University of California, Santa Cruz Board of Studies in Computer Engineering

CMPE-242:

Applied Feedback Control

HOMEWORK \#1
DuE 15-JAN-2013

1. Equations of Motion: Consider the very simple mechanical system below:

a. Write down the equations of motion (E.O.M.).
b. Integrate the equations of motion to find the response to a step input $(F(t)=\mathbf{1}(t))$.
c. Integrate the equations of motion to find the response to an impules $(F(t)=\delta(t))$.
d. Use the convolution integral to find the response to a step input (meaning: use $h(t)$ from your answer to part (c), and $F(t)=1(t)$).
2. Block diagram reduction: Write down the transfer function $[\mathrm{Y}(\mathrm{s}) / \mathrm{U}(\mathrm{s})]$ of the block diagram below:

3. Laplace transform: Solve the following constant coefficient ordinary differential equations using Laplace Transforms and partial fraction expansion:
a. $\ddot{y}(t)-2 \dot{y}(t)+4 y(t)=0$ where $y(0)=1$ and $\dot{y}(0)=2$
b. $\ddot{y}(t)+3 y(t)=\operatorname{SIN} t$ where $y(0)=1$ and $\dot{y}(0)=2$
c. $\ddot{y}(t)+2 \dot{y}(t)=e^{t}$ where $y(0)=1$ and $\dot{y}(0)=2$
4. Transfer Functions: Given the following mass-spring system, derive the transfer function from the position of both of the masses to the forcing function: $\left[X_{2}(s) / F(s)\right.$ and $\left.X_{1}(s) / F(s)\right]$:

5. Transfer Functions: Given the following simple electrical system, derive the transfer function from the input voltage to the output voltage $\left[\mathrm{V}_{2}(\mathrm{~s}) / \mathrm{V}_{1}(\mathrm{~s})\right]$:

6. Dynamic Response: Given the following third order system:

$$
H(s)=\frac{\alpha \omega_{n}^{2}}{(s+\alpha)\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)}
$$

a. Show that the response to a unit step $(\mathrm{U}(\mathrm{t})=\mathbf{1}(\mathrm{t}))$ is:

$$
y(t)=1+A e^{-\alpha t}+B e^{-\sigma t} \sin \left(\omega_{d} t-\varphi\right)
$$

where:

$$
\begin{gathered}
A=\frac{-\omega_{n}^{2}}{\left(\omega_{n}^{2}-2 \zeta \omega_{n} \alpha+\alpha^{2}\right)} \\
B=\frac{\alpha}{\sqrt{\left(\omega_{n}^{2}-2 \zeta \omega_{n} \alpha+\alpha^{2}\right)\left(1-\zeta^{2}\right)}} \\
\varphi=\mathrm{TAN}^{-1} \frac{\sqrt{1-\zeta^{2}}}{-\zeta}+\mathrm{TAN}^{-1} \frac{\omega_{n} \sqrt{1-\zeta^{2}}}{\alpha-\zeta \omega_{n}}
\end{gathered}
$$

b. Which term dominates as α gets large?
c. Which term dominates as α gets small?
d. Approximate A and B for small values of α.
e. Assume that $\omega_{n}=1$ and $\zeta=0.707$, plot the step response for several values of α. Use MATLAB's step command (could you use impulse? How?) Comment on where the extra pole becomes unimportant.

