## UNIVERSITY OF CALIFORNIA, SANTA CRUZ BOARD OF STUDIES IN COMPUTER ENGINEERING

## CMPE-242: Applied Feedback Control



## WINTER 2014 SYLLABUS

FPE: FRANKLIN, POWELL, EMAMI - FEEDBACK CONTROL OF DYNAMIC SYSTEMS, 6<sup>th</sup> FPW: FRANKLIN, POWELL, WORKMAN - DIGITAL CONTROL OF DYNAMIC SYSTEMS, 3<sup>rd</sup> SHAUM'S: STUBBERUD, WILLIAMS, DISTEFANO - SCHAUM'S OUTLINE OF FEEDBACK AND CONTROL SYSTEMS

| WEEK | DATES     | Торіс                                                                                                                                                                                                                                                             | Assignments                                                                                                                                        |
|------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | 07/09-Jan | Course Mechanics, Syllabus, LCCDE, Free<br>and Forced Dynamic Response, Laplace<br>Transform, Convolution, Transfer<br>Function, Impulse Response, Partial<br>Fractions, Residues, FVT, Evan's Form                                                               | Read FPE Ch. 1-3, Appendix A.<br><u>Homework #1 out</u>                                                                                            |
| 2    | 14/16-Jan | Root Locus vs. Bode, Stability, Control<br>Design Spec's, Transient Spec's, Tracking<br>Spec's, Robustness Spec's, Evan's Form,<br>Root Locus                                                                                                                     | Read FPE Ch. 4 & 5, Review RL<br>techniques from Schaum's and<br>CMPE-241 notes.<br><u>Homework #2 out</u><br><i>Homework #1 due 15-Jan</i>        |
| 3    | 21/23-JAN | Root Locus review, Analysis vs. Synthesis,<br>Lead and Lag compensators, Pole Zero<br>Cancellations, PID Control, Bode                                                                                                                                            | Read FPE Ch. 6, Review Bode<br>techniques from Schaum's and<br>CMPE-241 notes.<br><u>Homework #3 out</u><br><i>Homework #2 due 22-Jan</i>          |
| 4    | 28/30-Jan | Bode Plots, Non-minimum phase systems,<br>Frequency Domain Specs, Bode design<br>examples                                                                                                                                                                         | Re-read FPE Ch. 6 (not kidding),<br>Schaum's and CMPE-241 notes<br>on Nyquist.<br><u>Homework #4 out</u><br><i>Homework #3 due 29-Jan</i>          |
| 5    | 04/06-Feb | Bode Plots, Non-minimum phase systems,<br>Frequency Domain Specs, Bode design<br>examples                                                                                                                                                                         | Read FPE Ch. 8 and FPW Ch. 1-5<br><u>Homework #5 out</u><br>Homework #4 due 05-Feb                                                                 |
| 6    | 11/13-Ғев | Performance vs. Robustness tradeoffs,<br>Nyquist, Phase and Gain Margins,<br>Introduction to Digital Control, Sample<br>and Hold, CCO∆E, ZOH, half-sample time<br>delay, numerical differentiation, Padé<br>Approximation, numerical integration                  | Re-Read FPE Ch. 8 and FPW Ch.<br>4-7<br><u>Homework #6 out</u><br><i>Homework #5 due 12-Feb</i>                                                    |
| 7    | 18/20-Ғев | Z-transform, Euler Integration, Backward<br>Euler, Trapezoidal Integration, Discrete<br>Equivalent, z-plane, Aliasing, Unit Pulse<br>Response, z-domain stability, Unit Circle,<br>z-grid, digital control design, ZOH-<br>equivalent, z-plane design, Inverse Z- | Re-read FPE Ch. 8 (so not<br>kidding) and FPW Ch. 7-8<br><u>Homework #7 out</u><br><i>Homework #6 due 19-Feb</i><br><b>MIDTERM</b> IN CLASS 20-FEB |

|       |           | transform, FVT, DC gain                   |                                 |
|-------|-----------|-------------------------------------------|---------------------------------|
| 8     | 25/27-Feb | Anti-Aliasing Filters, Continuous to      | Read FPE Ch. 7, and FPW Ch. 9-  |
|       |           | Discrete Equivalent (ZOH), Direct Digital | 11.                             |
|       |           | design, Pade approximations               | Homework #7(a) due 26-Feb       |
| 9     | 04/06-Mar | Bode and Nyquist in z-plane, Tustin, Pre- | Re-read Ch. 7, review notes on  |
|       |           | warping, Introduction to State Space,     | State Space from CMPE-240.      |
|       |           | State Space to Transfer Function,         | Homework #8 out                 |
|       |           | Eigenvalues, Characteristic Equation,     | Homework #7(b) due 5-Mar        |
|       |           | Controller Canonical Form                 |                                 |
| 10    | 11/13-Mar | Similarity Transforms, Uniqueness of      | Re-read FPE Ch. 1-8, Review for |
|       |           | State, Pole Placement, Ackerman's         | Final Exam.                     |
|       |           | Formula, Controllability Matrix,          | <u>Homework #9 out</u>          |
|       |           | Controllability condition number          | Homework #8 due 12-Mar          |
|       |           | equivalent to pole zero cancellation,     | Homework #9 (Practice Final)    |
|       |           | Regulator, Estimator, Observability,      | due 20-Mar (before Final Review |
|       |           | Separation Principle, LQR, LQE, LQG       | Session)                        |
|       |           | control. Optimal Control, Bryson's Rule,  |                                 |
|       |           | LQY, Symmetric Root locus, Kalman Filter, |                                 |
|       |           | BLUE, Integral Control (State             |                                 |
|       |           | Augmentation), Tracking commands,         |                                 |
|       |           | Digital State Space, Deadbeat Controller, |                                 |
|       |           | Reduced Order Estimator, Pincher          |                                 |
|       |           | Control, Implicit Model Following         |                                 |
| FINAL | 18-Mar    | Covers everything in the class            | Location TBD @ 08-11AM          |

**\*Note**: this syllabus is tentative, and subject to revisions. Depending on how much review is required, there might be some make-up or supplementary lectures during the quarter, and depending on student availability, the midterm might be scheduled outside of normal class hours.