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1. Revisiting Non-collocated Control: Given the plant below, which describes the input output 
of a two-mass system, where the displacement of the forward mass is measured. If the 
spring connecting them was completely rigid, then this would be a 1/s2 plant. Since there is, 
in fact, a spring constant and damping, we wind up with a resonant mode we did not 
originally know about, which is described in the actual transfer function. 

 

𝐺(𝑠) =
10(𝑠 + 225)

𝑠2(𝑠2 + 0.225𝑠 + 225)
 

 
 
 
 
 
 
 
 
 

a. Generate a state space realization of this system (by hand, then check in MATLAB). 
 

b. Assume you have full access to the state, x, and design a full state feedback 
controller to put the dominant poles at ωn = 1 and ζ = 0.5 (it’s the same place you 
put them in HW#4). Note that you get to choose the locations of two more poles as 
this is a 4th order system. Put them somewhere “faster” than the dominant ones 
(but not too fast). What is K? Where are your closed loop poles (use MATLAB)? 

 
c. Use pole placement techniques (acker or place) to design an estimator with very 

damped poles (use ζ = 0.7) that are in the vicinity of 3-5 times the speed of 
dominant closed loop poles. What is your gain matrix, L, and where are your closed 
loop estimator poles? 

 
d. Create the equivalent controller, K(s), that matched your estimator/controller 

design. Analyze it both with root locus and bode techniques. Does it look anything 
at all like what you did in HW#4? 

 
e. Plot the closed loop step response of your system. Make sure that you plot both the 

output, y, and the control, u. Try going back and changing your non-dominant poles 
in part (b) and seeing how they affect the step response of y and u. Is this a big or 
small change? 



f. Redo the controller from part (b), but this time using optimal control (LQR) 

techniques. Use the cost function:  𝐽 = ∫ (𝜌𝑦2 + 𝑢2)𝑑𝑡∞
0 . Tweak p until you get 

the dominant poles at roughly ωn = 1 rad/sec. How do the “optimal” pole locations 
compare with your original HW#4 design, and the design from part (b) above? 

 
g. Redo parts (d) and (e) with the new controller (keep your estimator from before). 

How do y and u compare? 
 
 

2. Attitude Stabilization revisited: You are going to redesign the controller for the non-
collocated plant of the satellite model, this time in state space form. We’ve converted the 
model for you, and here is the state space version of GFORE(s), which maps the input of the 
aft thrusters to the fore-body angle: 

 
     A =[0         0         0         0         0         0 
         0   -0.7555   41.9632         0         0         0 
         0  -41.9632   -0.7555         0         0         0 
         0         0         0   -0.2990   14.9470         0 
         0         0         0  -14.9470   -0.2990         0 
         0         0         0         0         0   -0.5000] 

 
B = [0.3329   22.9467  110.6833  -85.2094    9.2657    1.9153]T 

C = [87.6846    0.0004   -0.0001   -0.0016   -0.0130  -15.2495] 
D = [0] 

 
 

a. Use LQR techniques to pick controller that yields a response similar to what you got 
on HW#7/8. What is K? Where are your closed loop poles? 
 

b. Add in the state command structure so that you can control to a reference signal. 
What are your two matrices, Nu and Nx? Draw the block diagram of the entire 
control structure. 

 
c. Simulate the closed loop system, plot the step and impulse responses (make sure to 

include both output and control). Comment on how this compares to your system 
in HW#7/8. 
 

d. Pick estimator poles that are “faster” than the poles you got in (a) above, but also 
much slower than your Nyquist frequency, ωs/2. You will again be using a sample 
rate of 25Hz. What is your L, where are your closed loop estimator poles? Again, 
draw the block diagram of the whole structure (including Nu and Nx). 

 
e. Convert your controller/estimator to a transfer function form, K(s), and compare it 

to what you did on HW#8. Does is look the same? Check the compensator on both 
bode and root locus techniques (extra poles/zeros, etc). 

 
f. Simulate the whole system, for a step and impulse response, and make sure to plot 

both y and u. 
 

g. Descretize the controller/estimator to create K(z), using a sample rate of 25Hz, and 
simulate it using the simulink files from HW#7/8. Note: if you do this as a transfer 
function, make sure to carry a whole lot of significant digits, or it won’t work. 



 
3. The state space representation we gave you in Problem 2 (above) is a transfer function 

directly from u (thrusters) to ΘFORE. In truth, we actually have measurements of both ΘAFT 
and ΘFORE. This only changes the [C] and [D] matrices, but they are changed to: 
 
     A =[0         0         0         0         0         0 
         0   -0.7555   41.9632         0         0         0 
         0  -41.9632   -0.7555         0         0         0 
         0         0         0   -0.2990   14.9470         0 
         0         0         0  -14.9470   -0.2990         0 
         0         0         0         0         0   -0.5000] 

 
B = [0.3329   22.9467  110.6833  -85.2094    9.2657    1.9153]T 

C = [21.9063   -0.0015    0.0001   -0.0053   -0.0790  -15.4214 
     87.6846    0.0004   -0.0001   -0.0016   -0.0130  -15.2495] 
D = [0; 0] 

 
Repeat problem (2)a-2(f) with the new system, see how things change. 

 


