University of California, Santa Cruz Board of Studies in Computer Engineering

CMPE-242: APPLIED FEEDBACK CONTROL

WINTER 2013 SYLLABUS

FPE: Franklin, Powell, Emami - Feedback Control of Dynamic Systems, 6th FPW: Franklin, Powell, Workman - Digital Control of Dynamic Systems, 3rd

SHAUM'S: STUBBERUD, WILLIAMS, DISTEFANO - SCHAUM'S OUTLINE OF FEEDBACK AND CONTROL SYSTEMS

WEEK	Dates	TOPIC	ASSIGNMENTS
1	08/10-Jan	Course Mechanics, Syllabus, LCCDE, Free and Forced Dynamic Response, Laplace Transform, Convolution, Transfer Function, Impulse Response, Partial	Read FPE Ch. 1-3, Appendix A. Homework #1 out
2	15/17-JAN	Fractions, Residues, FVT, Evan's Form Root Locus vs. Bode, Stability, Control Design Spec's, Transient Spec's, Tracking Spec's, Robustness Spec's, Evan's Form, Root Locus	Read FPE Ch. 4 & 5, Review RL techniques from Schaum's and CMPE-241 notes. Homework #2 out Homework #1 due 15-Jan
3	22/24-JAN	Root Locus review, Analysis vs. Synthesis, Lead and Lag compensators, Pole Zero Cancellations, PID Control, Bode	Read FPE Ch. 6, Review Bode techniques from Schaum's and CMPE-241 notes. Homework #3 out Homework #2 due 22-Jan
4	29/31-JAN	Bode Plots, Non-minimum phase systems, Frequency Domain Specs, Bode design examples	Re-read FPE Ch. 6 (not kidding), Schaum's and CMPE-241 notes on Nyquist. Homework #4 out Homework #3 due 29-Jan
5	5/7-FEB	Bode Plots, Non-minimum phase systems, Frequency Domain Specs, Bode design examples	Read FPE Ch. 8 and FPW Ch. 1-5 <u>Homework #5 out</u> <i>Homework #4 due 05-Feb</i>
6	12/14-FEB	Performance vs. Robustness tradeoffs, Nyquist, Phase and Gain Margins, Introduction to Digital Control, Sample and Hold, CCOAE, ZOH, half-sample time delay, numerical differentiation, Padé Approximation, numerical integration	Re-Read FPE Ch. 8 and FPW Ch. 4-7 Homework #6 out Homework #5 due 12-Feb
7	19/21-FEB	Z-transform, Euler Integration, Backward Euler, Trapezoidal Integration, Discrete Equivalent, z-plane, Aliasing, Unit Pulse Response, z-domain stability, Unit Circle, z-grid, digital control design, ZOH- equivalent, z-plane design, Inverse Z-	Re-read FPE Ch. 8 (so not kidding) and FPW Ch. 7-8 Homework #7 out Homework #6 due 19-Feb

		transform, FVT, DC gain	
8	26/28-FEB	Anti-Aliasing Filters, Continuous to	Read FPE Ch. 7, and FPW Ch. 9-
		Discrete Equivalent (ZOH), Direct Digital	11.
		design, Pade approximations	Homework #7(a) due 26-Feb
9	5/7-Mar	Bode and Nyquist in z-plane, Tustin, Pre-	Re-read Ch. 7, review notes on
		warping, Introduction to State Space,	State Space from CMPE-240.
		State Space to Transfer Function,	Homework #8 out
		Eigenvalues, Characteristic Equation,	Homework #7(b) due 5-Mar
		Controller Canonical Form	MIDTERM IN CLASS 7-MAR
10	12/14-MAR	Similarity Transforms, Uniqueness of	Re-read FPE Ch. 1-8, Review for
		State, Pole Placement, Ackerman's	Final Exam.
		Formula, Controllability Matrix,	Homework #9 out
		Controllability condition number	Homework #8 due 12-Mar
		equivalent to pole zero cancellation,	Homework #9 (Practice Final)
		Regulator, Estimator, Observability,	due 20-Mar (before Final Review
		Separation Principle, LQR, LQE, LQG	Session)
		control. Optimal Control, Bryson's Rule,	
		LQY, Symmetric Root locus, Kalman Filter,	
		BLUE, Integral Control (State	
		Augmentation), Tracking commands,	
		Digital State Space, Deadbeat Controller,	
		Reduced Order Estimator, Pincher	
		Control, Implicit Model Following	
FINAL	21-Mar	Covers everything in the class	Location TBD @ 12-3PM

^{*}Note: this syllabus is tentative, and subject to revisions. Depending on how much review is required, there might be some make-up or supplementary lectures during the quarter, and depending on student availability, the midterm might be scheduled outside of normal class hours.