynamic Response: Given the following third order system:

$$
H(s)=\frac{\alpha \omega_{n}^{2}}{(s+\alpha)\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)}
$$

The response to a unit step $(\mathrm{U}(\mathrm{t})=\mathbf{1}(\mathrm{t}))$ is:

$$
y(t)=1+A e^{-\alpha t}+B e^{-\sigma t} \sin \left(\omega_{d} t-\varphi\right)
$$

where:

$$
A=\frac{-\omega_{n}^{2}}{\left(\omega_{n}^{2}-2 \zeta \omega_{n} \alpha+\alpha^{2}\right)}
$$

$$
\begin{gathered}
B=\frac{\alpha}{\sqrt{\left(\omega_{n}^{2}-2 \zeta \omega_{n} \alpha+\alpha^{2}\right)\left(1-\zeta^{2}\right)}} \\
\varphi=\operatorname{TAN}^{-1} \frac{\sqrt{1-\zeta^{2}}}{-\zeta}+\operatorname{TAN}^{-1} \frac{\omega_{n} \sqrt{1-\zeta^{2}}}{\alpha-\zeta \omega_{n}}
\end{gathered}
$$

a. Which term dominates as α gets large?
b. Which term dominates as α gets small?
c. Approximate A and B for small values of α.
d. Assume that $\omega_{n}=1$ and $\zeta=0.707$, plot the step response for several values of α. Use MATLAB's step command (could you use impulse? How?) Comment on where the extra pole becomes unimportant.

