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These notes describe soma procedures for designing cascade compensators
using Bode plot and root locus mnethods. These two approaches should not be
vieved as compatitive but aa complementary. With the root locus or s-plane
deaign, ona 1s able to produce a transienc response that is desirable by
choosing dominant closed loop poles, but meeting error constant specifications
i8 not as apparent. TFrequency response methods easily treat error constants
and bandwidth specificationa, but coutrolling the transient response leaves
something to he desired. : .

Throughout the notes w~ agsume that the compensator 1s of the general
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In the first expression, the multiplying constant of this and other transfer
functions in this form 1s called the Bode gain (K), the d.c. gain excluding
integration; this 1is the standard form before drawing Bode plots. The second
expression shows the root locus gaio (K b/a) since this is the staudard form
before drawing root loci.

If a, the frequency of the zero, 1s less than b, the frequency of the
pole, the compensator is called a lead compensator because the net phase angle
13 nonnegative at all frequencies; when b is less than a, we have a lag
compensator. Generally speaking, cascade lead compensators are used to increa
bandwidth and thus decrease the response time of the compensated system. Lag
compensators may make the ayatem more sluggish and they are used to increass
the low frequency gain (error conatant) of the system.

Many students of antomatic control have felt that the topic of compen-
sation was a black art which could be mastered only after ten or fifteen years
of hard work. We bave trled to overcome this not by presenting different
networks and showlng what they can do, but by solving realistic design
siltuations; for example: ''Meet bandwidth and phase margin specs with an
ungpacified change in pgain (earror coustant)". Each situation has a set of
Step-by-step instructions ro calculate the compensator parameters K, a, and
b. Obviously these solutions are not all inclusive, nor wera they intended to
be, but they provide a good starting point for the inexperienced designer to
approach other design problems,



DESIGN OF CASCADE COMPENSATORS USING BODE PLOTS

The crossover frequency & , (the frequency where the magnitude of the
open-loop frequency respoase i3 uniry) will beztaken,as .a measure.of -the
closed loop bandwidth (-3 db point). Examination of a Nichols chart shows
that these are equal if the open-loop phase happens to be -90° at this
frequency. Tha Nichols chart also shows that the closed-loop amplitude at
w_lncreases for decreasing phase at w_ . Thus the actual closed-loop band-
width will be less Cthan w, if the op%n«loop phase lag is greater tham 90°.

I. To Meet an Error Conatant Spec but Keep Phase Margin and Bandwidth Constant

This situation arises when the stability characteristics and response time
are sufficlent, but the syatem exhibits large steady state errors to step ( a
Type 0 system) or ramp (Type 1) inputs. This calls for an increase in the Bode
gain, but doing so without compensation will raise the crossover frequeancy and
decreasa the phase margin in moat cases. The idea i3 to choose a compensator
which does not disturb tha frequency response in the vicinity of the crossover
(and thus change the stability characteristics of the uncompensated aystem),
whila allowing an increase In Bode gain (to increase the error constant).

The compensator that meets these requirements is a lag compensator, so
called because it hag phase lag at all frequencies. In terms of the form shown
in (1) we have b < a for a lag compensator. The straight~line Bode plots for
the lag compensator are skatched below. :

20 1og|Gc‘

-7
20 log K lf :
. : 20 log K —

0 db
. et ——2— 1050

»1b b 10b .1a  a ’rlOa
0° } ; { | ! | . log w
ie 4
c

- . "

The rationale behind the design of lag cowpensators is to choose the
frequencies b and a at least a decade below the crossover frequency, so that
the compemsator will contributa lass than 6° lag at W, - To maintain the same
crossover, choose a/b equal to ¥, where K 1s the desifed increase.in the error
constant. Now the lag compensator has a gain of unity and essentlially no phase
lag at the crossover frequency., We have met our objectives of increasing the
gain yet leaving the frequency rasponse unchanged near crossover.. A summary
of tha design procedure is given below.
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TABLE I. 10 MEET AN ERROR CONSTANT SPEC BUT KEEP PHASE
MARGIN AND BANDRIDTH CONSTANT

1. Determing tha required increase in Bode gain and
aat tha compensator gain K to this value.

3. Let thes frequency ratio % equal K.

3. Choose the zaro frequency a at least a decads

. balow tha crossover f?equenay to aquoid phase
lag contributions at o .

4. The frequenciaas a and b are fbund’fraw steps
3 and 3.

Note that we are using the attenuation cﬁaracteristics of the lag
compensatox which we counteract by raising the Bode gain. The effect
of its phase lag, vwhich ia destabilizing, is minimized.

Example
+n 1 LY
o : Gc(s) a(s+l) 4
Specifications:

Velocity constant > 10 sec™t

Phase margin = 459 + 10°
Croasover frequency - 1 rad/sec

The straightline Bode plots for the uncompensated system are shown in Figure 1.
We see that the phase margin and bandwidth _§pecs are satisfied, but the Bode
gain (the velocity conataunt) is only 1 sec — without compensation A lag
compensator will do tha job, and its design can be found by the procedure
outlined in Table I.

1. K = increase in openﬂloop gain = 10
2. a/b = 10 13

3. w, = 1 80 a < 0,1; choose a = 0.1
4, b= (b/a)a = (1/10)(0.1) = 0.01

_ e 1+ =8
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The dotted curve in Figure 1 is the straightline Bode plot for the
compensated system. Observe that the frequency response 13 unchanged (within
the straightline approximation) in the vicinity of ecrossover. Actually, the
phase margin ig decreased by approximately 6° so that tighter tolerances on its
specification would mean that a, the zero frequency, would have to ba lower
than W,
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Figure 1. Lag compensation of 1/3(s+1)

II. To Meet Bandwidth and Phase Margin Specs with an Unspecified Change in
Gain (Error Constant) ° .

In this situation 1t is desired to have a specific crossover frequency and
phase margin. We shall discuss the more prevalent situation of increasing the
bandwidth (crossover frequency) to Improve the system response time, although
an analogous procedure can be used to decreasa the bandwidth. There is no
theoretical limiration to the increase in bandwidth that can be obtained, but
a practical limit is set by the saturation levels of the various components.
The final design should be checked to sea that these levels are not exceeded.

The crossover frequency can be made larger by increasing the gain alone,
but in many instances the phase margin is too small at the new frequency. The
latter difficulty can be overcoma by inserting a lead network (a < b in (1)) to
add phase lead to the open=loop frequency response. Here we are using the phase
characteristic of the compensaror, whereas with the lag network we use the
attenuation or amplitude characteristic. Some important parameters of the lead
network are summarized helow:

ike
Gc(s) m R T a < b. . (2)
D O R _
. ‘.' b
doco gain“K R (3)
high freqﬁency gain = K % >R b (4)
-1 ,
maximuwn phase lead, ¢max: sin¢max - 2 (5)
_ =+ 1
frequency for maximum lead, U w;ax = ah . (6)
1+ 2 R
gain of at oo 20 log[c(jmmax)l = 10 log = ')

8
1+ b

3

with:lag compensatior



As a practical matter, the lead ratio b/a 1s usually not made 1arger
that about 10 or 15 corresponding to maximum lead angles of 55° and 61°
respectively. Not only do the networks become harder to build, but there
i3 very little ilncrease inff for corresponding increases in b/a beyond
bfa » 15. (See Figure 10-5, xp. 308 in Dorf). Cascading two or more
lead networks can overcome thj.s problem.

The design procedure to meet bandwidth and phage margin specs is
atralghtforward and is summarlzed balow.

TABLE II. T0 MEET BANDNIDTH AllD PHASE MARGINVSPECS WITH AN
UNSEPECIFIED CdANGZ Ill GAIN (ERROR CONSTANT)

1.  Draw the op?n-wloop Bode plots of the wuncompensated
aystem.

8. Determine tha phase lead required at the specified
arossover frequency to meet the phase margin spec.

3. Lat this required lead angla ba Omaz and solve (5)
for b/a.

4. Let this maximmm lead occur at w_so that (6} becomes ) '
Wt = ab, Use this equation and %he result of step 3 o
t3 find a and b.

§. Craphically add the response of the lead net*work to the
= amplitude portion of the Bode.plot of -the wneompensated - - -
ayatam, -

6. Adjust the gain of the compensator K wntil the amplituda
of tha corpensated system goes through 0 db at w = w,.

Although crossover frequency and phase margin are set to prescribed
values, there is no fle%ibllity in the choice of the compensator gain K
This is illustrated in the following example.

Example
+ ! v 1 b
- (’ﬂ(s) . s{s+l) pd
Specifications: wc n~ 1) rad/sec phase margin = 40°

The procedure of Tahle IT is outlined below. References are made to curves
in Figure 2 which are labeled with the step number.
1. Straightline Bode plots of the uncompensated system are labeled 1.

2.  40° phase lead required at w, = 10 rad/sec to have phase margin
of 40%,
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From (5) %-w 1 b 1 + sind 1.64
Bin¢max = gin 407 ~ b OR — = Lt 0' u 4. 55
L 32 1 - sind -36
a max
2 o2 2102 - ) N | -
4, W = Yo 10 ab b (a)ab (4.55)100 b = 21.4
a 21.4
- ) w LI/
a=b) = g5 "
40 | Uncompensated
- Compensated
20 | \
0_ E = % I Py } w
0.1 1.0 1 100 1000
~20 , (®>{K = 32 db
. new O db line
f40 WY
=90
=135 +
-180Q +

Figure 2. Lead compensation of 1/s{s+l)

3.

6.

The curve{Z)is found by changing the slope of the uncompensated system
by +1 (20 db/dec) at & » 4.7, and by -1 (<20 db/dec) at w = 21.4. The
modified curves for phase are also shown but are not needed in the
design procedure.

The compensator gain K is chosen to make the compensated plot go
through 0 db at w_ (10 rad/sec). This can be done by raising the
amplitude plet orcby lowering the 0 db line. The latter method

i8 easier, and the amount of gain required is shown as liuen
the plot. From thlas we see: : . '

20 logk = 32 db, K = 40 ' , »
The compensator for this problem is

5
1+ 773

1 8

G (8) = 40
c . I
21.4

Although the Bode gain waa increased in this case, it would have been
reduced had the bode plor of the compensated system been above O db at
1]

[



III. To Meet Error Coustant and Phase Margin Specs with an Unspecifiad
Change in Bandwidth

This situvation should be compared with the last one: here we design
to specified phase margin and error constant (with an unspecified change
" In bandwidth) as opposed to a design to specified phase margin and bandwidth
{with unspecified error constant). This destgn procedure is an iterative

_one, and to best explain it, we first summarize the steps and then expand
on them through an example. .

TABLE III. TO MEET ERROR COUSTANT AND PHASE MARGIN SPECS WITR AW
UNSPECIFIZD CHANGE Ill BA{DWIDTH

1.  Draw the Bode plots of the wncompensated system.

2, Choose the compensator gain K to meet the error congtant
requirement and draw the new 0 db line corresponding to
this gain-compensatad system.

3.  Find the phase lead required at the crossover frequency of
tha gain-compensated system. Add 10% (but see the example)
and let the total be L of the compensator.

4, Use. (5) to find b/a fromcpn and (7} to find tha gain of
(1 + 8/al/(1 + s/b) at w=w

S. Go to the point on the gain-compensated response where tha -
* amplituda 13 down 10 leg(b/a). Let this frequency ba CI

6. Use w* = ab and the already-determined number for b/a to
find " a and b.

7. Compute the phase margin or draqw the phase plot of the
compensated systam to check on the actual phase margin. If
it ia too low, pick a larger ¢ and go to step 4. If it

ia too high, piek a lower valus™ of I

Example
QT“ o s(s+1)? 7
Specifications:

Phase margin = 45" Velocity constant = 1 sec-l



We now follow the steps outlined in Table III.
1. The straight-line Bude plots are labeled (1) in Figure 3.

2. The velocity constant of the compensated system will be 0.1 K. To
meet the error constant spec, we choose K = 10 and draw the new 0 db
(labeled } on the Bode plot. The amplitude respouse relativa to
this line s called the gain-compensated system.

3. The phase of the gain-compensated system at crossover (1l rad/sec)
1s 180°. We need 45° lead to have a phase margin of 45°. Add 102
because, as will be sean, the crossover frequency of the final
system will be somewhat higher than 1 rad/sec. The 10Z is to
account. for the additional lag from the gain-compensated system
that occurs between 1 rad/sec and the as-yet-undetermined final
crossover frequency. If we had a phase characteristic that was
increasing with frequency (as with nonminimum phase systems) then
we would subtract 107 since the gain-compensated system will have
less phase lag at the higher crossover frequency.

4- 'g' - l
m 7t Q m
51n¢max 5 sin 50 b/a = 8.0

b
gain of (1 + 8/3)/(1 + a/b) at ® ax 10 log-; 9 db

3. Go to the point whare the gain-compensated system is down 10 log(b/a)
= 9 db. If we choose this frequency to be w s then this will also
be the new crossover frequency since the cow%gﬁsator is up 9 db; the
sum of the two responses will then be 0 db., The -9 db line is labeled

in Figure 2, and we see that W is about 1.6 rad/sec.

— s svmry - ———

20 4
0 } E @
100 1000 ()
~20 47 e g g gp ‘Dle¥ O db line
40 1 ) _
~90
-180 ~
-270
Figure 3., Lead compensation of 0.1/s(s+l)2
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6. w;ax = (1.6)2 = ab, b/a = 8 (from step 4)

b2 = (b/a)(ab) = 8(1.6)* , b = V/20.5 = 4.5
a = b{a/b) = 4.5/8 = 0.56
7. HNow we compute the phase of the system at the new crossover frequency,

1.6 rad/sec. (The actual crossover frequency is a little bit lower
because we have not made corrections to the straightline Bode plots.)



¢ = -90° - 2tan i (L.6/1) + tan 1(1.6/0.56) - tan 1(1.6/4.5)
m <90 = 2(58°) + 71° - 21° = - 156°
phase margin = 180° - 155¢ = 24°

The phase margin does not meet the specifications because not enough
lead 1s provided by the compensator. From the above expression for the
system phase lag we see that an additional 26° of lag was encountered
between w = 1.0 and w = 1.6, The 10% fudge factor was not enough and
thia is likely to bhe the case when the crossover frequency of the gain
compensated syatem 1s in the vicinity of a pole.

The next guessa for ¢max might assume that the crossover of the final
design is 1.6 rad/sec” so that a total lead of 71° is needed. (This
would be Implemented by cascading two lead compensators.) In any event

- the actual crossover will be somewhat to the right of 1.6 rad/sec becaus

we are using a larger lead ratic b/a. Therefore, let us use two cas-
caded lead compensators each giving a maximum lead of 40°, or 80° total.
Nov we resume the design procedure at step 4 (called 4' in this second
iteration).

4'. ¢ = 40° b/a = 4.5

5'.
6'.

7.

max .
gain of (1 + 8/a)*/ (1 + s/b)? = 2(10 log 4.5) = 13.0 db

Although not shown in Figure 3, we go to the point where the gain-

compensated system is down 13 db. This occurs at w = 1,86 rad/sec,

which we choosa to be w -

(w )% = (1.86)" = ab; from 4', b/a = 4.5 .

b? = (ab)(b/a) h =~ 3.95, a = 0.88

$ = ~90° - 2tan Y(1.86/1) + 2can”1(1.86/0.88) - Ztan”1(1.86/3.95)
= =90°- 2(62°) + 2(65°) - 2(25°) = -132°, '

Phase margin = 180° -~ 132° = 48°

which 13 close té the specificaticn of 45°., The compensator is

.0
i

)‘ﬁ 1o {1+ 5/0.88)*
(1 + s/3.95)2

Gg(s
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IV. To Meet Error Constant, Bandwidth, and Phase Maregin Specs

In the last two situations we found that we could not specify all of the
quantities of interest with a lead compensator alone. To give us the additional
freedom, we may use a lag-lead network which is Just the cascading of lag and lead
compensators, although the network need not be realized this way. To meet the
error constant, bandwidth, and phase margin specs simultanaously, we use a combin-
ation of procedures outlined in Secrions I and II as summarized below.

TABLE IV. 1TO MEET ERROR CONSTANT, BAIDHIDTH, AND PHASE MARGIN SPECS

1. Meet the bandwidth and phase margin spees using a lead network as
outlined in Section IT.

3. If tha error conatant spec is not satisfied by the change in
unspecifiad gain resulting from siep 1, then design a lag
compensator for the lead-compensated system to give the
desired amount of gain increase.




DESIGN OF CASCADE COMPENSATORS USING S~PLANE TECHNIQUES

The design of compeusators in the s-plane hinges on the placement of the
closed-loop roots. Time domain specifications, e.g. percent overshoot, time
of first peak (peak time), are translated into an equivalent set of poles;
this set is usually a secoud order complex pair. The compensator is then
chosen so that the closed-loop roots of the system are in the vicinity of
the desired roots, and these roots should dominate the response of the systenm

Like the design procedures using Bode plots, we have different "s{ituatio:
HBere, though, the situations are classified into two groups depending on
whether or not the compensated root locua passes through the desired closed-
loop root location. If the uncompensated roet locus does go through the
desired closed-loop root location, then the transient response specifications
are satisfied. It may be, however, that the error constant specs are not;
this 13 the first procedure to be examined,

" V. To Meet Error Constant Specs But Mot Alter Closed Loop Transient Resvonse

Since the closed-loop transient response 1s satisfactory, we don't want
to influence the path of the root locus in the vicinity of the desired closed-
loop roots. This 4s analogous to Section I where we wanted to meet the error
constant spec without changing closed-loop bandwidth or phase margin. Not
surprisingly, we use a phase lag network in both situations.

To fieet the objectives, the compensator must be chosen so that:

(1) The compensated root-locus passes "near" (to be defined later)
the closed-loop root. :

(2) When the root locus is near the desired point, the Bode gain, Sr

equivalently, the root locus gain, should be greater than some
apecified value, .

We will look at thergain problem (item (2)) first. Assume that the uncompen=
sated portion of the system has a transfer function .

& + 1)
115 ' - 8)
GH(s) = Kl nT,s (
8 = +1)
I'py :
| T oo m(s + z,)
ot K1 J_,...E'j mmmf_}_,. (9)
mez

n
1 1 aw(s + pi)‘

where K, is a constant derived from the system equations, and that the
compensator has the transfer function

(a/s) +1 s+ a
Gc(s) =K me]‘ K(b/a)(s T b) (10)

N
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In the uncompensated system (or more exactly, the
G (s) = K, and K 13 chosen so that the closad-

désired value s.. This value, Kt, is dgtermin
dition as followas !

gain compensated system),
loop poles are located as some
ed from the root locus galn con-

(11)

With the compensator in the loop, and with the assumption

that the root locug
will pass close to s

1» the valua of compensator gain to put the closed-loop root

at s,., is K

1 e -

1 9k n 91 5 Isl + zil < b ‘Sl + al

Tl oz n c a s. +Db
i Iall 'rr|sl + pjli 1
This 15 an approximation because the root locus cannot pass exactly through s,
with the compensator in the loop. Using (11) we have
- Ky I8y *+al |
1= X 3 _ (12)
u ]sl + b|

If we place the péie and zero very close together as shown in Figure 4, then the

- vectors from the pole and zero are nearly the same length, and (12) becomes

K
P ¥ (13)
y .

With K determined from the error congw
tant specification, we now have the
pole-zero ratio for the compensator.
However, we need two conditions to
determine the two parameters a and b,
The second condition comes from the
‘Fequirement that the compensated roct
locus pass near s., and this problem

is considered nex%. ‘

. i
Figure 4. Vectors of Lag Compensator
’ to Desired Closed-Loop Root

Figure 5 shows the geometry of adding a pole-zero compensator: s, is the
desired closed-loop root location; defines the damping constant g (E7= cos¢);
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a and b are the zero and pole locations of the compensator; B, and 9. are
the angles of the vectors frowm the compensator zero and pole %o the closed
loop root, respectively;A8 = 0. ~ 8_ 1is the net contribution of the compen~-
sator toward satisfying the root locus angle criterion at the point s = g_.
(A is a variable to be used later).

Figure 5. Geometry of a Pole-Zero Compensator

To keep the root locus near s, we would like to place a and b so that A8 1ig
small. We may find AO as follows. First

-m-'].«-z;“
- B0, tan g o
tan 8, a- g o -1 : (14)
tana = Eg_im:miz ) .Eiﬂih
2 b - qw B ~1 (15)
where MRS
tan¢ =] - qz /C o= a/Cwn 8 = bICmn (16)
Usihg the trigduometxic relations for the tangent of the sum of two angles
yilelds: 1 1 .
tan ¢ (== — ==
a-1 -1

tan(ﬂl - 92) = tanff ~

2401y 1
1 -~ tan ¢(G‘l)(B-l

N sing(8 ~ a) o
cogdof -~ a - 8 + 1) + c;;¢
stapE - 1) | .
tanAf = ) i (7
cos¢(3(a“l) - 1) + Y .

Now we want to choose o so that A8 will be less than some prescribed value.
To do this, we make o very small and with @/2 constant {17) becomes’

tanAd = (g ~ 1)asindcosd {18)
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vhere we have used the fact that a/f = b/a. To have A9 less than some criterion
(say 2° or 5°), we then want |tandB]<eg, so

b b ‘
a|G - 1)|singcosp <& o = Eﬁ: < E/[; - 1]sindcos¢ (19)

or alw < s/|-g~ - 1]Ji - *

n (20)

The summary of this design procedure is contained in Table V.

TABLE V. TO MEET AN _ERROR CONSTANT SPEC BUT NOT ALTER CLOSED-LOOP
TRANSIENT RESPONISE (LAG LETHORK)

1.  Set the compensator gain K to obtain the required increase in
error congtant.

3. Choose the ratio a/b from a/b = K.
3. Choosa the value of a such that

|tanae |
mazx!
y— where (%, w ) describe the
|§ - 171 - 2 location,of “the desired
elosed-loop rocts, and 88,

tg the maximm allowable deviation in the rcot locus angle
eriterion at the closed-loop root.

W <
a/n

VI. To Alter the Root Locus So That It Passes Through A Specified Point

1f the time domain specifications are translated to a pair of complex roots
that do not lie on the uncompensated root locus, then a compensator (usually a
lead compensator) is required. Again denote the desired closed~-loop root by
$;; the uncompensated transfer function GH(s); and the compensator as G (s),
to have the compensated root locua go through Sy» the (180°) angle condi;ion for
the root locus requires that -

180° = X GH(sl) + X Gc(sl) or X Gc(sl) = 180° - ¥ GH(sl) {(21)

This deficlency in the angle criterion can be easily computed and must be overcome

by the compensation network. Refer back to Figure 5 and let the quantity A8 be
equal to

AB = 180° ~ X GH(sl) . (22)

Then any placement of the compensator pole and zero using this value of A9 will
cause the root locus to go through the point s,. However, one must be sure that
the closed-loop roots dominate the respoanse, As a rule of thumb, the zero should
be to the left of the first real pole in a Type 1 system, and to the left of the
second real pole in a Type O system. Sketch a root locus for these cases and see
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why the rule of thumb is used. Another factor to consider is that the
compensator zero may contribute more overshoot than is desired. There ig
a curve in Clark (p. 123) which presents percent overshoot for a second
order system with a zero. This may be used as a guide to indicate whether
or not the overshoot of the compensated system will be excessiva. Before

proceeding to specific design pruocedures, let us examine some characteristics
of the lead compensator.

Gain Required to Obtain Desired Closed~Loop Roots

The gain Kc required to make the root locus pass through s. 1s given
in (12) and 13 répeated here, L

b A ’ (23)

g?ﬂnw
1
!
i

where Ku is a coanstant computed from (1) and (see Figure 5}.

Amlsl-;-al B~ |s; + bl

The following trigonometric identities come from Figure 5:

sing sin) sing _ sin() -~ A8)
B b AT a (24)

Substituting them in (23) ylelds

K .

T = c0980 ~ siuAfcotd ~ ainA9(cotdd - cotd)  AB < A < - ¢ (25)
u

This shows that the gain required is a monotonic function of the zZero

location. The zero should be placed as far as possible to the left to

make Kc, and thus the error constant, as large as possible.

Lead Ratio b/a

Aoother parameter of interest is the lead ratio, b/a. This should
generally be limited to (say) 10 or 15 because of implementation problerms,
although higher values are permissible in wany instances. To compute the
lead .ratio we use the identitles (sae Figure 5):

8180/ = sing, /el sta(h - 88)/a = sing fu_ (26)

0, = I = (§ + 1) 0, =1 = (§ + 1 - 48) Con
Equatibns (26) and (27) can be combined to yield

| afw = sin(d ~48)/sin() - 48 +¢) blw = sim/sin() + ¢) (28)

The lead ratio b/a is thus
E_ﬂ 2! Sinal . ain) . Ctoshs + sinpcot(lh ~ AB)

a sin() -A9) sina? cosy + sinpcot)

This becomes infinite at two points: } = A9, or a = 0; and §,, = 0, or b = =,

There i3 a minimum at the point )= (11/2) ~ (¢/2) - (A8/2) such that the angles

to the pole and zero are placed at equal angles about the bisector of tha

(29)



"angle defined by a line from s, to the origin of the s-plane and a line from s
toward -~ which is parallel to the negative real axis (D'Azzo and Houpis, P 4}2).

Since there 1s one unspecified parameter in the choice of lead necwork; wa
will describe several design requirements and the procedures to meet them which
are typical of ones encountered in practice, i

1. To bring the root locus to a specified point with a minimum lead ratio, b/a.

The lead ratio is sometimes minimized because the network implementation
requires an amplifier gain which is b/a times the compengator gain. In other
words, the lead network has a d.c. gain of a/b, so that minimizing the lead
ratio minimizes the attenuation at d.c. The design procedure for this case is
surmarized jin Table VI.

TABLE VI. IO BRING THE ROQT LOCUS TO A SPECIFIZD POINT YITH A MINIMNUM
LEAD RATIO, b/a.

1. Compute ¢, 40 and let X = (1 - ¢ + 48) to give mintmun b/a.
2. Solva (28) for b and a. ‘ : |

3. Pind the corpensator gain K& from (12). .

4. Check the design for stability and specifications. If the

spectfications are not met, then choose new points for the
dominant closed-loop roots and go to Step 1.

It may turn out that this minimum lead ratio is too large from a practieal
standpoint, and two or more lead compensators are needed. If m compensators are
used, one can replace A8 by AB/m in the above procedure. The gain computation,
too, nust be altered.

2. To bring the root locus to a specified point, and maximize the error constant
for some maxinum lead ratio.

In this case, we are suppoaing that we would like to get the maximum Increase
in the error constant, but we do not want to exceed a certain lead ratio because of
bardware considerations. We increase the error constant by increasing the Bode gain,
and as we have previously seen, this implies that we should choose the compensator
such that the zero is as far ro-the left as possible. The maximum allowable gain
occurs when the lead ratlo is at jts maximum value. The details of this procedure
are given in Table VI. :



TABLE VI. TO BRING THE ROOT LOCUS TO A DESIRZD POINT AND
MAXIMIZE THE ERROR COJSTANT FOR SOMZ MAXIMUM
LEAD RATIO

1.  Computs ¢ and A8.

2.  Choose the larger value of X which satisfies (29)
with b/a at its maximan valuz.

3. Solve (28) for a and b.
4.  Find the compensator gain X, from (12).

5.  Check the designs for stability and spect fications.
If the specifications are not met, then choose new
points for the dominant closed-loop roots and go
to gtep 1. .

3.7 To bring. the root locus to a specified point with a given error constant

This procedure can be used frequently since, 1f it can be done, it
simultaneously satisfiea the transieat response and erxor constant specification

- TABLE VII. TOQ BRING THE ROOT LOCUS TO A SPECIFIED POINT WITH 4
© GIVEN ERAOR COVISTANT

P

1.  Compute ¢ and 48.

2.  Compute the requived campensator gain X from the errop
congtant requirement. ¢

3. Find X\ from (25} and a and b from (28).

4. If the lead ratio is not too large, and N 1is within the
allowable range, then check the design for stability and
specifications and if they are not met, modify the posi-~
tiong of the dominant closed-icop reots and go to Step 1.

5. If the lead ratio is too largz for one compensator, two
alternatives are possible: caseading two or more lead com-
pensators, or using a lag-lead camensator. If the latter
choice is made, the lead portion may be chosen by either of
the eriteria discussed previously (Table VI.or VII) and the
lag portion em be chosen to make wp the deficiency in error
constant (see Tabla V). Regardless of the course of action,
the final da2sign should be checked for stability and
spectfications.




1€

Figure 6. Pole-zero placement to minimize lead ratio b/a.
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